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Abstract: This work deals with electroactive conducting polymers (ECPs) used as a complementary
component on purely capacitive silicon nanowires protected by a 3 nm alumina layer. Accordingly, in
this work, we use a fast and simple deposition method to create a pseudocapacitive material based on
the electropolymerization in aqueous micellar media (SDS and SDBS 0.01 M) of hydroxymethyl-EDOT
(EDOT-OH) onto 3 nm alumina-coated silicon nanowires (Al3@SiNWs). The composite material
displays remarkable capacitive behavior with a specific capacitance of 4.75 mF·cm−2 at a current
density of 19 µA·cm−2 in aqueous Na2SO4 electrolyte.

Keywords: pseudo-supercapacitors; electroactive conducting polymers; SiNWs; 3D nanostructured
electrodes; ALD; SDS and SDBS surfactants; PEDOT derivatives

1. Introduction

On-board electrochemical energy storage is critical to meet the increasing demand for low-
power portable devices such as micro-electro-mechanical systems (MEMs), autonomous sensor
networks, radio frequency identification (RFID), or biomedical implants [1,2]. Miniaturized
electrochemical supercapacitors that can be integrated on circuit chips will be essential
for the development of future microelectronic devices due to their ability to provide
high power density within an extended lifetime and wide operating temperature range.
However, state-of-the-art microsupercapacitors (µSCs) (based on carbon nanotubes, onion-
like, carbide-derived carbons) still suffer from a limited energy density, facing comparison
with recent Li-ion microbatteries [3,4] Although commercially available supercapacitors can
deliver much higher energy density (~5 Wh kg−1) than traditional solid-state electrolytic
capacitors, it is still significantly lower than that of batteries (up to 200 Wh kg−1). In
order to close the energy density gap, hybrid electrodes combining the properties of a high
surface area nanostructured support and the large pseudocapacitance of faradic materials
holds great promise. During the last decade, the inherent properties of electroactive
conducting polymers (ECPs) have also attracted a great deal of attention in the field of
electrochemical energy storage devices, comprising mainly battery and supercapacitor
devices. ECPs are playing a key role in the category of pseudosupercapacitors due to their
energy storage mechanisms associated to faradaic reactions, delivering higher capacitance
values compared to pure EDLCs [5].

Within this context, ECPs have demonstrated an enormous potential in terms of high
specific capacitance (values ranging from 300 to 800 F·g−1 [6–8] depending on electro-
chemical performance conditions), high conductivity (up to 103 S·cm−1) [7,9], light weight
and flexibility [10], relatively fast charge-discharge processes [11], easy processing and
relative low-cost [12,13], and environmental friendliness [14]. Thus, from the synthesis
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perspective, the electrochemical deposition of ECPs by means of electrochemical tech-
niques based on galvanostatic [15–17], potentiostatic [18,19], and potentiodynamic [20,21]
methods, recently opened up new perspectives to design and develop a great variety of
polymer morphologies. Yet, pseudo-capacitive materials (either transition metal oxides or
conjugated polymers) only display a reduced electroactive window and therefore lead to
low operating voltage not exceeding 2.0 V [22]. As the specific energy of a supercapacitor
is proportional to the square of the cell voltage, raising the energy density will ultimately
require the use of asymmetric electrodes with complementary potential ranges [23,24]
which is reachable here through the design of n-doped and p-doped associated ECPs as
different electrodes materials.

The objective of this work is to increase the areal energy density of µSCs. Integrated
micro-devices will be built with nanocomposite electrodes based on silicon nanowires
(SiNWs) as the conductive nanostructured substrate [25,26] and ECPs as the key energy
source for the electrode. Such nanowires were used as electrode materials and gave dou-
ble layer capacitance values reaching 46 µF·cm−2 for hundreds of cycles [27]. Silicon
nanostructures are prepared thanks to the chemical vapor deposition (CVD) growth pro-
cess (bottom-up) with doping precursors to keep a high conductive material as current
collector [28–31]. Specific ECPs are then electrodeposited in aqueous media [32] as they
are designed to have improved chemical compatibility with the polar alumina layer at the
surface of the SiNWs. To our knowledge, this project would represent the first time that
ECPs are coated on Al3@SiNWs as an electrode material for micro-supercapacitor applica-
tion. Those ECPs will be electropolymerized directly on the Al3@SiNWs with the help of
an aqueous solution where the concentration of surfactant is high enough to reach critical
micellar state, in presence of sodium dodecyl sulfate (SDS 0.01 M) and sodium dodecyl
benzene sulfonate (SDBS 0.01 M) as different surfactants compared in this study [33–36]. In
this work, we study the ability to deposit ECPs through critical micellar media and compare
the salt effect on the electrochemical deposition mechanism of EDOT and EDOT-OH on
passivated SiNWs as an active electrode material. Both nanocomposite electrodes are
electrochemically characterized to show the new increase of energy density.

