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Abstract—Due to factory production discrepancies and differ-
ent operation conditions, cells integrated in conventional battery
systems are not similar. In a static series connection, the weakest
cell limits the battery pack capacity. Self-reconfigurable batteries
(SRB), where semiconductor switches allow cells to be connected
or bypassed dynamically, are used to by-pass the weakest cell
and so use the full battery capacity at any time. The in-line
configuration even allows the direct generation of AC current
without any power converter. This paper proposes an optimal
lifetime management strategy for SRB generating AC current.
A full battery cell model including ageing mechanisms is used
to perform the minimization of the SRB capacity losses with the
aim of demonstrating the SRB capabilities in terms of lifetime
extension. A direct multi-shooting numeric method is used to
solve the minimization problem on battery partial discharge,
which is often encountered, like in the electric vehicle usage.
Simulation results validate the proposed method and a major
lifetime extension of 54% compared to conventional battery pack
has been observed.

Index Terms—batteries, self-reconfigurable, optimal control,
battery lifetime extension, modelling

I. INTRODUCTION

Electrification in combination with green energy production
seems to be the most promising solution to address the critical
issue of climate change. However, mobility and intermit-
tent renewable energy production require the use of storage
systems. Lithium-ion battery represents a key technological
solution due to its features: high energy and power density,
wide temperature range of operation and low self-discharge.
Unfortunately, the production process tolerance leads to a
capacity and impedance discrepancies of the battery cells,
even between identical, brand-new cells from the same batch
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Fig. 1. SRB hardware architecture

[1]. In a traditional battery pack, cells are statically connected
in series and in parallel to comply with voltage and current
requirements. As a consequence, the weakest cell limits the
entire battery pack [2]. In addition, the dispersion between
cells increases during battery aging due to individual operating
conditions of cells in the same battery pack [3] limiting more
and more the battery by the weakest cell. Battery Management
Systems (BMS) are then used to supervise and compensate
some of this dispersion. Frequently, a charge balancing mech-
anism compensating coulometric efficiency dispersion is used,
although the weakest cell remains a limitation for the battery
autonomy during the discharge phase. In this context, self-
reconfigurable (SRB) batteries include switches, allowing to
bypass the weakest cell or even to adjust the overall cell
layout based on cell’s individual state [4]. Therefore, balancing
can be done during the whole operating cycle of the battery.
Optimal control is often introduced in order to reach the
best performance regarding battery efficiency, autonomy and
lifespan.

Different optimization approaches are proposed depending
on two common types of SRB well defined in [4]. In the first
type, the SRB aims to perform a continuous voltage source like
conventional battery pack. This can be done by dynamically
connecting submodules (SM), which is a single cell or multiple
ones in a static combination. The SRB control is done by using
more or less power from this SM. However, a compromise
must be found between balancing and minimizing battery
losses while respecting the voltage requirements [4]. This
is performed in [5]–[8], where an optimal strategy between
balancing and battery efficiency is found. Moreover, [9] shows
that using SRB with balancing allows a lifetime extension of
16%. In the second type, SRB are continuously reconfigured
to perform an AC output waveform. Generally, a Multilevel
inverter (MLI) architecture is selected [4] and the SRB can be
directly used to power an electric motor or to be connected to
the power grid without needing an additional power inverter.

In most publication on the topic, control strategies are per-
formed regarding the correction of capacity and temperature
dispersions [5]–[8], [10]. Lifespan increase is then an indirect
consequence of these controls. Therefore, this paper proposes
to develop a control strategy which directly optimize the SRB
lifetime. This study is based on the SRB introduced by [11]



and illustrated on Fig. 1, which corresponds to a topology of
second type. In this SRB architecture, the SM is composed
by a single cell that involves the use of many levels in the
MLI architecture in order to respect the voltage requirement.
Therefore, the Pulse Width Modulation becomes unnecessary
to keep a low total harmonic distortion and the output voltage
result in a staircase waveform . Then, the balancing can be
performed with a sorting algorithm by assigning the strongest
cell to the first voltage level corresponding to the highest
average current, the second-strongest cell to the second voltage
level and so on. It can be noted that, after several iterations,
the strongest cells become among the weakest ones. Thus, a
rotation of the cell level assignation is required to keep cells
balanced.

