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Abstract

A Bayesian neural network potential (NNP) achieved with the Monte Carlo dropout approximation method is developed for GeSbTe
alloys. The Bayesian NNP is shown to be more generalizable than its classical counterpart, yielding reasonable predictions on
structures that are not directly in the training configurations, and is able to output uncertainty estimates for the predictions. Its
application to a molecular dynamics (MD) simulation is also presented, and the validity of the obtained trajectory is evaluated by

comparing it to Density Functional Theory (DFT).

1. Introduction

GeSbTe (GST) alloys are interesting materials for a variety
of technological applications like phase change memories or
photonic devices [1]. Molecular dynamics (MD) simulations
are often used to survey their properties and to optimise their
composition, but studying finite temperature properties such as
phase transition or thermal conductivity often require long sim-
ulations of extended systems that are too expensive for ab initio
methods. Neural network potentials (NNP), trained on Density
Functional Theory (DFT) references, can be used to drive an
MD to overcome this limitation, which were recently shown to
enable simulations at scales that were previously impossible at
a near-DFT level accuracy [2].

NNPs, however, can silently fail on structures that lie out-
side the learned configuration space, which poses some issues
when relying upon them for atomistic simulations. One solu-
tion is to apply the Bayesian paradigm to the neural network
to capture the model’s uncertainty along with its predictions.
This has previously been demonstrated for the different phases
of carbon [3], but never to more complex materials containing
more than one chemical species.

In this work, a Bayesian NNP using the Monte Carlo (MC)
dropout technique will be used on GST materials to evaluate
its ability to estimate the predictive uncertainty as well as its
superior generalizability compared to classical NNPs.

2. Methodology

2.1. Classical and Bayesian HDNNP

A feedforward neural network (NN) is the most common
form of a neural network. It is organised as a set of layers with
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each layer, in turn, containing a set of nodes. Each j™ node
of an I layer y[.” in a feedforward NN is connected to all the
nodes of the previous layer via the following relationship

[ [ -1 [
W=oll (Z Wiy ]+b_5-]] (M
i

where o is known as an activation function that introduces non-
linearity to the network, and w and b are weight and bias param-
eters that are optimised during training. The index i runs over
all nodes of the / — 1" layer. This is also represented schemati-
cally in Fig. 1.

The High Dimensional NNP (HDNNP) [2] is a type of NNP
that is composed of a set of Atomic Neural Networks (ANN)
that each takes one atom of a given system as the input and out-
puts a so-called “atomic energy”’, whose sum provides the total
energy of the system. The ANNs are simple feedforward NNs
that share their weights and biases amongst the same chemical
elements.

Classically, feedforward neural networks contain point
weights and output point estimates. In contrast, Bayesian neu-
ral networks place a probability prior over the weights and the
estimates are obtained as a distribution by sampling from the
posterior [4].

Formally, this can be expressed as follows. Starting with the
Bayes’ theorem

P(DIH)P(H) _ P(D,H)
P(D) [ P(D,H)dH’

P(H|D) = (@)

substituting 6, representing the weights and biases of the neural
network, for the hypothesis (H), and the input, target pair of the
training dataset (D, D)) for the data (D) and using the relation-
ship P(A|B)P(B) = P(A, B) the following equation is obtained

P(D,|D,,6)P(6)
|, P(Dy|D.., 0)P(6")de’

P(0ID) = 3)
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Figure 1: Schematic representations of a standard feedforward neural network
(left) and a neural network with dropout, with the dropped nodes crossed out
(right).

Lastly, with this Bayesian posterior of the parameters that
take into account the training dataset, the predictive posterior
can be used for Bayesian inference.

P(lx, D) = f POIx, 0)P(E|D)d8’ @)
0

In practice, especially for complex functions like neural
networks, computing and sampling from the posterior is in-
tractable, mainly due to the difficulty associated with com-
puting the evidence fe P(Dy|D,,0")P(8")d#’ [5]. This is there-
fore performed indirectly by sampling 8; ~ P(6|D) for i =
0to N [4]. Monte Carlo dropout is one such approach to ap-
proximately sample from the posterior by using dropout at in-
ference time [6].

Dropout was originally developed as a regularisation tech-
nique in which a set fraction of nodes of a neural network are
randomly “dropped” (ie. set to zero) during training to prevent
overfitting [7]. Similar to Eq. 1, dropout is expressed mathe-
matically as follows

rl[” ~ Bernoulli(p)

=[i-1 I -1
Fl = Iy

] 1 —~[l-1 1
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In standard dropout, the mask r is disabled at inference time
and the values are rescaled according to the probability p to ac-
count for the increased number of connections. Therefore, for
a given input, the output of the network is always constant. In
contrast, the masking is maintained in Monte Carlo dropout and
multiple forward passes through the network are performed for
each input. The mask is drawn randomly from the Bernoulli
distribution at each iteration which results in a distribution of
outputs. The mean and standard deviation extracted from this
distribution is then taken as the prediction and the correspond-
ing uncertainty.