2. Materials and Methods
2.1. SiNWs Electrodes

Highly n-doped silicon wafers (100 mm diameter, 〈111〉 orientation, Ω < 0.005 ohm·cm)
from Silicon Materials Inc. (Glenshaw, PA, USA) were used as the base material for the
growth of SiNWs. Prior to any surface modification, native SiO2 from passive oxidation was
removed by etching the samples in hydrofluoric acid with a HF Vapor phase etcher process
(Primaxx Monarch3 from SPTS), 1 min gas exposure for slow native oxides, followed by a
nitrogen drying. Wafers were then coated with 4 nm gold thin film by metal evaporation
(Evaporator MEB550 from PLASSYS). Samples were then diced into 10 × 10 mm2 squares
and used as substrates for SiNWs growth after extensive rinsing in acetone, isopropanol.

Silicon nanowires were grown by CVD using the vapor liquid solid method (VLS).
Previously deposited gold film was used as the VLS catalyst for the growth. The nanos-
tructure growth was conducted in a hot wall quartz tube CVD reactor, at 650 ◦C and under
6 Torr total pressure, using 700 sccm H2, 40 sccm SiH4, and 90 sccm PH3 (0.2% PH3 in H2),
respectively, as carrier, silicon precursor, and doping gases. An extra 100 sccm HCl gas
was added during the growth in order to reduce surface gold migration and enhance the
morphologies of the SiNWs and the doping as previously reported [37,38]. The growth rate
under these conditions was about 500 nm·min−1 and the fabricated SiNWs were tuned
to be 50 µm long. For the catalyst deposited from metal evaporation, the mean SiNWs
diameter was estimated around 61 nm ± 26 nm from SEM measurements. SiNWs density
was roughly estimated to be 7 × 107 SiNWs cm−2.
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2.2. ALD of Alumina on SiNWs

Nanometric atomic layer deposition of thermal Al2O3 thin films was carried out
using trimethylaluminum (TMA) and H2O as precursors in a Fiji200 reactor (Ultratech,
Mumbai, India). The previously HF-deoxidized samples were placed in the deposition
chamber, under 250 ◦C, 10−2 Torr, argon purge gas, and an automated recipe alternating
precursors injection steps and purge steps (0.06 s triethylaluminium (TMA), 8 s purge, 0.06 s
H2O, and 8 s purge) was performed until the desired number of cycles was reached. The
deposition rate was estimated to be 0.92 Å·cycle−1 (thus a 3 nm thick layer requires 33 ALD
cycles). SiNWs samples were referred to as Al3@SiNWs for a 3 nm Al2O3 homogeneous
and conform cover.

2.3. Electropolymerization of EDOT and EDOT-OH

Electropolymerization was performed in a three-electrode cell, using the Al3@SiNWs
as the working electrode for polymer electrodeposition, with platinum coil counter elec-
trode and an Ag/AgCl reference electrode. The electrolyte containing the EDOT and
EDOT-OH (8 mM) monomers was a critical micellar solution with either SDS (0.01 M) or
SDBS (0.01 M) as surfactant. After 1 h stirring, a 1 mL volume of solution was injected in
the cell and cycled at 50 mV·s−1 from −1.1 to 1.1 V vs. Ag/AgCl. The quantity of polymer
electrodeposited was observed in the first time after 20 cycles for experimental checking
and after 100 cycles for electrochemical characterizations, showing the Al3@SiNWs turning
dark blue. Samples were examined through scanning electronic microscopy (SEM) (Zeiss
Ultra 55, Zeiss, Oberkochen, Germany) and energy dispersive X-ray spectroscopy (EDX) to
confirm the polymer deposit and morphology.