Performing balancing for this type of SRB have the prospect
to maximize the battery autonomy. However, in most cases,
batteries are not fully discharged. In [12], the average trav-
elling distance of private vehicles in some European cities
are analysed. The mean covered distance of a single trip is
between 7 and 20 km. The mean driven distance during one
day is around 30 and 70 km. This is far from the presented
autonomy of actual and future electric vehicles. The lifespan
optimization could then be done on partial depth of discharge.

The aim of this paper is to present a methodology that
use the full potential of SRB with the MLI architecture to
extend the battery lifetime. Optimization is performed directly
on the SRB’s capacity loss so that the strategy reflects the best
possible control concerning lifespan augmentation. Simulation
of a SRB is used to validate the optimal control strategy.

This paper is organized as follows. In section II, the battery
cell model used for this study is presented, including an
electrical model, a thermal model and a Li-ion cell-ageing
model. Section III formulates the optimization problem and
tackles the issue of a great dimensionality. Then the problem
is solved numerically with a direct multiple-shooting method.
Section IV presents and analyses the simulation result of a
SRB subjected to the optimal strategy. The same profile and
strategy is then applied over the whole battery life allowing
the evaluation of the lifetime extension. Finally, section V
concludes the paper.

II. BATTERY CELL MODEL

The definition adopted for State of Charge (SoC), State of
Health (SoH) and Crate of a battery cell is given in Eq. (1)
to (3).

SoC(t) = 100− 100

3600(Qbol −Qloss(t))

∫ t

0

icell(τ) dτ (1)

SoH(t) = 100
Qbol −Qloss(t)

Qbol
(2)

Crate(t) = icell(t)/Qnom (3)

with Qloss the cell capacity loss since the beginning of life,
icell the current circulating through the cell, Qnom the cell
nominal capacity provided by the manufacturer and Qbolthe
measured cell capacity at beginning of life. As mentioned
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Fig. 2. 2-RC Thevenin Electrical Equivalent Circuit model

in the introduction, cells have capacity dispersion, even for
brand-new cells. This is modelled by a normal distribution of
cell’s Qbol in a battery pack around Qnom.

A. Electrical model

Among the different battery models, Electrical Equivalent
Circuit (EEC) bring a good compromise between model
accuracy and computation complexity. A 2-RC Thevenin
model (Fig. 2) has been chosen, with R1C1 = 10s and
R2C2 = 100s [13]. The impedances Rj , j ∈ {0, 1, 2} are
not constant parameters regarding T , SoC, Crate and SoH .
So, multi-dimensional cartography obtained by hybrid pulse
power characterization at different ageing progression is used
to correct cell impedance according to this variable [4], [13].

B. Thermal model

The EEC model is used to calculate the generated heat [14].
Indeed, voltage drop reflect the cell losses and the thermal
power is obtained with the joule effect of the impedances Rj
(4). The cell thermal dynamic follows a simple heat diffusion
model (5) with the assumption that cells are only cooled
by air convection with the exterior at temperature Text and
the convection coefficient h. Cp is the cell calorific capacity.
Reversible heat generation is ignored [3].

P = R0 i
2
cell +R1 i

2
1 +R2 i

2
2 (4)

Cp Ṫ = P − h (T − Text) (5)

C. Ageing model

In this paper, a semi-empirical capacity loss model devel-
oped during a previous project [13] is chosen. Equation (6)
represents the degradation function law during cycling, mainly
influenced by the Solid-Electrolyte Interphase growth that limit
the ionic mobility of Li+. In addition, the ageing speed is
adapted with the empirical function J dependent of the cell
SoC, T and Crate. α is an ageing accelerating factor when
the cell reaches a certain point of capacity loss. A and m
are experimental fitting coefficients. The empirical function,
as well the parameters of the model, are identify by fitting the
result of 6 cells continuously cycled at different T , SoC and
Crate

Q̇loss = α
J(Crate, T, SoC)

(1 +AQloss)m
|icell| (6)

Calendar ageing is not taken into account because we
suppose that during cycling, the capacity loss due to calendar



ageing is negligible compared to the capacity loss due to
cycling ageing. And in this paper, only cycles are simulated.

