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Abstract.

Elastic interactions between point defects and sinks, such as dislocations and

cavities, affect the diffusion of point defects and are responsible for some of the features

observed in microstructures under irradiation. It is therefore necessary to include

elastic interactions in kinetic simulations for a quantitative prediction of material

properties. In this work a method is presented to accurately and efficiently evaluate

the strain field in object kinetic Monte Carlo simulations. It can handle any strain field

which is biharmonic, such as the one generated by a dislocation segment or a cavity in

isotropic elasticity. A speed-up of several orders of magnitude is obtained compared to

the direct summation over strain sources, so that simulations over experimental time

scales can be performed within reasonable computation times. The case of a thin foil

containing a high density of loops under irradiation is investigated. Loop growth rates

are found to depend on the loop radius, as shown experimentally, but more complex

effects due to the surrounding microstructure are also highlighted.
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Introduction1

Microstructure evolution under irradiation is known to be driven by the large2

supersaturation of vacancies and self-interstitial atoms (SIAs) [1]. These point defects3

migrate to pre-existing sinks, such as dislocations, grain boundaries and surfaces, or4

agglomerate with each other, which typically leads to the formation of cavities and5

dislocation loops. The sustained growth of both vacancy and SIA clusters when6

only Frenkel pairs are generated by irradiation has been successfully explained by the7

dislocation bias model [2]. This model relies on the fact that SIAs interact more8

strongly with elastic fields due to their larger distortion field, and therefore diffuse9

preferentially towards dislocations and dislocation loops, which create long-range elastic10

fields compared to cavities. Modelling precisely the diffusion of point defects to the11

various sinks of the microstructure is therefore important to predict quantitatively the12

growth rate of dislocation loops and cavities, from which void swelling rates can be13

deduced [3].14

Object kinetic Monte Carlo (OKMC) has been successfully used to model the15

growth kinetics of vacancy and SIA clusters [4, 5, 6, 7, 8]. However, in most cases16

elastic fields were not taken into account. They were included in OKMC only in a few17

studies, considering that sinks do not evolve [9, 10, 11, 12, 13, 14], more rarely with18

full account of sink evolution [15, 16]. To model the preferential absorption of SIAs19

by dislocations without including the elastic field, a larger absorption region around20

dislocations is generally adopted regarding SIAs. Beyond this absorption region, point21

defects perform a pure random walk, i.e. the diffusion is not biased by elastic fields. This22

approach is very efficient, since all jump frequencies are the same whatever the point23

defect location in the matrix, but it relies on a parameter, the extent of the absorption24

region, which must be determined by dedicated elastic bias calculations [10, 13]. Elastic25

biases depend on the temperature, sink size in the case of dislocation loops and cavities,26

so in general a tedious parametrization task is necessary to cover all relevant cases. In27

addition biases are assumed not to depend on the surrounding microstructure, which has28

proven to be erroneous [17, 16]. Taking into account explicitly the elastic interactions in29

OKMC appears necessary to obtain results in quantitative agreement with experimental30

results.31

Performing efficient OKMC simulations with elastic interactions is not an easy task.32

OKMC relies on the fast evaluation of jump frequencies, which becomes problematic33

when they depend on the interaction of point defects with the local elastic field.34

Within linear elasticity, it is convenient to obtain this local field by summing individual35

contributions of all point defects and sinks in the system. This approach becomes36

more and more expensive as the number of sinks in the system increases, or if periodic37

boundary conditions (PBCs) are used. Indeed, due to the long range of the fields38

generated by dislocations, it is not possible to use a cutoff distance for their evaluation.39

In practice, it is nearly impossible to reach realistic simulation times if the field changes40

after each defect jump.41
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Calculations may become considerably more tractable if the strain field of point42

defects and point defect clusters which are mobile can be neglected. This is usually43

the case if these mobile objects remain small. For example, in fcc metals Frank loops44

are immobile and their strain field, within the dipolar approximation, is proportional45

to the number of SIAs which form them. For typical sizes of several nanometers, it is46

orders of magnitude larger than the strain field of SIAs or small mobile SIA clusters.47

Therefore, if the concentration of mobile species is not too high, their contribution to48

the field can be safely ignored. This assumption will be made in the rest of this work.49

Since the field is unchanged after the jump of a defect, it may be advantageous to use50

techniques which evaluate the field on a grid‡. The local field, after each defect jump,51

can be calculated efficiently by interpolation of the values at the grid points. The field is52

updated only when the sink microstructure changes, due to the absorption or emission53

of a mobile species. The calculation of the field on the grid may be costly, so this54

approach is especially useful when jump events are much more frequent than absorption55

and emission events by sinks. This is true except at very low temperature (high sink56

density) and high temperature (high emission rate of defects by sinks).57

Calculating the field on a grid can be done efficiently by two main techniques.58

The first one is to solve the problem in Fourier space, using fast Fourier transform59

(FFT) [18]. It has been done successfully in phase field [19, 20] and discrete dislocation60

dynamics simulations (DDD) [21, 22]. However this method requires some care to61

avoid numerical artifacts due to the FFT grid [23]. Since the elastic field can vary62

quite sharply, in particular close to sinks, a dense grid is required to obtain reliable63

point defect trajectories in OKMC. This can become unnecessarily expensive for large64

systems with low sink density.65

The other technique is the fast multipole method (FMM) [24]. Although it is often66

used as an order N method to calculate the field at the location of the sources, it gives a67

local expansion of the field on a grid, which can be used in the present case to evaluate68

the local field at the position of mobile species. An upper bound for the error on the69

field can be defined rigorously and an adaptive version of the algorithm [25] permits to70

reduce the memory footprint and computation time when sources are heterogeneously71

distributed. Several flavours of the FMM have been used in DDD [26, 27, 28].72

In this article a method based on the FMM is presented to calculate efficiently73

the elastic field in OKMC simulations. It enables the simulation of large elastically74

isotropic systems with common sinks observed in irradiated microstructures (cavities,75

dislocations, dislocation loops, stacking fault tetrahedra, etc.). We show that this76

real space approach is particularly convenient to simulate systems with heterogeneous77

distributions of sinks, or with free surfaces. As an application we simulate the evolution78

of dislocation loops in aluminum. We show that interstitial loops do not necessarily all79