2.4. Electrochemical Measurements

Electrochemical measurements were carried out in an aqueous electrolyte of Na2SO4
0.7 M electrolyte at room temperature. The electrolyte was initially purified from oxygen
using a 10 min argon bubbling then injected inside each cell with a 1 mL syringe under the
consistent basis of roughly 300 µL for each test. The electrochemical characterization tests
were conducted with a potientiostat/galvanostat (VMP3, Biologic, France). The investiga-
tion of the nanocomposite µSCs electrodes was performed in a commercial electrochemical
cell (ECC cell, EL-CELL, Hamburg, Germany) in both three electrodes and two electrodes
cell configuration. Three electrodes cell characterization was conducted using the silicon-
based sample (active area roughly 0.4 cm2) as the working electrode, a platinum coiled
wire as counter electrode, and an Ag/AgCl reference electrode for aqueous measurements.
Preceding any experiment, the silver pseudo-reference electrode was calibrated using the
voltammetric response of ferrocene redox couples in Na2SO4 0.2 M using an Ag/AgCl
reference electrode. Two electrodes cell devices were assembled by sandwiching a 0.7 M
Na2SO4 soaked Whatman grade 41 paper separator between two identical electrodes for
a symmetrical system. Cyclic voltammetry (CV) was conducted with various potential
windows ranging from −0.9 to 0.9 V vs Ag/AgCl reference electrode at different scan rates,
from 50 mV·s−1 to 1 V·s−1. The first cycles were considered as stabilization state cycles and
only following cycles are displayed here.

Galvanostatic measurements (GCPL) of symmetric systems (view Supplementary
Materials for detail) were carried to up to 1.2 V at different charging rates. Charge-discharge
measurements were conducted at multiple current densities (ranging from 0.05 mA·cm−2

to 1 mA·cm−2). Those were used to obtain areal capacitance, energy, and power densities
derived from the slope of the galvanostatic measurement, taking into account the footprint
of the µSC device (1 cm−2). Capacitance retention of the supercapacitor configuration was
investigated through long-term charge-discharge of symmetric devices in Na2SO4 0.7 M
tests at a current density of 0.5 mA·cm−2.

C =
I∆t

∆U × S
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For GCPL (1), where SC (F·cm−2) is the specific areal capacitance of the microsuperca-
pacitors, I (A) corresponds to the discharge current, ∆U (V) is the potential change over the
range applied and S (cm) the surface of the device tested.

C =

∫ U2
U1 IdU

2ν× ∆U

For CV (2), extraction of the capacitance is used with the following equation, where the
CV surface is integrated over dU (V) its full potential range, over ν (V·s−1) the scan speed,
and ∆U (V) the potential window of the cell. All electrochemical characterizations were
performed several times with samples from separate CVD and ALD batches using the same
conditions to ensure a good reproducibility in the experimentation and presented data.

3. Results and Discussions
3.1. Electropolymerizatoin on Al3@SiNWs
3.1.1. Electropolymerization of EDOT and EDOT-OH

The electropolymerization step uses nano-structured silicon-based electrodes to make
a new nanocomposite for supercapacitor applications. The electrode is made of n-doped
silicon nanowires and a thin 3 nm Al2O3 layer covers them homogeneously. This alumina
layer gives new vision on the potential applications of our system: such protected electrodes
are still giving good electrochemical performances while being compatible with aqueous
media, which is not the case for pristine silicone electrodes. Previous work showed that
the electropolymerization of EDOT on SiNWs has already been made using ionic liquids
as PYR13 TFSI as transport media [17]. However, with this alumina layer, we have the
possibility to repeat this procedure within aqueous media, aiming to display the new
interfacial properties with the 3 nm Al2O3 protecting layer, we compared the effect of two
monomers: EDOT and EDOT-OH. To enhance the ability to deposit ECPs, and because
EDOT monomers are poorly miscible in aqueous media, for both polymers, we use two
surfactants (SDS and SDBS) to help depositing locally our pseudocapacitive material. With
the surfactant addition and upon vigorous stirring, micelles are able to imprison the EDOT
and EDOT-OH in their hydrophobic core. This conformation allows the monomers to move
freely in the aqueous media, diffuse through the tortuosity of the SiNWs entanglement,
and react at our electrode interface during the process of electrodeposition. SDS and SDBS
are here compared regarding their ability to create proper conditions for electrodeposition,
with different chemical properties and an increased steric hindrance for SDBS that could
impact the micellar formation [39].