&)

2.2. Computational Details

To generate the datasets, ab initio molecular dynamics
(AIMD) calculations based on Density Functional Theory
(DFT) were carried out using the VASP code [8, 9] at temper-
atures from 300 K to 1500 K at 300 K intervals for 20 ps for
hexagonal GeTe, Sb,Te; and Ge,Sb,Tes (containing 192, 240
and 216 atoms, respectively). 200 snapshots were then selected

for each trajectory to compute accurate energies and forces.
All DFT calculations were performed using the Perdew-Burke-
Ernzerhof (PBE) [10] exchange-correlation functional and in-
cluded the D3 dispersion correction to describe Van der Waals
(VdAW) interactions [11].

Our in-house library FFLearn was used to generate the
NNPs, employing the symmetry functions proposed by Behler
and Parrinello [12, 13] to encode the local environments around
each atom for neural network input. After testing different con-
figurations, all NNPs were defined to have 2 hidden layers with
15 nodes each. For the Bayesian NNPs, nodes were dropped
with a probability of 10% save for the output layer that was
kept at 0% to utilise all the available information, and sampled
100 times during inference.

3. Results and Discussion

For a neural network potential to be practicable for atom-
istic simulations, it must have the ability to generalize as much
as possible to previously unseen configurations, and, perhaps
more importantly, to recognise when it cannot.

Since a neural network potential can be thought of as a com-
plex function modelling the potential energy surface (PES), re-
gions on the PES that are outside the learned domain can lead
to erroneous predictions. Being able to recognise when this oc-
curs would make the NNP more reliable.

3.1. Comparison of Generalizability

In order to assess the generalizability, two NNPs (one
Bayesian and one classical) were trained on the hexagonal GeTe
300 K, 600 K, and 900 K datasets (the training set) and made
to predict the energies of the 1200 K and 1500 K snapshots (the
test set). Root mean squared error (RMSE) between the predic-
tions and the reference DFT energies was used as the accuracy
metric, and the results are summarised in Table 1.

The higher temperature of the test sets was used to emulate
structures drawn from outside the configuration space immedi-
ately spanned by the training set. The Bayesian NNP shows
some promising results for the 1200 K dataset, with an RMSE
of 53.1 meV/atom. The error becomes much greater for the
1500 K dataset which is expected to contain structures that are
more amorphous-like, thus containing too many unknown con-
figurations. Meanwhile, the classical NNP is unable to produce
any valid results for either datasets.

Table 1: RMSE (meV/atom) of hexagonal GeTe between the DFT energy and
the NNP predictions.

Validation 1200 K 1500 K
Bayesian 3.18 53.1 1339.5
Classical 1.49 561.5 9185.0
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Figure 2: Uncertainty estimates for the hexagonal GeTe validation and test sets
against the prediction errors given by the Bayesian NNP.

Table 2: RMSE (meV/atom) of Ge,Sb,Tes between the DFT energies and the
NNP predictions at all temperatures.

Temperature (K) 300 600 900 1200 1500
Bayesian 704 500 320 146 256
992.7 9642 933.6 9022 4555

Classical

3.2. Uncertainty estimation

The 1500 K example in the previous section highlights the
importance of being able to estimate the predictive uncertainty.
Fig. 2 shows that this is achievable with the Bayesian NNP, ex-
hibiting a clear correlation between the uncertainty estimates
and the prediction errors (computed as the absolute difference
between the DFT reference energy and the NNP prediction).
It is important to note, however, that this uncertainty is an es-
timate rather than a true reflection of the error, and care must
be taken when interpreting it. Namely, they do not necessarily
have a strictly linear relationship.

Making use of the uncertainty estimates typically involves
setting a threshold, above which the structure is considered un-
known to the model. Following this, an MD powered by an
NNP (hereafter NNP-MD) can, for example, raise a warning
or be stopped. The identified structure can also be used to im-
prove the potential by means of active learning [14] or on-the-
fly learning [15].

3.3. Predictions on Ge,ShyTes

We now focus on Ge,Sb,Tes (GST225), a material that lies
on the GeTe—Sb,Te; tie-line on the ternary diagram. To com-
pare the NNPs’ generalizability to ternary alloys, a classical and
a Bayesian NNP were each trained on the two extrema (GeTe
and Sb,Te;) and tested on Ge,Sb,Tes at different temperatures.
The results are summarised in Table 2, and the lowest error case
(1200 K) is represented graphically in Fig. 3. Similar to the re-
sults in Sec. 3.1, the classical HDNNP fails to give meaningful
predictions.