‡ One could even envisage to precalculate the field on all atomic sites. Due to memory constraints, this

can only be done on small systems. This method is especially useful when the microstructure does not

evolve with time [12]. Otherwise an update of the field on each lattice site is necessary after a change

in the microstructure, which may become computationally expensive.
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grow under irradiation, in contradiction with previous OKMC and rate theory models,80

but in agreement with experiments.81

1. OKMC modelling with elastic interactions82

1.1. Jump frequencies of point defects in presence of an elastic field83

OKMC is a method which is well adapted to simulate the evolution of microstructures84

under irradiation. It relies on a database of known events, which are of several types:85

creation of new defects by irradiation, jump of a point defect from a stable position86

to another one, thermal emission of a point defect. Events are performed sequentially87

following the standard residence time algorithm [29, 30]. Elastic interactions between88

point defects and sinks alter the frequency of events. For example, the jump frequency89

of a point defect from x = (x1, x2, x3) to x+ h can be written as90

νh(x) = ν0 exp

(
−∆Eh(x)

kBT

)
, (1)

where ν0 is an attempt frequency and ∆Eh is the activation energy, which reads91

∆Eh(x) = Em + Eint,s(x+ h/2)− Eint,e(x). (2)

In this expression, Em is the migration energy without elastic interactions, Eint,e and92

Eint,s are the interaction energies for stable and saddle configurations, respectively. Here93

the saddle position is assumed to be located halfway between the two stable positions.94

A similar dependency of emission rates on elastic interactions exists [31] and will not be95

detailed here.96

To lowest order, the interaction energy of a point defect with a strain field εij97

depends on the elastic dipole of the point defect Pij [32, 33] (summation on repeated98

indexes is implied):99

Eint(x) = −Pijεij(x). (3)

For anisotropic defects, the elastic dipole depends on the defect orientation. It is in100

general different for stable and saddle configurations.101

Within linear elasticity, the strain field can be calculated at any point by summing102

the strain contributions of all objects in the microstructure.103

1.2. Strain sources104

As discussed previously, the interaction between point defects or small mobile point105

defect clusters is not considered in this work. This is in general justified by the fact106

that the strain field due to large objects is much more intense. There is no difficulty to107

add this contribution of point defects as dipole-dipole interactions. However, in general108

the efficiency of the code would be considerably reduced due to the update of the field109

after any event affecting a point defect. Expressions of strain fields created by three110
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common objects, a dislocation loop, a dislocation segment and a cavity, are recalled in111

this section, in the framework of isotropic elasticity. The shear modulus and Poisson’s112

ratio are noted µ and ν, respectively. Only the solution in an infinite medium is given;113

surface effects are treated in Section 3.2.114

1.2.1. Dislocation segment and dislocation loop We follow the approach by Ghoniem115

and Sun [34] to give explicit expressions for the strain. To derive the strain field, we116

start from Mura’s formula, which expresses the derivative of the displacement field u117

created by a dislocation loop [35, 36] as a line integral over the perimeter of the loop C118

(see also Fig. 1):119

∂ui
∂xj

= ui,j = εjnhbmCpqmn

∮
C

∂

∂xq
G∞ip (x− x′) dx′h, (4)

where εijk is the permutation tensor, b is the Burgers vector, G∞ij is the elastic Green120

function in an infinite body, and Cijkl are the elastic constants.121

O

x ′

x
x̄

C dx ′ = x ′
,vdv

Figure 1. Notations used for a curved dislocation C.

For an isotropic material, the elastic Green function is given by (x̄ = x − x′,122

x̄ = |x̄|):123

G∞ij (x̄) =
1

16π(1− ν)µ

(
δij

3− 4ν

x̄
+
x̄ix̄j
x̄3

)
=

1

4πµ

δij
x̄
− 1

16πµ(1− ν)

∂2

∂xi∂xj
x̄. (5)

In this equation δij is the Kronecker delta.124

Elastic constants can be written as125

Cpqmn = µ (δpmδqn + δpnδqm) +
2νµ

1− 2ν
δpqδmn, (6)

and since εij = 1/2 (ui,j + uj,i) the strain reads [34]:126

εij(x̄) =
1

8π

∮
C

[
−1

2
(εjklbix̄,l + εiklbjx̄,l − εiklblx̄,j − εjklblx̄,i),pp +

εkmnbnx̄,mij
1− ν

]
dx′k. (7)

The parametric form of x′(v) given by Ghoniem and Sun is used:127

x′(v) = qiNi(v), (8)

where Ni(v) are basis functions, v is a parameter and qi are generalized coordinates.128

The differential reads129

dx′k = x′k,vdv = qikNi,v(v)dv. (9)
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Using quadrature to evaluate the integral, the strain can be numerically computed130

by summing over a finite number of strain sources:131

εij(x̄) ≈ 1

8π

Nq∑
α=1

wα

[
−1

2
(εjklbix̄,l + εiklbjx̄,l − εiklblx̄,j − εjklblx̄,i),pp(vα) +

εkmnbnx̄,mij(vα)

1− ν

]
x′k,v(vα),

(10)

where Nq is the number of quadrature points and wα are the quadrature weights. In132

the following Gauss-Legendre quadrature is used.133

This expression can be simplified, since some terms are zero and x̄,ijk is invariant134

by permutation. The expressions can be given, for example, as a function of x̄,111,135

x̄,112, x̄,113, x̄,123, x̄,221, x̄,222, x̄,223, x̄,331, x̄,332 and x̄,333 (similar simplications were136

performed for the stress in [34]). Explicit expressions of the strain components are137

given in Appendix A.138

For a circular dislocation loop of radius r, located at the origin, and whose normal139

to its habit plane is n, the following coordinates can be chosen:140

q1 = r


n2
2

1+n3
+ n3

− n1n2

1+n3

−n1

 q2 = r


−n1n2

1+n3
n2
1

1+n3
+ n3

−n2

 (11)

and the basis functions are (v ∈ [−1, 1] for Gauss-Legendre quadrature)141

N1(v) = cos (πv) N2(v) = sin (πv). (12)

Expression (10) can also be used for a dislocation segment. In this case,142

q1 = x1 q2 = x2, (13)

where x1 and x2 are the end points of the segment and the basis functions are143

(v ∈ [−1, 1])144

N1(v) =
1

2
(1− v) N2(v) =

1

2
(1 + v). (14)