For the CV curves of the electropolymerization process (Figure 1a), successive cycles
display higher current densities because of the previously electrodeposited polymer getting
oxidized, displaying first shapes of pseudocapacitance [40]. It clearly shows that our
monomers are getting to their radical EDOT states at the end of the oxidation process around
1.1 V vs. Ag/AgCl, allowing the electropolymerization and deposition on Al3@SiNWs,
thus nucleating and creating a polymer film on our silicon electrodes. After 20 cycles
of electropolymerization, we can assume that the deposition of the EDOT-OH monomer
has a better yield than the EDOT monomer with higher current densities reached and a
less resistive CV oblique shape. Here, the effect of the hydroxyl function allows a better
solubility of the chemicals in aqueous media, as well as a higher affinity with the polar
alumina layer. SEM imagery (Figure 1b) shows the top view of the nucleation of the
electroactive polymers seems also to be favored at the apex of our Al3@SiNWs thanks to the
field effect and propagate to the trunks of the wires after the various electropolymerization
cycles. It creates larger areas, much thicker with the characteristic cauliflower structure
for both PEDOT and PEDOT-OH and it propagates to the length of the Al3@SiNWs as a
thinner layer.
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Figure 1. Nanocomposite electrode formulation, with (a) the electropolymerization comparison of
EDOT and EDOT-OH, (b) the SEM top view of the PEDOT-OH-Al3@SiNWs nanocomposite electrode,
(c) electropolymerization mechanism described and main deposition steps specified on the CV curves,
with circled in yellow the polaronic form, circled in green the dimerization, circled in blue the
propagation of the phenomenon and deposition of polymer EDOT-OH (d) comparison of surfactants
SDS and SDBS in electrodeposition of EDOT-OH at 50 mV·s−1, critical micellar media (0.01 M).

3.1.2. Electropolymerization Mechanism of EDOT-OH

For both the EDOT and the EDOT-OH monomers, the electropolymerization mech-
anism is as described in Figure 1c [41–44]. The monomer reacts at the SiNWs electrode
surface with the transferred electrons, creating mesomer forms leading to the positive
radical form of the monomer at the reached potential of 1.0 V vs. Ag/AgCl. Thus, upon
the reduction part of the CV, the radical forms are going to react together, liberating H2(g)
and creating a first dimer. This first assembly of polymer will be able to be re-oxidized in
the following oxidation part of the CV, appearing here as a stacking capacitive peak with
the appearance of the polaronic forms. Those will be able to react at one of its extremi-
ties of opened sites on the thiophene ring, extending the polymer chain and continuing
mechanism until the CV is stopped.

3.1.3. Effect of Surfactants SDS and SDBS

Because of the better electrochemical response of the EDOT-OH monomer, the follow-
ing experiments were focused on that specific monomer. We are comparing the effect of
two surfactants (SDS and SDBS) on the quality and efficiency for an electrodeposition of
EDOT-OH in critical micellar media [45–47]. We can see on the voltammograms (Figure 1d)
that SDS is more suited to deposit larger amounts of polymer on the nanostructures. The
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chemicals reasons are here described as the steric hindrance of the SDBS with the benzene
group, limiting the size of the micelle and hindering the diffusion and exchanges at the
electrode interface. The SDBS surfactant is showing slower kinetics for the EDOT-OH
electropolymerization to reach the polaronic and bi-polaronic states and might be related
to different pattern for the deposition mechanism. The traces of PEDOT-OH using SDBS as
a surfactant are scarce on the SEM observations, only appearing as small grains scattered
across the Al3@SiNWs. However, in SDS, the nucleation of the PEDOT-OH is faster and
SEM micrographs shows that we are able to deposit polymer on the Al3@SiNWs. Supposi-
tion was rising that the alumina layer could play the role of a limitation barrier because of
its insulator behavior, limiting electron transfer and protecting our SiNWs from electrode-
position of EPCs. However, as a polar material, the alumina improves the chemical binding
between Al3@SiNWs and the PEDOT-OH.