III. OPTIMISATION PROBLEM

A. Statement of the problem

To fully show the potential of SRB concerning lifetime
increase, global optimization over a well-known profile should
be performed.

To address this issue, we used optimal control theory. An
optimal control problem in the Bolza form is stated formally
as follows:

min
u(t)

J = min
u(t)

∫ tf

t0

l(x(t), u(t), t)dt+ Φ(x(tf )) (7)

subject to the dynamic constraint

ẋ(t) = f(x(t), u(t), t) (8)

and path constraint

g(x(t), u(t), t) = 0 (9)
h(x(t), u(t), t) 6 0 (10)

with J is the cost that must be minimized, t the time
variable, l the running cost function, Φ the final cost function,
f is the dynamic system differential function, g the equality
constraint function and h the inequality constraint function.
x(t) and u(t) are respectively the dynamic system’s state
vector and control vector.

Applied to the SRB, x is the combined state of
every cell in the pack and it is defined as follows: x =(
· · ·SoCcell · · · iR1,cell · · · iR2,cell · · ·Qloss,cell · · ·Tcell · · ·

)T
where cell ∈ {1, · · · , n} and n the cell number in the battery
pack. f is then defined by the combined dynamic of every
cell model presented in section II : through the equations (1),
(5), (6) and the model presented in Fig. 2.

The control vector u =
(
µ1 · · ·µcell · · ·µn

)T
represents

the cell’s connection state. If the cell is connected in series
µcell(t) = 1 or bypassed µcell(t) = 0 in the SRB . So, the
current circulating through the cell is defined by:

icell(t) = ipack(t)µcell(t) (11)

ipack(t) is then the instantaneous current provided by the SRB
and has for expression in our chosen application:

ipack(t) =
√

2 Irms(t) sin(θ(t) + φ(t)) (12)

with Irms(t) the rms current, θ(t) the signal phase and φ the
current phase-shift compared to the SRB output voltage.

After introducing the system state, dynamic and control, it
is necessary to find the cost function that best meets the needs
of the objective. Minimizing the battery pack capacity loss
due to cycling ageing seems to be the simplest way to fulfil
the system lifetime optimization. Only the capacity loss at the

end of the profile is considered. Capacity loss of the pack is
estimated with the mean value of the cell capacity loss:

J = mean
cell

(Qloss(tf )) (13)

We then chose to express Φ(x(tf )) = mean
cell

(Qloss(tf ))2

and l(x(t), u(t), t) = t2 mean
cell

(Qloss(t))
2 with a weighting

that increase with time in order to return a more convex cost
function and easier to solve problem.

Finally, for all battery pack using Li-ion cells, voltage
limits of every cell must be respected. This can be included
in the optimization problem with the inequality constraint
function (10).

However, posing the problem in this way causes some
issues. As mentioned in section I, SRB cell balancing is
performed by a sorting algorithm that assigns the strongest cell
to the first voltage level, the second-strongest cell to the second
level, etc. This relatively simple algorithm can be iterated at
a high rate, allowing to keep the SRB at a good balancing
level. Performing optimization at the same time step leads to
a problem with extremely high dimension.

B. Average current model

To decrease the dimension of the optimization problem,
some assumption and simplification should be done.

The main hypothesis is that, optimization can be performed
at a larger time step if a sorting algorithm is able to follow an
average set point following the optimal strategy for each cell.
This average control is then only limited by what the sorting
algorithm is capable to perform. The sorting algorithm can be
considered as a faster inner loop control.

The current circulating through the cell is now redefined by:

icell(t) = iav(t)µcell(t) (14)

iav =
1

π · n
∑
cell

∫ π

0

icell(θ)dθ (15)

with iav the average current in one period over all cell and
µcell ∈ R now reflects the cell utilization rate.