1.2.2. Cavity Let us consider a cavity of radius r, which contains some gas with145

pressure p, located at x′. The strain field created by this cavity in the matrix, at146

x (x̄ > r), is [37, 38]147

εij(x̄) =

(
p− 2γ̂

r

)
1

4µ

( r
x̄

)3 [
δij − 3

x̄ix̄j
x̄2

]
, (15)

where γ̂ is the surface tension of the metal.148

It can also be written under the following form, which is more convenient for use149

in the FMM:150

εij(x̄) = −
(
p− 2γ̂

r

)
1

4µ
r3

∂2

∂x′i∂x
′
j

(
1

x̄

)
. (16)

Contrary to the dislocation segment and the dislocation loop, the strain is calculated151

exactly by using a single strain source located at x′.152
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2. Fast calculation of the strain field153

2.1. Calculation of the field using local expansions and FMM154

Following Eq. (16), any component of the strain field generated by a cavity can be155

written as a derivative of 1/x̄, so it is harmonic. A general solution to ∆φ = 0 is156

φ(x) =
∞∑
l=0

l∑
m=−l

(
Llmx

lY m
l (θ, ϕ) +Mlm

Y m
l (θ, ϕ)

xl+1

)
(17)

=
∞∑
l=0

l∑
m=−l

(LlmR
m
l (x, θ, ϕ) +MlmI

m
l (x, θ, ϕ)) , (18)

where Y m
l are the spherical harmonics (see Appendix B, Eq. (B.1)), Rm

l and Iml are the157

regular and irregular solid harmonics, respectively. If the strain field is evaluated at x158

with x < x′, multipole expansion coefficients Mlm are all zero and only local expansion159

coefficients Llm are useful. In this case Eq. (18) is called a local expansion. It can be160

truncated to a given value of l to give an approximate value of the strain field.161

The strain field generated by a dislocation segment depends on the derivatives of x̄162

(Eq. (7)), so it is not harmonic in general. However, x̄ is a solution to the biharmonic163

equation. This is also the case of its derivatives. Any solution ψ to the biharmonic164

equation can be written as [39]165

ψ(x) = φ(x) + x2ω(x), (19)

where φ and ω are harmonic functions. So for a microstructure containing dislocations166

and cavities, if all strain sources are such that x′ > x, any strain field component can167

be evaluated by a local expansion of the following type:168

ψ(x) =
∞∑
l=0

l∑
m=−l

L
(0)
lmR

m
l (x, θ, ϕ) + x2

∞∑
l=0

l∑
m=−l

L
(2)
lmR

m
l (x, θ, ϕ). (20)

Compared to a Taylor expansion of the field, this decomposition is more compact: if169

the summation is performed up to order p, the number of terms is O(p2), whereas a170

cartesian expansion requires O(p3) terms. Since a fast evaluation of the local expansion171

is crucial in the KMC algorithm, using spherical harmonics is particularly interesting.172

The FMM offers a rigorous framework to evaluate a field using local expansions with173

a prescribed accuracy. It is based on a hierarchical set of boxes forming a mesh, which174

can be uniform or adaptive. In the adaptive version, boxes are sub-divided in child boxes175

until the number of sources in each box is lower than a threshold nmax. The case of a176

uniform mesh is shown schematically in Fig. 2. The field at x, inside box b, is obtained177

by summing two terms. The first one is a local expansion as in Eq. (20), which contains178

the contribution of all sources located in boxes “well separated” from b (in blue). In179

particular, it contains information on periodic images of the simulation box and more180

generally on boundary conditions (see section 3). The second term is a direct sum over181
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the other sources (in orange), using expressions (10) and (15). Using local expansions182

only for boxes which are well separated from b ensures that local expansions converge.183

Cubic boxes are considered well separated if they do not share a boundary point. In184

this case, the minimal distance between the centers of boxes is dmin = 2/
√

3(rb + rb),185

where rb is the radius of the smallest sphere enclosing b. This worst case can be used to186

define well-separated boxes when they are not cubic, by imposing that they are distant187

from each other by at least dmin. It is the criterion used in our FMM implementation,188

which handles non-cubic boxes.189

x

O x ′
b

Figure 2. Schematic view of the calculation of the strain field using FMM in a

microstructure containing dislocation loops and cavities. The contribution of blue

sources, located in boxes which are well-separated from box b, containing the target

point, is accounted for in a local expansion whose origin is the center of b. The

contribution of other sources (in orange) is calculated with expressions (10) and (15).

The core of the FMM is the fast determination of local expansions. It relies on190

operations on multipole expansions of the fields. Once they are calculated for childless191

boxes, multipole expansions are translated and merged at lower levels of the hierarchy192

(upward pass) and converted into local expansions. Local expansions are then translated193

until they are expressed with respect to the center of childless boxes (downward pass).194

Details can be found, for example, in Ref. [25].195

The FMM for harmonic fields, based on expansions in spherical harmonics, has196

been amply discussed [24, 40]. In particular, it has been optimised to speed up the197

conversion of multipole expansions into local expansions, using rotation of expansions198

and exponential representations [25]. For biharmonic fields, Gumerov and Duraiswami199

have proposed a modified version of the FMM, based on the decomposition in harmonic200

fields given in Eq. (19) [39]. This algorithm uses the classical operations on harmonic201

fields and includes an additional step due to the x2 factor in Eq. (19). Since the definition202

of spherical harmonics in the present work differs from the one they used, translation203

and conversion formulas are given in Appendix C. The version implemented in this work204

includes rotation of expansions [41].205

The FMM requires the calculation of multipole expansions of the field created by206
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a set of sources. In addition, for the adaptive version, which is used here, calculation of207

local expansions directly from sources is also necessary. Coefficients of the expansions208

are given for cavities and dislocation segments in the following sections.209

2.2. Multipole expansion for a cavity210

To obtain the multipole expansion of the strain field generated by a cavity, it is211

convenient to use the following expansion of the coulombic potential [42]:212

1

x̄
=
∞∑
l=0

l∑
m=−l

x′lY −ml (θ′, ϕ′)
Y m
l (θ, ϕ)

xl+1
=
∞∑
l=0

l∑
m=−l

R−ml (x′, θ′, ϕ′)Iml (x, θ, ϕ). (21)

