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Abstract—Self-reconfigurable batteries (SRB) are advance bat-
tery systems where semiconductor switches allow cells to be
connected or bypassed dynamically. The in-line configuration
even allows the direct generation of AC current without any
power converter while allowing a flexible cell usage. This paper
introduces a new method of SRB control with nonlinear Model
Predictive Control (nMPC) with the aim to reduce battery ageing.
A full battery cell model is used to perform the minimization
of the SRB capacity losses. Simulation results on WLTP profile
validate the proposed method with a capacity loss reduction of
12.4%.

Index Terms—batteries, self-reconfigurable, MPC, optimal
control, battery ageing, modelling

I. INTRODUCTION

In a traditional electric vehicle battery pack, cells are
statically connected in series and in parallel to comply with
voltage and current requirements involving that the weakest
cell limits the entire battery pack. Therefore, due to the
production process tolerance and different operating conditions
in the battery pack, battery cells have capacity and impedance
discrepancies, which in addition increase during the battery
life [1]. As a consequence, the weakest cell is increasingly
limiting [2].

In this context, self-reconfigurable (SRB) batteries are used
to deal with the battery pack cell inconstancy. This pack
includes switches, allowing to bypass the weakest cell or even
to adjust the overall cell layout based on cell’s individual state
[3]. Therefore, SRB can extract more energy from the cell than
traditional battery pack.

In consequence, SRB needs more sophisticated control
than the traditional statically series connected battery. In a
previous work [4], an accurate nonlinear battery cell model has
been developed. Nonlinear Model predictive control (nMPC)
appears to be the most appropriate close-loop optimization-
based approach due to its ability to control nonlinear systems
while taking an objective function and constraints.

This approach is already studied in [5], [6], where nMPC
strategy focus on balancing the battery cells capacities and
temperature in order to maximize the autonomy and improve
the battery ageing due to temperature dispersion. Lifespan
increase is therefore an indirect consequence of these controls.

This paper proposes to develop a nMPC which directly
optimizes the battery cell capacity loss to demonstrate the full

potential of SRB to reduce battery ageing. This study is based
on the SRB technology introduced by [7] and illustrated on
Fig. 1, where cells are dynamically reconfigured to perform
an AC output waveform as represented in Fig. 3. This paper
focus on the control of only one phase of the SRB due to a
similar control of the three phases.

The proposed approach is validated across a simulation
using the power consumption of a car following the Worldwide
harmonized Light vehicles Test Procedures (WLTP), which is
near the average travelling distance of private vehicles [8]. A
Global optimization solution is used as a reference to evaluate
the performance of the control regarding the perturbation and
the limited length of the MPC prediction horizon.

This paper is organized as follows. In section II, the battery
model used for this study is presented. It is similar to the one
used in [5] and include an electrical model, a thermal model,
a Li-ion cell-ageing model and a SRB reconfiguration model.
Section III formulates the optimization problem and describes
the nMPC approach. Section IV presents and analyses the
results of the previously mentioned simulation. Finally, section
V concludes the paper.

II. BATTERY MODEL

To perform the optimization in the nMPC control and the
simulation, a battery model is required. This is obtained in two
steps : first the behaviour of one cell is modelled according to
the current circulating through the cell. Then, a SRB model
describes the current in each cell depending on the desired
output AC signal and the system control vector u.
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Fig. 1. SRB hardware architecture for an electric vehicle usage



A. Battery cell model

The definition used for State of Charge (SoC), State of
Health (SoH) and Crate of a battery cell is given in Eq. (1)
to (3).

SoC(t) = 100− 100

3600(Qbol −Qloss(t))

∫ t

0

icell(τ) dτ (1)

SoH(t) = 100
Qbol −Qloss(t)

Qbol
(2)

Crate(t) = icell(t)/Qnom (3)

with Qloss the cell capacity loss since the beginning of
life, icell the current circulating through the cell, Qnom the
cell nominal capacity provided by the manufacturer and Qbol
the measured cell capacity at beginning of life. We introduce
an initial capacity dispersion model of the cells in a battery
pack by a normal distribution of Qbol around Qnom.

For the voltage estimation, a 2-RC Thevenin model (Fig.
2) has been chosen, with R1C1 = 10s and R2C2 = 100s [4].
The impedances Rj , j ∈ {0, 1, 2} are variable parameters
regarding T , SoC, Crate and SoH . So, multi-dimensional
cartography obtained by hybrid pulse power characterization
at different ageing progression is used to correct cell
impedance [3], [4].

The cell thermal dynamic follows a simple heat diffusion
model (4). The cells are cooled by the outside at temperature
Text and with the convection rate hext. Cp is the cell calorific
capacity. The thermal power is obtained with the joule effect
of the impedances Rj (5) [9]. Reversible heat generation can
be ignored [1].