An approximation of iav can be done by considering the
use of a FILO strategy (first-in last-out), where a cell is kept
connected during the entire level utilisation in a half period
of the AC signal. Other strategy can be use to perform the
staircase waveform but the FILO strategy allows the greatest
µcell dispersion if the reactive power is omitted. So, the
maximal dispersion can be computed at the same time. In
order to calculate iav , the average current of one level must
be first computed. Fig. 3 illustrates the staircase waveform of
the SRB voltage output, which follows a reference sinusoidal
signal expressed as:

Vref (θ) =
√

2Urms sin(θ) (16)

with Urms the desired output rms voltage.

Each voltage step represents a new cell being connected.
This voltage step is called level. Vpack is the voltage sum
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of all connected cell. The voltage increase of a new level is
approximated by the mean value of the cell voltage:

Vpack = levelmean
cell

(Vcell) (17)

Vpack can also be calculated according to Vref and θlevel,
which is the angle at which the cell is connected to perform
the staircase waveform (18). Using this equation, θlevel can be
defined with (19). Eq. (20) gives the maximal value that level
can take.

Vpack =
√

2Urms sin(θlevel) + 0.5 mean
cell

(Vcell) (18)

θlevel = arcsin((Vpack − 0.5 mean
cell

(Vcell)/(
√

2Urms)) (19)

level ∈ N | 0 6 (level − 0.5) mean
cell

(Vcell) <
√

2Urms (20)

Then, the average current of a level ilevel during one period
is calculated according θlevel and the current flowing through
the SRB at this moment (21). On Fig. 3 an example of the
current flowing through the cell connected at the level = 8 is
displayed. It is noticeable that the same cell is kept running
during the entire level utilization. Equation (21) is the
calculation of the average current according to the signal on
a half-period with the FIFO strategy.

ilevel(θlevel) =
2

2π

∫ π−θlevel

θlevel

√
2 Irms sin(θ + φ) dθ (21)

Finally, iav is calculated with the mean value of ilevel over
each level (22).

iav =
1

n

∑
level

ilevel (22)

With this definition of iav , it is necessary to constrain the
mean value of µcell to one in order to respect the amount
of capacity consumed during utilization. Furthermore, µcell
must be limited concerning the maximal dispersion that the
SRB is capable to deal with. A useful dispersion indicator is
the stochastic variance. So icell variance must be kept smaller
than the variance of ilevel and icell must be bounded with the
maximal and minimal value of ilevel. Eq. (23) summarizes all
constraints on µcell.

C(u) =



mean
cell

(µcell) = 1

µcell > min
level

(ilevel/iav)

µcell 6 max
level

(ilevel/iav)

var
cell

(µcell) 6 var
level

(ilevel/iav)

(23)

Unfortunately, using an average current for icell (14) inval-
idates the non-linear battery cell model. In particular, the heat
generation in the thermal model (4), where icell is in square,
has an important non-linear dynamic. Nevertheless, similarly
to the calculation of iav , an average power can be computed
for joule effect associated with R0.

PR0,level(θlevel) =
2R0

2π

∫ π−θlevel

θlevel

(
√

2 Irms sin(θ + φ))2 dθ

PR0,av = mean
level

(PR0,level)

PR0,cell = PR0,av µcell (24)

The same remark applies for the ageing model (6). However,
the empirical function J makes it difficult to evaluate the
non-linearity. In addition, there are not enough publications
showing that switching has an influence on cell lifetime [4],
[15]. Therefore, the ageing model is unchanged concerning
the average current model.

Finally, the optimization problem can be expressed here
after :

min
u

J(x(t0)) = min
u

∫ tf

t0

t2 mean
cell

(Qloss(t))
2 dt+mean

cell
(Qloss(tf ))2

(25)
Subject to :

ẋ(t) = f(x(t), u(t), t) (26)
2.5 6 vcell(x, t) 6 4.2 (27)

C(u, t) (28)

f also includes the average current model (14) and the
average heat generation model of R0 (24)

C. Resolution Algorithm

Regarding the cell model parameters cartography, the non-
linear model and the number of constraints, a numeric resolu-
tion appears to be unavoidable. Direct multi-shooting method
is used to convert the discrete dynamic optimal problem
into a static optimization problem [16]. Then, common Non-
linear programming (NLP) solver is efficient and represent
an adapted choice. The simulation example in section IV
are produced with solvers from the optimization toolbox of
Matlab. Discretization is performed by solving linear time-
variant system for the computation of SoC, iR1 , iR2 , and T .
Qloss is solved by performing the Euler method because the
time step is chosen small in confrontation with the four other
variables.