Inserting this expression in Eq. (16) yields the following multipole expansion for the213

strain field of a cavity:214

εij(x) =
∞∑
l=0

l∑
m=−l

MlmI
m
l (x, θ, ϕ), (22)

with215

Mlm = −
(
p− 2γ̂

r

)
1

4µ
r3

∂2

∂x′i∂x
′
j

R−ml (x′, θ′, ϕ′). (23)

Second derivatives of regular solid harmonics are given in Appendix E.216

2.3. Local expansion for a cavity217

Coefficients of the local expansion are obtained straightforwardly from the previous218

section: the strain field reads219

εij(x) =
∞∑
l=0

l∑
m=−l

LlmR
m
l (x, θ, ϕ), (24)

with220

Llm = −
(
p− 2γ̂

r

)
1

4µ
r3

∂2

∂x′i∂x
′
j

I−ml (x′, θ′, ϕ′). (25)

Second derivatives of irregular solid harmonics are given in Appendix D.221

2.4. Multipole expansion for a dislocation segment222

As can be seen from Eq. (10), the multipole expansion of the strain field of a dislocation223

segment is readily deduced from the expansion of x̄,ijk. Since x̄ is a solution to the224

biharmonic equation, it can be expressed as in Eq. (19) [39]. With our convention for225

spherical harmonics, we have, for x > x′:226

x̄ =
∞∑
l=0

l∑
m=−l

1

2l + 3
x′2R−ml (x′, θ′, ϕ′)Iml (x, θ, ϕ)

+ x2
∞∑
l=0

l∑
m=−l

−1

2l − 1
R−ml (x′, θ′, ϕ′)Iml (x, θ, ϕ). (26)



Object kinetic Monte Carlo modelling of irradiation microstructures . . . 10

The derivatives x̄,ijk = −x̄,i′j′k′ can thus be written under the following form:227

x̄,ijk =
∞∑
l=0

l∑
m=−l

M
(0)
lm I

m
l (x, θ, ϕ) + x2

∞∑
l=0

l∑
m=−l

M
(2)
lm I

m
l (x, θ, ϕ), (27)

with

M
(0)
lm = − 1

2l + 3

∂3

∂x′i∂x
′
j∂x

′
k

(
x′2R−ml (x′, θ′, ϕ′)

)
(28)

M
(2)
lm =

1

2l − 1

∂3

∂x′i∂x
′
j∂x

′
k

(
R−ml (x′, θ′, ϕ′)

)
. (29)

Derivatives of regular solid harmonics in Appendix E may be used to obtain more228

convenient expressions of multipole expansion coefficients.229

2.5. Local expansion for a dislocation segment230

As for multipole expansions, local expansions can be calculated from the following231

expression of x̄ (for x < x′):232

x̄ =
∞∑
l=0

l∑
m=−l

−x′2

2l − 1
I−ml (x′, θ′, ϕ′)Rm

l (x, θ, ϕ)

+ x2
∞∑
l=0

l∑
m=−l

1

2l + 3
I−ml (x′, θ′, ϕ′)Rm

l (x, θ, ϕ). (30)

The local expansion of x̄,ijk = −x̄,i′j′k′ is233

x̄,ijk =
∞∑
l=0

l∑
m=−l

L
(0)
lmR

m
l (x, θ, ϕ) + x2

∞∑
l=0

l∑
m=−l

L
(2)
lmR

m
l (x, θ, ϕ), (31)

with

L
(0)
lm =

1

2l − 1

∂3

∂x′i∂x
′
j∂x

′
k

(
x′2I−ml (x′, θ′, ϕ′)

)
(32)

L
(2)
lm = − 1

2l + 3

∂3

∂x′i∂x
′
j∂x

′
k

(
I−ml (x′, θ′, ϕ′)

)
. (33)

Derivatives of irregular solid harmonics in Appendix D may be used to obtain more234

convenient expressions of local expansion coefficients.235

2.6. Comparison with other FMM approaches for isotropic elasticity236

The FMM has already been used to calculate elastic fields generated by dislocation237

ensembles. The first implementation for three dimensional DDD used expansions in238

cartesian coordinates [26]. As previously discussed, this approach is not optimal here239



Object kinetic Monte Carlo modelling of irradiation microstructures . . . 11

since local expansions are evaluated with O(p3) operations. On the contrary, the240

evaluation of an expansion in regular solid harmonics requires only O(p2) operations.241

The FMM based on spherical harmonics, which was initially developed for the242

harmonic potential 1/x̄, has been used for other interaction potentials. Fu et al. [43]243

showed that harmonic FMM can be used for interaction potentials of the form244

F(Q(x′)/x̄,x), (34)

where Q is a function depending on data related to sources only and F is a linear245

operator on Q(x′)/x̄. In general several harmonic FMM calls must be combined to246

generate the field. In practice, some identities are useful to write potentials depending247

on derivatives of x̄, such as the elastic Green function and its derivatives, under the form248

given by Eq. (34) [43, 44]. For example, the third derivatives can be written as [27]:249

x̄,ijk =

(
xk

∂2

∂xi∂xj
+ δjk

∂

∂xi
+ δki

∂

∂xj

)(
1

x̄

)
− ∂2

∂xi∂xj

(
x′k
x̄

)
. (35)

From Eq. (10), the strain field generated by a single source on a dislocation segment250

can be expressed as251

εij(x̄) = qijrstx̄,rst. (36)

Inserting Eq. (35) into Eq. (36), we obtain:252

εij(x̄) =

(
xt

∂2

∂xr∂xs
+ δst

∂

∂xr
+ δrt

∂

∂xs

)(
qijrst
x̄

)
− ∂2

∂xs∂xt

(
qijrstx

′
t

x̄

)
. (37)

It can be seen that without any optimisation, the calculation of one component of the253

strain field requires 36 harmonic FMM calls (27 for qijrst/x̄ and 9 for qijrstx
′
t/x̄). This254

is significantly more expensive than the approach adopted here, which requires only 2255

harmonic calls per component. Recently, Chen et al. [28] used the same decomposition256

of x̄ as Fu et al. [43] to develop an FMM for the calculation of the stress field induced by257

dislocation segments. However no details concerning the implementation were provided.258

The number of FMM calls is limited in our approach because the derivatives are259

taken with respect to the source variables x′i instead of the target variables xi (see260