3.1.4. EDX Analysis

On the PEDOT-OH in SDS samples, EDX scans were probed at two distinct areas
of the nanocomposite, the apex of the Al3@SiNWs and the length surface at the basis
of the wire. The apex (Figure 2a) presents large nucleation areas of electrodeposited
polymer, exhibiting high intensity peaks for S, C, and O, matching with the PEDOT-OH
chemical composition ratios. Small traces of Na for residue of the surfactant and Al for
the protective alumina layer appear too on the spectrum. To check the presence of thin
polymer film on the main part of the wire (Figure 2b), EDX probing shows higher ratio
for S (6.37%) to C and O (24.44% and 7.84%), fitting with the deposition of a thin layer
of polymer added to the alumina layer beneath it. Those results could benefit from TEM
vision for a better approach across the PEDOT-OH deposited on the depths of the SiNWs
entanglement and the presence of the ECPs thin film. Although, the electrodeposition
mainly occurs on the apex of the Al3@SiNWs, that could be due to the presence of a highly
conductive material in the presence of the gold marble (leftover catalyst from the CVD
growth). However, the gold marbles are also covered with alumina during the fabrication
process of the electrodes which means that the electrodeposition is possible even with a
dielectric layer fully covering the substrate. This confirms the compatibility of nanometric
high-k dielectrics with electrochemical applications.

3.2. Characterization of PEDOT-OH in SDS and SDBS
3.2.1. Electrochemical Characterization

The CV characterization of our nanocomposite electrode was realized in a three-
electrode cell, from−0.9 to 0.9 V vs. Ag/AgCl in a 0.7 M Na2SO4 electrolyte and comparing
the CV results (Figure 3a) of EDOT-OH electropolymerization in SDS, SDBS, and pristine
Al3@SiNWs electrodes. We can clearly observe the shape of oxidation of EDOT-OH at
−0.4 V vs. Ag/AgCl and an increasing current density response until a plateau from
−0.3 to 0.8 V vs. Ag/AgCl, leading to improved specific capacitance of our electrodes.
Extracting the specific capacitances related to their respective scan rate (Figure 3b) allows
us to compare our systems properties to others. The PEDOT-OH electropolymerized in SDS
present high specific capacitance with 32.1 mF·cm−2 compared to the protected nanowire
and the PEDOT-OH electropolymerized in SDBS with 4.8 mF·cm−2. By the addition of
PEDOT-OH to our system, at 100 mV·s−1, we get more than 30 times the standard pristine
Al3@SiNWs thanks to the pseudocapacitive contribution of the EPCs.

3.2.2. Salt Effect on PEDOT-OH Morphology

In SEM, visually, more PEDOT-OH was deposited on the Al3@SiNWs in SDS condi-
tions (Figure 3c), forming large nucleation spots that propagate along the length of the
nanowire creating conical structures. PEDOT-OH deposition in SDBS conditions (Figure 3d)
seems to form smaller spherical grains. Hardly observable in the SEM principal electrons
detector, a change to secondary electron detector scan mode (SE2) showed small polymer
particles all along the nanowires (50 to 200 nm of diameter). For the same concentration of
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monomers polymerized, the efficiency over 100 cycles of electropolymerization was about
10 times higher for a SDS surfactant. Appearing clearly on symmetrical CV, the current
density from the pseudo-capacitive material was reaching 200 mV·s−1 up to 3.6 mA·cm−2

for SDS and 0.39 mA·cm−2 for SDBS electropolymerization method. From those increased
scan speed CVs, the polymer film had two different responses regarding the surfactant used.
Although the surfactant had a major impact on the efficiency of the electropolymerization,
it also influenced the morphology of the deposited PEDOT-OH, leading to different CV
responses shapes and peaks slight shifts. Here, the scan speed is not directly proportional
to the capacitance and is rather being fit with a square root dependency, showing that the
pseudo-capacitance behavior is contributing to the energy storage mechanism. By looking
in the literature, these performances are slightly higher than the performances of the PE-
DOT:PSS on protected SiNWs [48,49] (from 6 to 15 mF·cm−2). However, these results must
be taken with hindsight since the system with PEDOT:PSS has a narrower electrochemical
window, and a better stability to the increase in potential. Indeed, the PEDOT-OH has
a weak stability over the increase of the scan rate, since the kinetic of pseudocapacitive
processes is determined by slow faradic reactions compared to pure capacitive storage.
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3.2.3. Scan Rate Effects on PEDOT-OH Coatings

The nature of the systems PEDOT-OH electropolymerized in SDS and in SDBS is
described in (Figure 3e,f). Specific capacitances are extracted by the integration of the
cycles of the 100-cycle experiment CV responses divided by the potential window. These
capacitances are then plotted vs. the V and