IV. SIMULATION RESULTS

As mentioned in section I, a lot of use cases only partially
discharge batteries. Finally, a profile with a Depth of Discharge
(DoD) of 25% is chosen. A battery pack of 25 cells is
chosen for the simulation to illustrate the optimal strategy
while keeping a visibility on every cell state and to have a
decent computation time. The battery cell model comes from
a Qnom = 2.9 Ah Li-ions Nickel Manganese Cobalt (NMC)
18650 cell with graphite anode [13]. The corresponding ageing



speed function J , considered in this study, is represented in
Fig. 4 where the dependence to SoC is shown for some
representative value of Crate and T . Additionally, the battery
pack starts to be simulated with a normal distribution for cell’s
Qbol and R0, with a standard deviation of respectively 1% and
6% [3]. Battery cell numeration is in the ascending order of
the cell’s Qbol.

A. Test profile simulation

In this subsection, simulation is performed on a simple
profile rule composed of the following three phases: constant
power discharge, constant power charge and variable power
charge. In the first phase, the SRB is discharged during 15
minutes with a constant rms current of Irms=6A. In the
second phase, the SRB is charged with a constant rms current
of Irms=-2A until one cell voltage reaches the maximal
allowed voltage: max

cell
(vcell) = 4.2V . In the last phase, rms

current is calculated in such a way that the cell with the
highest voltage is kept to 4.2V until the pack SoC reach
100%. During the whole profile, the SRB voltage signal is a
sinus at rms voltage Urms = 44.2V and constant frequency.
The current phase-shift stays at φ=0.

Fig. 5 shows the simulated voltage, SoC, T and µcell of the
SRB using the profile rule and no specific cell control. Each
cell is used during the same amount of time. This means that
the sorting algorithm performs a perfect rotation between cell.
vcell, SoC and T present some dispersions due to the initial
dispersion of Qbol and R0. The generated profile is called test
profile.
Fig. 6 shows the simulation of the SRB using a control
strategy obtained by solving the optimization problem stated
in section III. The same test profile is used in both simulations
to obtain exactly the same rms current profile. It can be
observed through the behaviour of µcell that, the optimization
is performed by using a limited number of the available SRB
cells. In fact, the number of cells in the SRB is chosen to
respect the output voltage when the cells are at minimum
voltage : 2.5V·25√

2
= 44.2V. That means, the SRB only need
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some cells when the SoC is high to provide the output voltage.
At the end of the profile, it can be noted that the strategy
is adapted to satisfy the voltage constraint reached at end of
charge.
Fig. 7 exhibits a comparison of the battery capacity evolution
along time between the two simulations. The optimization
allows reducing by 29% the total capacity loss compared to the
reference no strategy simulation. This benefit is explainable by
the ageing speed function J illustrated in Fig. 4. The cycling
ageing is mainly due to a high value of SoC, and so ageing
gain is obtained by reaching as soon as possible an optimal
SoC value, and then using some cells at lower SoC value as
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shown on Fig. 6 with the SoCcell behaviour.

B. Whole lifespan simulation

By using a specific optimized control strategy on the
test profile at the SRB begin of life, 29% capacity loss
reduction are observed. One may ask if this benefit lasts
over the whole SRB life. This is the subject of this subsection.

The whole SRB life can be simulated by cycling profiles
like the one mentioned in the previous section and until a
SoH threshold is reached. Between each cycle, the SRB SoC,
iR1, iR1 and T are reset to the initial condition. Only Qloss
are transferred from a cycle to the next one.

However, optimization over the whole lifetime is not possi-
ble due to the high dimension of the optimization problem.
Suboptimal solution can be performed by optimizing each
cycle separately. But, according to the equation (6), we see
that ageing speed decreases with the increase of Qloss. So,
the optimal control strategy gives priority to the use of the cell
with a more advanced ageing at a specific cycle. Consequently,
during the cycling, the same group of cells are used and then
these cells reaches the end of life before the others. A solution
must be found so that every cell reach its end of life at the
same time.