Eqs. (22)-(23) and (27)-(29)). A similar technique was already used for the calculation of261

the magnetic field generated by magnetic dipoles [45]. Another advantage of this method262

is that any harmonic or biharmonic field can be included in the present formalism263

without requiring additional FMMs. If the derivatives are taken on the target variables264

and if the fields are not derived the same way, one must keep track of the nature of the265

sources, thereby increasing the number of FMMs.266

3. Periodic boundary conditions and free surfaces267

In OKMC simulations, PBCs may be used for self-defect migration, in order to simulate268

the microstructure evolution in the bulk of large systems, where the effect of free surfaces269
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or grain boundaries can be locally neglected. Accordingly, the contribution of the elastic270

fields from the sources in the image boxes must be summed to provide the field due to271

a periodic layout of strain sources. We describe in section 3.1 how to perform this272

summation efficiently with FMM and to ensure that it converges to a correct value.273

Considering some boundaries of the simulation box as free surfaces is another274

interesting case. This situation is representative of thin foils observed in transmission275

electron microscopy, which are a few hundred nanometers thick. The above expressions276

of the strain field induced by cavities and dislocation segments correspond to isolated277

defects in an infinite medium. A correction to the elastic field calculated by FMM is278

necessary to ensure that it corresponds to a system with free surfaces (section 3.2).279

3.1. Periodic boundary conditions: removing the spurious dipolar contribution280

To sum the contributions of periodic images, we extend the upward pass of the FMM281

to lower “macroscopic” levels of hierarchy and obtain the multipole expansions of larger282

and larger clusters of the initial simulation box [46]. The downward pass is performed283

from macroscopic levels down to the highest levels of hierarchy, with interaction lists284

containing boxes located in image simulation boxes. This simple method permits to add285

the elastic field of a large number of periodic image boxes at low computation cost.286

However, it is known that the field obtained by direct summation over image boxes is287

not necessarily absolutely convergent. In some cases the value of the sum depends on the288

way the summation is performed and may not correspond to a periodic solution [47]. For289

example, let us consider the strain fields created by dislocation loops and cavities, which290

decay as 1/x̄3 for large values of x̄. The summation is only conditionally convergent if it291

is performed along the three directions of space. Cai et al. have shown that the strain292

field corresponding to a periodic solution εPBC
ij differs from the field obtained by direct293

summation by a constant field ε0 [47]:294

εij(x) = εPBC
ij (x) + ε0ij. (38)

This means that the displacement field resulting from the same summation procedure295

has two spurious components, a linear one and a constant one:296

ui(x) = uPBC
i (x) + gi · x+ u0i , (39)

where uPBC
i is the periodic displacement field, gi and u0i are a constant vector and a297

constant scalar, respectively. The constant field ε0, which must be subtracted from ε,298

is deduced from gi:299

ε0ij =
1

2
(gij + gji). (40)

The constant vector gi can be computed by evaluating the displacement field (39) at one300

corner of the box and at the three adjacent corners. Although this method is simple and301

general, it is rather cumbersome in the present context, since with the FMM we only302

have access to the strain field. The evaluation of the displacement field would require303

to develop an additional FMM, which we want to avoid.304
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Recently it has been shown that for a box containing an elastic dipole component305

but no monopole term, the field ε0 can be written in the following explicit form [48]:306

ε0ij(x) =
1

2

∫
S
plknk

[
G∞il,j(x̄) +G∞jl,i(x̄)

]
dS ′, (41)

where p = P /V , with P the elastic dipole tensor of the system and V the volume of307

the simulation box, n the outward-pointing normal to the integration surface S. This308

surface delimits the domain over which the direct summation over strain sources is309

performed. Actually, since the function to integrate varies as 1/x̄2, the integral does not310

depend on the domain itself, but only on its shape. The summation domain must be311

sufficiently large to fully account for higher order terms, which are absolutely convergent.312

In practice, using 2 to 3 macroscopic levels in FMM is enough. The field ε0 is calculated313

at the center of the simulation box. In isotropic elasticity, it is convenient to use the314

analytical form given in Ref. [48] and recalled in Appendix F.315

Removing ε0 amounts to simulating a finite macroscopic system under loading given316

by σ = −p [48]. This means that to simulate a physical system with free surfaces, this317

loading should be removed. Finally the strain in a macroscopic system with free surfaces318

is obtained from the FMM field εFMM through319

ε(x) = εFMM(x)− ε0 + Sp, (42)

where S is the compliance matrix, i.e. the inverse of the stiffness matrix (see Eq. (6)):320

Sijkl =
1

4µ
(δikδjl + δilδjk)−

ν

2µ(1 + ν)
δijδkl. (43)

Tensor p remains to be determined. During the upward pass of the FMM, the321

multipole expansion of the field generated by all objects in the simulation box is322

calculated, so the strain field can be written as323

εij(x) =

p∑
l=0

l∑
m=−l

M
ij,(0)
lm

Y m
l (θ, ϕ)

xl+1
+ x2

p∑
l=0

l∑
m=−l

M
ij,(2)
lm

Y m
l (θ, ϕ)

xl+1
. (44)

Far from the simulation box, one must recover the strain field of an elastic dipole,324

decaying as 1/x3. This means that M
ij,(0)
2m and M

ij,(2)
4m are related to the total elastic325

dipole in the simulation box. The displacement field induced by an elastic dipole P326

located at the origin in the middle of the box is [49]327

udipi (x) = −G∞ij,k(x)Pjk (45)

= − 1

16πµ(1− ν)

[
−2(1− 2ν)

xk
x3
Pik +

xi
x3

Tr (P )− 3
xixkxl
x5

Plk

]
, (46)
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from which the strain field is obtained:328

εdipij (x) = − 1

16πµ(1− ν)

[
−2(1− 2ν)

Pij
x3

+
x2δij − 3xixj

x5
Tr (P )

−6ν
xi
x5

(xkPjk)

−6ν
xj
x5

(xkPik)

+3
5xixj − δijx2

x7
xkxlPkl

]
. (47)

From this expression, one can evaluate the multipole expansion coefficients M
ij,(0)
20 (see329

Eq. (B.3))330

M
ij,(0)
20 =

∫ 2π

0

∫ π

0

5

4π
εdipij (x)x3(Y 0

2 (θ, ϕ))∗ sin θ dθdϕ. (48)