Cp Ṫ = P − hext (T − Text) (4)

P = R0 i
2
cell +

v2R1

R1
+
v2R2

R2
(5)

Equation (6) represents the degradation function law during
cycling [4]. The ageing speed is adapted with the empirical
function J dependent of the cell SoC, T and Crate (Fig.
6). α is an ageing accelerating factor when the cell reaches
a certain point of capacity loss. A and m are experimental
fitting coefficients. An accelerated ageing protocol at different
T , SoC and Crate is used to determine the parameters of the
model.

Q̇loss = α
J(Crate, T, SoC)

(1 +AQloss)m
|icell| (6)
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Fig. 2. 2-RC Thevenin Electrical Equivalent Circuit model

B. SRB model

In order to provide an AC waveform, the battery pack
follows a reference voltage Vref (7) while supplying a current
ipack (8) with Urms the desired output rms voltage, Irms the
rms current, θ the signal phase and φ the current phase-shift
compared to the SRB output voltage.

Vref (t) =
√

2Urms(t) sin(θ(t)) (7)

ipack(t) =
√

2 Irms(t) sin(θ(t) + φ(t)) (8)

The battery pack voltage is built by continuously
reconnecting the right number of cell in series. As the
electric motor operates on a wide frequency range, a relative
simple and fast control must be used to calculate the battery
pack reconfiguration. Cells do not ensure the same amount
of current depending on their connection duration in the
staircase sinusoidal voltage illustrated in Fig. 3. In [10], the
cell’s exchanged current is controlled by connecting them in a
specific order in the waveform. Therefore, an average current
for each cell can be applied by using a sorting algorithm.

Now, it is assumed that this kind of control is used. The
average current flowing through a cell is simplified to (9).

icell(t) = iav(t)µcell(t) (9)

with iav the average current over all cells in one period (11)
and µcell ∈ R. The system control vector u reflects the cell
utilization rate. This vector is defined as follows with n the
number of cells in the battery pack:

u =
(
µ1 . . . µcell . . . µn

)T
(10)

iav =
1

π · n
∑
cell

∫ π

0

icell(θ)dθ (11)

An approximation of iav can be done by considering the
use of a FILO strategy (first-in last-out), where a cell is
connected and then disconnected once per half period of the
AC signal. Thus, iav can be directly computed with (11)
from Urms, Irms, φ and vcell

It is necessary to constrain the mean value of µcell to one
in order to respect the amount of capacity consumed during
utilization. Furthermore, µcell must be limited concerning the
maximal dispersion that the SRB is capable to deal with. A
useful dispersion indicator is the stochastic variance. So, µcell
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Fig. 3. Staircase waveform generated by SRB



variance must be kept smaller than µvarmax the maximal
variance that the SRB is capable to manage and must be
limited to a lower bound (lb) and an upper bound (ub). Eq.
(12) summarizes all constraints on µcell.

C(u, t) =


mean
cell

(µcell) = 1, cell ∈ {1 · · ·n}

µcell(t) > µlb(t)

µcell(t) 6 µub(t)

var
cell

(µcell(t)) 6 µvarmax(t)

(12)

Finally, similarly to the calculation of iav , an average power
can be computed for joule effect associated to R0 :

iav square =
1

π · n
∑
cell

∫ π

0

i2cell(θ)dθ (13)

III. NONLINEAR MODEL PREDICTION CONTROL

Due to errors in the system modelling and unpredictable
perturbations, close loop control are needed to correct their
outputs according to a measured variable. Additionally, MPC
is often used when the control should minimize a cost function
over a prediction horizon for a constrained dynamic system.
The term nonlinear is added when the cost function is not
quadratic and/or the dynamic system is no linear and/or the
constraints are not linear.

In this paper, the objective is to develop the nMPC that
minimize the capacity loss of the battery while respecting
the SRB dynamic and its limits. The SRB capacity loss is
defined with the expression Qloss pack = mean

cell
(Qloss cell).

Therefore, the following finite horizon optimization problem
is formulated as follows:

min
u(t)

J = min
u(t)

∫ tf

t0

t2 Qloss, pack(t)2 dt (14)

Subject to :

ẋ(t) = f(x(t), u(t), Irms(t), Urms(t), φ(t)) (15)
2.9 6 vcell(x, t) 6 4.2, cell ∈ {1 · · ·n} (16)

C(u, t) (17)

with J the cost that must be minimized, t the time
variable, x the system’s state, f the dynamic system
differential function and tf − t0 the prediction horizon.
Applied to the SRB, x is the combined state of every
cell in the pack and it is defined as follows: x =(
· · ·SoCcell · · · vR1,cell · · · vR2,cell · · ·Qloss,cell · · ·Tcell · · ·

)T
where cell ∈ {1, · · · , n}. f is defined by the combined
dynamic of every cell model presented in section II-A and
the average current model of the SRB (11).