As explained above, the optimal solution showed in Fig. 6
is mainly impacted by the form of the empirical function J ,
which is the dependence of the ageing relatively to the SoC
(Fig. 4). In return, the initial dispersion of cell parameters has
low influence on the optimal control strategy. So, permuting
the optimal control µcell between the cells have little effect
on the capacity gain. Then, the assumption is done that the
optimal solution between some consecutive cycles change little
if the SoH is balanced. So, maintaining the same optimal
control over some consecutive cycle leads to a near suboptimal
solution. SoH balancing is obtained by permuting the control
between cells at the beginning of each cycle. Optimization
is then performed over one cycle at different SoH value to
correct the optimal control. Qloss at the beginning of a cycle
can be calculated with equation (2).

In brief, optimal solutions are calculated on profiles dis-
patched every 2% of SoH. Then, the optimal control obtained
at 100% of SoH is maintained over several cycles to reach 98%
SoH. There, the control is replaced by the optimal solution
obtained at 98% of SoH. Then, the control is maintained again
over several cycles to reach 96% of SoH and so on. At each
cycle beginning, the optimal control between cells is permuted
in such a way that the cell SoH is kept balanced.

Fig. 8 shows the simulated vcell, µcell and SoHcell of the
cycling using the optimal strategy from the SRB’s beginning
of life down to 97% of SoH . The SoH of the SRB using
no strategy is also plotted. It can be seen that permuting
the control µcell between cell keep the SoH balanced and
that the constraints are almost respected. We can see that
another control strategy is used when the SRB passes 98%
of SoH according to the method mentioned above. The
gap between optimal strategy simulation and no strategy
simulation increase during ageing. So, it can be concluded
that the method is a good approximation of the suboptimal
strategy at every cycle.

In parallel, a reference simulation is produced by cycling
the test profile using no strategy until it reaches SRB’s end of
life. For purpose of comparison, the optimal simulation also
uses the test profile to compute rms current at the beginning
of each cycle. So, both simulation have equivalent profile over
the whole lifespan.

Fig. 9 displays SRB capacities of the no strategy simulation
and the optimal strategy simulation during the whole lifetime.
Taking the capacities at 5500 cycles, the capacity loss gain
is now at 6.8%. We can conclude that capacity loss gain
obtained by using the optimization framework previously
described decreases during the SRB’s life. If the SRB end of
life is defined arbitrarily when the mean capacity value of the
cells reach 2.1 Ah (72% SOH), it can then be seen that the
no strategy simulation performs 5500 cycles and the optimal
strategy 7100 cycles. This represents a lifetime extension of
29%.

Knowing the benefits of the optimal strategy compared to
no strategy for SRB, it would be interesting to compare this
result to conventional battery pack. The balancing capabilities
of SRB experimented in [17] are so important that it can be
assumed that a voltage balancing extracts most of the energy
of the SRB. The mean value of the cell capacity is then a
good image of the battery pack capacity. On the other side, the
conventional battery is limited by the weakest cell. We assume
that the conventional battery capacity with exactly the same
Li-on cell connected in series and using a DC/AC converter
to provide the AC output signal, is represented by the cell
with the lowest capacity in the SRB with no strategy. We also
assume that the SRB with no strategy and the conventional
battery pack have the same ageing speed.

The conventional battery end of life is observed at 4600
cycles. Finally, the SRB using the optimal strategy enables
lifetime extension of 54% compared to the conventional bat-
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V. CONCLUSION

This paper demonstrates the SRB capabilities to extend
battery lifetime by using optimal control strategy. A complete
battery cell model including cell ageing allows to perform
the minimization on the battery capacity loss in a realistic
framework. Solving the optimization problem on a simple
partial discharge exhibits a major capacity loss reduction.
Then, cycling this optimal control strategy over the battery
life results in a significant lifespan augmentation compared
to SRB using no specific control strategy and conventional
battery pack.

Using the method described in this work on more realistic
profiles, like the WLTP driving cycle or real world profile,
will be the topic of future papers. Furthermore, this work can
be used to evaluate the performance and give some clues for
the development of real time control.
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