This leads to the following linear system:331

M
11,(0)
20 =

1

16πµ(1− ν)

[
4

7
(4− 7ν)P11 −

4

7
P22 +

2

7
P33

]
(49)

M
22,(0)
20 =

1

16πµ(1− ν)

[
−4

7
P11 +

4

7
(4− 7ν)P22 +

2

7
P33

]
(50)

M
33,(0)
20 =

1

16πµ(1− ν)

[
2

7
P11 +

2

7
P22 −

8

7
(4− 7ν)P33

]
(51)

M
23,(0)
20 = − 1

16πµ(1− ν)

2

7
(5− 7ν)P23 (52)

M
13,(0)
20 = − 1

16πµ(1− ν)

2

7
(5− 7ν)P13 (53)

M
12,(0)
20 =

1

16πµ(1− ν)

4

7
(5− 7ν)P12. (54)

This system is underdetermined for ν = 1/2 or ν = 4/7. In practice ν < 1/2 so it can332

be safely used to calculate the dipole tensor associated to the simulation box and thus333

p.334

3.2. Free surfaces335

The elastic Green function given in Eq. (5) is only valid for an infinite medium. If some336

boundaries of the simulation box correspond to a free surface, the strain field calculated337

with this Green function may be erroneous. Unphysical forces T may appear at the338

surface if some objects are too close to it. In order to obtain the correct elastic solution,339

we adopt the method proposed by van der Giessen and Needleman [50]. They add a340

field which cancels surface tractions produced by the solution in an infinite medium.341
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This field is the solution of the following equations:342

∇ · σ = 0 in V (55)

σ · n = −T on S f , (56)

where V is the domain corresponding to the simulation box, S f its free surfaces, n is343

the outward normal vector to S f . Although surface tractions can vary steeply, the field344

induced by these forces smoothen with depth. An adaptive mesh is therefore particularly345

adapted to solve these equations. The finite element method (FEM) can be easily used346

with adaptive meshes, which makes this method particularly interesting in this context.347

It is based on the variational formulation of problem (55)-(56) [51]: we must find u such348

that349 ∫
V
σ(u) : ε(v) dV = −

∫
Sf
T · v dS ∀v ∈ H1, (57)

with u the displacement field to be found, v a vector test function and H1 the Sobolev350

space of vector functions. The colon operator is the inner product between two tensors,351

i.e. σ : ε = σijεij. Since there is no Dirichlet boundary condition (on u), the solution is352

not unique. If free surfaces are considered in the three directions of space, i.e. with pure353

Neumann boundary conditions, any rigid body motion, given by (with a, b constant354

vectors)355

u(x) = a× x+ b, (58)

can be added to the solution (ε(u) = 0). The space of rigid body motions RM consists356

of translations and rotations, and for a pure Neumann problem, it is of dimension 6.357

A unique solution can be found by setting the displacement of some points to358

zero [52]. Here we use Lagrange multipliers [51] to impose that the solution is359

linearly independent of functions in RM . This leads to the following saddle point360

problem [51, 53]: we must find (u,λ), with u in H1 and λ in RM , such that361 ∫
V
σ(u) : ε(v) dV +

∫
V
v · λ dV = −

∫
Sf
T · v dS ∀v ∈ H1 (59)∫

V
u · µ dV = 0 ∀µ ∈ RM. (60)

The number of rigid body motions to be blocked depends on the number of surfaces. The362

three translation motions must always be included in the rigid motions to be blocked;363

however the three rotations must be included only if the simulation box has free surfaces364

along the three directions of space. If PBCs are used along one direction, only the365

rotation around this direction must be blocked, so the null space of rigid body motions366

is of dimension 4. If PBCs are used along two directions, only translations must be367

considered and the null space is only of dimension 3. In practice, problem (59)-(60) was368

solved using the open-source software FEniCS [54].369

The mesh to be used in FEM calculations can be fixed at the beginning of an370

OKMC simulation, but this is not always optimal in terms of efficiency and accuracy.371
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If strain sources remain far from surfaces, spatial variations of surface tractions are372

gentle and a coarse mesh can be used near surfaces without loss of accuracy, resulting in373

highly efficient FEM solving. If strain sources get closer to the surface as the simulation374

proceeds, surface tractions are expected to vary much more steeply and the mesh should375

be locally refined. Refining the mesh only where it is necessary is important to keep376

the FEM solving efficient. The adaptive FMM provides a rather natural way to do so.377

Since the FMM box size depends on the local density of sources, steep variations of the378

traction field resulting from sources close to the surface are expected to be accompanied379

with a local decrease of the FMM box size. Accordingly, we set the typical size of380

FEM elements at the surface proportional to the size of FMM boxes. In addition, the381

number of surface traction evaluations is set the same for all FMM boxes, resulting in a382

higher density of evaluations where FMM boxes are smaller. A schematical view of the383

FMM/FEM coupling is shown in Fig. 3.384

T

εFMM

−T

∇ · σ = 0

εFEM

Figure 3. Coupling of adaptive FMM and FEM to obtain the solution compatible

with traction-free upper and lower boundaries. The solution in an infinite medium

is first obtained, using FMM (εFMM). The adaptive grid is used to evaluate traction

forces T on surfaces. Then the solution at mechanical equilibrium under prescribed

traction forces −T is determined with FEM (εFEM). The solution of the initial problem

is ε = εFMM + εFEM.