On the other hand, the relative success of the Bayesian NNP
is surprising, given that it has not been supplied with any di-
rect knowledge of the Ge—Sb or the Ge—Sb-Te relationships,
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Figure 3: Energy predictions on Ge,Sb, Tes at 1200 K given by the classical and
Bayesian NNPs trained on GeTe and Sb,Tes, compared to the DFT reference.

or any permutations thereof. Nonetheless, these results hint at
the possibility of modelling other GST compositions along the
GeTe—Sb, Tes tie-line with only a minimal dataset on the GST
itself. As the dataset generation is the most expensive step to
training NNPs, this could prove to be a very powerful develop-
ment. However, more work is required to confirm these find-
ings on different stoichiometries of GST, and to understand the
mechanism behind this extrapolation capability before physi-
cally relevant properties can be calculated.

It should be noted that the particularly low RMSE for the
1200K dataset for the Bayesian NNP has no physical basis.
Neural network training is a stochastic process that involves a
few different random sampling operations. For example, the
initial weights must be drawn from a probability distribution
and the training dataset is randomly shuffied during training. In
addition, as neural networks are very high dimensional, there
exist many local minima. As such, different initial conditions
practically always converge to different minima, which leads to
slightly different results being produced for each new trained
potential. Consequently, the lowest RMSE may lie at another
temperature if the experiment was repeated, but the fluctuations
in the values will remain minor. Though this effect is amplified
here as GST225 lies far outside the trained configuration space
(due to the lack of the Ge—Sb and the Ge—Sb-Te interactions
in the training data, as mentioned above), it is still clear that
the Bayesian NNP can give much more meaningful predictions
than the classical.

3.4. Radial Distribution Function

To validate the Bayesian NNP on its ability to predict ki-
netic properties of periodic systems, an MD simulation was per-
formed in the canonical (NVT) ensemble with the Nosé-Hoover
thermostat at 1200 K for 20 ps followed by a simulation in the
microcanonical (NVE) ensemble for 10 ps for the hexagonal
GeTe using the LAMMPS [16] package. The potential was
trained on all GeTe datasets mentioned in Sec. 2.2. The size of
the simulation cell was intentionally kept relatively small (192
atoms; same as the training set structures) in order to compare
against DFT.
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Figure 4: A comparison of the total radial distribution function for GeTe at
1200 K between the AIMD trajectory and the NNP-MD trajectory.

From the NVE trajectory, a time-averaged total radial dis-
tribution function (RDF; g(r)) was extracted, taking into ac-
count all interatomic distances (Ge—Ge, Ge—Te and Te—Te).
As shown in Fig. 4, the RDF shows a good agreement be-
tween the NNP and DFT. In addition, the NNP-MD was com-
pleted ~35 times faster than the AIMD, running at a speed of
231.98 timesteps/s, compared to 6.65 timesteps/s for the DFT.
Reducing the number of sampling steps for the Bayesian NNP
will further increase the performance, and it is likely that even
sampling only 10 times will result in only a minimal differ-
ence in the accuracy of the final prediction [6]. Moreover, as
HDNNPs scale quasi-linearly with the number of atoms [2],
while DFT follows cubic scaling with the number of electrons,
this performance gain is only expected to increase as the system
size grows.

In contrast, a classical NNP trained under the same condi-
tions was unable to run an MD due to unphysically high forces
being predicted, causing the simulation to crash. As a result, no
RDF for the classical NNP could be computed for comparison.

4. Conclusion

In this work, a Bayesian neural network potential for GeSbTe
was developed using Monte Carlo dropout [6]. It was shown
to have an improved generalizability compared to its non-
Bayesian counterpart on hexagonal GeTe, with insightful es-
timates on the uncertainties of the predictions. Molecular dy-
namics simulations performed with a Bayesian NNP exhibited
good agreement with the ab initio MD, shown in the form of
the radial distribution function. In addition, a significant im-
provement of the computational cost was also observed. These
indicate that neural network potentials can reliably be used for
studies of physical properties requiring atomistic simulations
at large scales, such as the thermal conductivity. Furthermore,
it surprisingly was able to reasonably calculate the energies of
hexagonal Ge,Sb,Tes, even in the absence of information on
the two-body Ge—Sb and the three-body Ge—Sb—Te relation-
ships in the training dataset. Future work will involve inves-
tigating this in more detail to better understand its underlying

mechanism to try to take advantage of this for a cost-efficient
training of a general GST potential.
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