√
V from the Trasatti method [50,51]. From

this data treatment, it is possible to assess the nature of the system, either faradic or
capacitive. If the specific capacitance is proportional to the scan rate the system is defined
as capacitive and if it is proportional to the square root of the scan rate, the system is
pseudocapacitive. As we observe the behavior of our two systems with SDS and SDBS,
we can see a clear difference between each: for the SDS deposition, with larger aggregates,
we have a clear dependency to a pseudocapacitive mechanism with a fitting with

√
V of
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the slope. The capacitance attributed to pseudocapacitive mechanism represents 60.5% of
the total capacitance and the other 39.5% belongs to EDLC storage (view Supplementary
Materials for details). For SDBS electrodeposited PEDOT-OH, the discrimination between
capacitive and capacitive also shows a tendency closer to pseudocapacitive mechanism,
but with a lower total capacitance. The hypothesis behind these results is that the polymer
has lowered kinetic of electropolymerization in SDBS, which results in a system with less
pseudocapacitive material than SDS depositions. The contribution of the polymer to the
specific capacitance is lower than the case of electropolymerization in SDS, although both
EDLC capacitances are enhanced by the addition of this pseudocapacitive contribution.

3.3. Electrochemical Cyclability and Ageing
3.3.1. Effect of Current Densities

The PEDOT-OH deposited on Al3@SiNWs was also tested in symmetric devices for
performance estimation. The GCPL shape shown in Figure 4a is a sharp triangle indicating
the main storage mechanism being capacitive rather than faradic and was tested to different
current densities from 19 µA·cm−2 up to 380 µA·cm−2 and at a cell tension of 1.2 V. It
appears that, as shown in Figure 4b, our system can load with a small ohmic drop of
0.04 V after a charge in 600 s at 19 µA·cm−2. At higher current densities, and up to
380 µA·cm−2, this ohmic drop falls to 0.5 Volts. Those GCPL results show a two-electrode
cell supercapacitor displaying a capacitance up to 4.75 µF·cm−2 in aqueous electrolyte
using a pseudocapacitive material.
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3.3.2. Electrochemical Cyclability

The two-electrode symmetrical system has also been exposed to a long life cycling at
0.5 A·g−1 (for an active mass of 0.62 mg−1 of EDOT-OH deposited) current density to up
to 100,000 cycles in aqueous electrolyte Na2SO4 0.7M. As shown in Figure 4c, there is a
quick capacitance decrease in the first 100,000 cycles, from a starting point at 4.75 mF·cm−2,
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it fades up to stabilizing at 2.61 mF·cm−2 and the end of the cycling after a 55% loss in
capacity retention. This can also be observed with the comparison of the voltammograms
(Figure 4d), showing the loss of capacitance between 20th and after 100,000th cycles.
Because the capacitive plateau associated to the conductive oxidized polymer remains
horizontal, keeping the square shape of the voltammetry, that could be associated to an
increased resistivity in the system. The pellet shape located at the apex of the Al3@SiNWs
could have been removed and insulated from the electrodes, leading to a quick capacity
fade in our system.

4. Conclusions

In this work, we proposed a fast and simple deposition method to create a new
nanocomposite with pseudocapacitive material based on the electropolymerization in
aqueous micellar media (SDS and SDBS 0.01 M) of hydroxymethyl-EDOT (EDOT-OH) onto
3 nm alumina-coated silicon nanowires (Al3@SiNWs). It forms a homogeneous thin film
coverage on the nanostructures, as proven by SEM and EDX characterizations. This coating
allows enhanced electrochemical performances for ECPs and energy storage compatibility
with higher energy densities while remaining in aqueous media. The pseudocapacitive
mechanism for energy storage is the main energy storage mechanism observed in this kind
of system, largely outdoing standard EDLCs supercapacitors. The nanocomposite material
produced displays of capacitive behavior with a specific capacitance of 4.75 mF·cm−2 at a
current density of 19 µA·cm−2 in aqueous Na2SO4 electrolyte. The Al3@SinWs-EDOT-OH
electrodes also shows improved life cyclability despite falling at 55% after 100,000 cycles in
aqueous media at 0.5A·g−1 of electroactive material. This confirms the compatibility of thin
dielectric layers with energy storage mechanisms. While being able to perform in aqueous
solvent, the protected SiNWs can be associated with various pseudocapacitive materials
through aqueous deposition techniques. Pseudocapacitive materials such as derivatives
from EDOT as EDOT-OH show a better affinity and electropolymerization results with
this technique.
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