We chose the open-source software Gmsh [55] to generate the FEM mesh. This mesh385

is updated as infrequently as possible, only when the FMM adaptive mesh is modified.386

Otherwise, only surface tractions are re-evaluated before the FEM solving. Between two387

successive FEM solvings with the same mesh, the solutions are not expected to vary388

much and it is advantageous to re-use the solution from a preceding solving as an initial389

guess if an iterative solver is used. If a direct solver is employed, it is useful to re-use390

the LU factorization.391
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4. Numerical results392

In this section we present a few test cases, to assess the accuracy and performance of the393

method, and to highlight its capabilities. All tests are performed in aluminum at room394

temperature. Parameters, which are taken from Ref. [13], are reminded in Table 1.395

Table 1. Material parameters for aluminum

Parameter Symbol Value

Lattice parameter a0 0.405 nm

Atomic volume Ω a30/4 = 0.0167 nm3

Poisson’s ratio ν 0.35

Shear modulus µ 26 GPa

Burgers vector (Frank loops) b a0[111]/3

Capture radius of dislocations rc 0.47 nm

Migration energy of vacancies Em
v 0.605 eV

Migration energy of SIAs Em
i 0.105 eV

Attempt frequency ν0 1013 Hz

Elastic dipole of vacancies at

stable position

P e
v

−3.238 0 0

0 −3.238 0

0 0 −3.238

 eV

Elastic dipole of vacancies at

saddle position (jump in [110]

direction)

P s
v

−2.866 −0.080 0

−0.080 −2.866 0

0 0 1.000

 eV

Elastic dipole of SIAs at stable

position ([100] orientation)

P e
i

19.652 0 0

0 18.518 0

0 0 18.518

 eV

Elastic dipole of SIAs at saddle

position (jump in [110] direction)

P s
i

19.498 1.133 0

1.133 19.498 0

0 0 19.034

 eV

4.1. Accuracy and performance of the method396

The truncation of expansions to order p limits the accuracy of the method. The error397

on any component of the strain field can be conveniently estimated by the L2 relative398

error norm [25, 39]:399

e2 =

(∑n
k=1 |εdirect(xk)− εFMM(xk)|2∑n

k=1 |εdirect(xk)|2

)1/2

, (61)

where the indexes of the strain component have been dropped for the sake of clarity. The400

strain field component εFMM is calculated by FMM, with expansions truncated to order401
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p. A direct summation over all strain sources is performed to evaluate εdirect, which is402

our reference value. The location of the n strain field evaluations (with n = 104 here) is403

chosen randomly in the matrix, outside the absorption region of sinks. In the test case404

considered here, sinks are Frank loops of the same radius, equal to 5 nm. Each loop is405

modelled as a collection of straight dislocation segments of maximum length equal to406

1 nm. The absorption regions are cylinders of radius rc = 2b, where b = |b|, centered407

on the dislocation segments. A total of 40 loops, randomly placed in a cubic system of408

edge length 200 nm, generate the strain field. Neither periodic boundary conditions nor409

coupling with FEM are considered.410

The relative error on ε11 is shown in Fig. 4 as a function of truncation order p. It411

steadily decreases with increasing order. Since the computation cost increases with p,412

its value should be chosen as small as possible. In general, a value of e2 lower than 10−2413

is unnecessary, so in the following p = 7 is adopted.414
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Figure 4. L2 relative error norm on component ε11 as a function of the order p of the

multipole and local expansions in the FMM. The system is cubic, of size 200 nm. It

contains 40 Frank dislocation loops of 5 nm radius. The error is calculated on n = 104

points located outside the absorption region of loops.

The main purpose of using FMM is to reduce the computation time for the415

evaluation of the strain field. Computation times obtained with a direct calculation416

and with FMM, assuming that the expansions are up to date, are shown in Fig. 5-(a).417

The system is the same as before, but the number of loops, or equivalently the number of418

strain sources, is varied. The highest number of loops considered (100 loops) corresponds419

to loop densities typically seen in irradiated materials (∼ 1022 m−3). The computation420
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time with the direct approach increases linearly with the number of sources and reaches421

values of more than 10−3 s for 100 loops. When the FMM is used, the computation422

time is reduced by a factor of around 500 in this high density case. With the FMM,423

the field is calculated as the sum of two contributions. The first one includes sources424

which are sufficiently far from the box containing the target point. It is evaluated with425

a local expansion to order p. The associated computation time is independent of the426

number of sources. The second contribution is due to the remaining sources, which are427

too close to the box containing the target point to be included in the local expansion.428

In the adaptive FMM, they are taken into account with a multipole expansion if the429

box containing the sources is sufficiently far from the target and if it has a large number430

of sources. Otherwise, a direct summation on sources is performed (orange sources in431

Fig. 2). This second contribution explains the increase in computation time with the432

number of loops. If the maximum number of sources per box is reduced from 70 to 30,433

additional levels are introduced and in general, the number of sources which contribute434

to the direct sum decreases. That is why the computation time also decreases. The case435

of a uniform FMM, with a box size equal to 5 nm, is also reported in Fig. 5-(a). If the436

number of loops is small, boxes containing target points are most often surrounded by437

boxes with no sources. The computational cost corresponds to the evaluation of a local438

expansion. Once the number of loops is sufficiently large to populate the boxes around439

each target point, the computation time increases because of the direct summation.440

As a first approximation, PBCs can be introduced in the direct approach by441

summing the contributions of sources located in the first neighbour shell of periodic442

images. This is not a bad approximation if PBCs are used along at most two directions,443

since the sum is absolutely convergent in this case (see Section 3.1). The computation444

time when PBCs are set along two directions corresponds to the dashed black line in445

Fig. 5-(a). As expected, it is around 9 times higher than without PBCs. With FMM,446

the computation time only marginally increases, because the number of sources on447

which the direct summation is performed only increases for target points located close448

to the boundaries of the system. This is a clear advantage of the FMM over the direct449

calculation.450

Up to now it has been assumed that multipole and local expansions are up to date.451

Each time a sink absorbs or emits a point defect, expansions must be updated. We452

see in Fig. 5-(b) that with our version of the FMM, which is not fully optimized, the453

calculation of multipole and local expansions for all strain components can be up to a few454

seconds for dense microstructures. It increases if nmax decreases, since additional levels455

are introduced. We have seen that on the contrary, reducing nmax speeds up the field456

evaluation. So nmax must be adjusted to minimize the sum of the two contributions457

to the computation time. Empirically, nmax = 70 appears to be satisfactory with458

the present implementation. We also see in Fig. 5-(b) that considering PBCs hardly459

affects the time to update expansions, so that the global computation time is nearly460

independent of PBCs with FMM. As in Fig. 5-(a), the computation time for the uniform461

FMM is reported. With such a small box size of 5 nm, the update of expansions takes462
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Figure 5. (a) Computation time for one strain field evaluation, for direct and FMM

calculations, as a function of the number of loops in a (200 nm)3 system. Loops have

a radius of 5 nm. Dashed curves refer to periodic calculations along two directions.

Periodic images are only partially accounted for in the direct calculation, by including

the first neighbour shell (8 images boxes). The adaptive version of the FMM is used

with two different criteria for the division of boxes (nmax = 30 and nmax = 70).