In order to return a more convex cost function and easier
to solve problem, (14) is a quadratic expression and has a
weighting that increase with time.

In the prediction horizon, Irms(t), Urms(t) and φ(t) are
unknown functions and are received as perturbation. Among
several techniques that can estimate those functions, constant
values is the implemented technique.
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Fig. 4. MPC control loop

For all batteries pack using Li-ion cells, voltage limits
of every cell must be respected. This can be included in
the optimization problem with the inequality constraint (16).
However, because of the perturbation and the error in the
system modelling, it is possible that these constraints can not
be respected. To avoid a blocking situation in the optimizer,
these constraints are modified as penalty function and are
added to the cost function.

Finally, this problem is solve with numeric methods. A
direct multiple shooting method combined with the SQP
algorithm is used [11]. Discretization is performed by solving
linear time-variant system for the computation of SoC, T and
v. Qloss is solved by performing the Euler method because
the time step is chosen small compared to the other four
variables. So, the optimal solution is a discrete function :
u(k ∆t 6 t < (k + 1) ∆t) = uk|k ∈ 1, . . . ,K with ∆t
the step time and K the maximal horizon step.

In nMPC control, after computing the optimal solution, only
the first action step uk=1 is used. Then, this command is
provided to the sorting algorithm described in section II and
represented with all the control loop in Fig. 4.

IV. SIMULATION RESULTS

The battery pack chosen for the simulation uses 25 Li-ions
cells with Qnom = 2.9A.h. The battery cell model is based
on Nickel Manganese Cobalt (NMC) 18650 cell with graphite
anode [4] and the empirical ageing function is illustrated
in 6. Additionally, the battery pack starts to be simulated
with a normal distribution for cell’s Qbol and R0, with a
standard deviation of respectively 1% and 6% [1]. Battery cell
numeration is in the ascending order of the cell’s Qbol.
Urms, Irms and φ are calculated according to an electric

car motor model using a WLTP profile. It is assumed that
the electric motor changes from a constant flux control to a
constant voltage control at 40 km/h. The maximum voltage of
the profile is then adjusted to the voltage that a 25 cells SRB
can supply at end of discharge max(Urms) = 2.9·25√

2
V.

Irms is adjusted to perform a depth of discharge of 10%.
The end of the profile corresponds to a battery charge at
Urms = 44.2V and Irms = 3A until battery SoC reach 90%
again. The resulting profiles are illustrated on Fig. 5.

During the discharge profile, the previously described
nMPC control is use with the following parameters : K = 20,
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∆t = 10s. For the prediction process, Urms is a constant value
of 44.2 V. Irms and φ are kept constant at the last measured
value. During the charge profile, Urms, Irms and φ are known
values. For the 700 last second, an open loop global solution
is found using the optimization problem of the nMPC with
an additional SoC equalizing constraint for the last step. The
simulation result can be viewed on Fig. 7b.

This can be compared to a reference simulation represented
in Fig. 7a which is a simulation of the SRB that use the cells
in an equalized manner : µcell = 1, ∀cell ∈ {1 . . . n} .

Finally, Fig. 8 shows the simulated Qloss, pack of the nMPC
and reference simulations. Additionally, the simulation of
a Qloss, pack resulting of the use of a global solution is
represented. This solution is obtained like the open loop global
solution in the charge profile of the nMPC simulation but it
is applied over all the profile with the absolute knowledge of
Urms, Irms and φ.

Despite the higher T and Crate for some cells, it can be
seen that Qloss, pack obtained with the nMPC control is 12.4 %
lower than the one in the reference simulation. This is mostly
explainable by the fact that ageing speed function, illustrated
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in Fig. 6, decrease more with the SoC than for T and Crate for
low depth of discharge. Therefore, the nMPC control favours
the use of a limited number of cells to decrease their SoC
more rapidly.

V. CONCLUSION

This paper demonstrates the SRB capabilities to reduce
battery ageing by using nMPC. A complete battery cell model
including cell ageing allows to perform the minimization on
the battery capacity loss in a realistic framework. Simulating
the nMPC on WLTP profile discharge exhibits a major ca-
pacity loss reduction of 12.4%. However, the global optimal
solution results show that a reduction of 18.6% is possible.
A more sophisticate prediction of the perturbation would
certainly bring the nMPC closer to the global optimal.
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