The green curve corresponds to a FMM calculation with a 5 nm uniform mesh. (b)

Computation time for the initial evaluation of local expansions by FMM.
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much more time than with the adaptive FMM. Although the box size can be tuned463

to obtain satisfactory performance, it becomes difficult to do so when the number of464

sources evolves appreciably with time. This is typically the case under irradiation, with465

the nucleation and growth of clusters. So in general the adaptive version should be466

preferred.467

Since the update of FMM expansions takes significant time, the FMM is useful468

only if defects perform a large number of jumps n between two absorption or emission469

events. The speed-up is then470

s =
(z + 1)ntdirect

(z + 1)ntFMM + tupdate
, (62)

where tdirect and tFMM are the computation time per evaluation of strain field (Fig. 5-471

(a)) in the direct and FMM approaches, respectively, and tupdate is the time required472

to update FMM expansion coefficients (Fig 5-(b)). The factor (z + 1) accounts for the473

z possible jumps a defect can perform (8 for an SIA, 12 for a vacancy), because an474

estimation of the field is necessary for each saddle point. In addition the interaction475

energy for the initial stable configuration must be calculated. To evaluate n, let us476

consider absorption events only and neglect elastic interactions. The average number of477

jumps of a defect before absorption is [56]478

n =
12

k2a20
, (63)

where the sink strength is assumed to be the one of a concentration C of loops of radius479

r and capture radius rc [57]:480

k2 =
4π2r

ln
(

8r
rc

)C. (64)

For one loop in the simulation box, we obtain around n = 107 jumps before absorption,481

while for 100 loops, n is around 105. From results shown in Fig. 5, the resulting speed-482

up for a system with PBCs in two directions is around 250 for one loop and 1700 for483

100 loops. The proportion of time taken for the update of FMM expansion coefficients484

increases with the number of loops, so that (z+1)ntFMM ≈ tupdate for 100 loops. However,485

the time for direct evaluation of the field also increases rapidly with the number of loops.486

This results in a larger speed-up if the number of loops increases.487

A more precise estimation of the speed-up is obtained by measuring the average488

CPU time per KMC time step directly in a kinetic simulation. This measurement also489

takes into account a variety of other operations occurring during a KMC time step, such490

as the computation of energy, the handling of collisions between defects, etc. Previous491

microstructures are taken as starting configurations. They evolve following the creation492

of Frenkel pairs at a rate of 10−4 dpa/s. Results are shown in Fig. 6. The speed-up is493

similar to the previous estimation, from two to three orders of magnitude depending on494

the number of loops in the system. As before, the update of FMM expansion coefficients495

takes a larger proportion of the computation time as the number of loops increases. We496
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Figure 6. Computation time per KMC step as a function of the number of loops

in a (200 nm)3 system. Loops have a radius of 5 nm. Direct and FMM calculation

of the strain field are shown in black solid lines. For FMM, the orange colour area

indicates the proportion of time spent in the update of FMM expansion coefficients,

other operations being represented in blue.

note that in these simulations, we avoid recalculating all multipole expansion coefficients497

each time an absorption event occurs. Only boxes whose sources have changed have their498

multipole expansions updated. Then only necessary multipole-to-local operations are499

performed, which saves computation time.500

4.2. Impact of free surface on dislocation loop growth501

In the vicinity of a surface, the growth rate of clusters is altered, because a proportion502

of point defects is absorbed by this sink instead of contributing to cluster evolution.503

This leads, for example, to the presence of void and loop denuded zones [58, 59, 60].504

This effect has been investigated with standard OKMC [61]. With the present method505

it is possible to study a more subtle effect, related to the strain field generated by506

clusters. We have seen in section 3.2 that if a cluster is located close to a surface, the507

associated strain field does not correspond to the field generated in an infinite medium,508

since surfaces must be traction-free. The resulting modified energy landscape impacts509

the diffusion paths of point defects and thus may change the cluster behaviour.510

In the following we consider a system with free surfaces along e3, containing a loop511
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Figure 7. Visualization of the computation of the strain field produced by a

dislocation loop located at 2 nm from the upper surface of a (30 nm)3 system, at

(a,c,e) t = 10 s and (b,d,f) t = 40 s. (a,b) Adaptive FMM mesh. (c,d) Component σ33
induced by the presence of the loop, if the solution in an infinite medium is used. This

solution leads to significant traction forces T on the upper surface. (e,f) Component

σ33 when the FEM solution of the mechanical equilibrium with prescribed forces −T
is added to the infinite medium solution.

nucleus at a variable distance d from the upper surface. PBCs are used in the two other512

directions. The loop nucleus is an interstitial cluster containing 11 SIAs (r = 0.5 nm),513

which is assumed to be immobile and to grow as a Frank loop oriented parallel to514

the surface. The dimensions of the system are 30 nm × 30 nm × 30 nm. SIAs and515

vacancies are inserted as Frenkel pairs at a dose rate of 5× 10−3 dpa/s. A view of the516

FMM adaptive mesh at two different times is given in Fig. 7-(a,b). The region where517

the mesh is refined correlates with the position of the dislocation line. Following the518

coupling scheme proposed in Fig. 3, this mesh refinement leads to a fine FEM mesh at519

the upper surface close to the dislocation line, where the field varies steeply (Fig. 7-520

(c,d)). In the case shown in Fig. 7, which corresponds to a dislocation loop 2 nm away521

from the upper surface, traction forces created by the solution in a infinite medium can522

be larger than 1 GPa. When the FEM solution of the mechanical equilibrium with523

opposite traction forces is added, traction forces are substantially reduced. We see that524

this induces a significant change in the stress inside the material (Fig. 7-(e,f)).525

The evolution of loop size with time is shown in Fig. 8, including or not the526

compensation of traction forces. 20 simulations have been performed for distances to527

the surface ranging from 2 to 15 nm. One sees that except when the loop is very close528

to the surface (d = 2 nm), the image field correction has only a small influence on loop529

growth.530
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Figure 8. Evolution of loop radius with time for different distances to the surface d.

20 simulations have been performed for each value of d, with and without compensation

of traction forces created by the elastic solution in an infinite medium.

4.3. Evolution of dislocation loops in thin foils under irradiation531

It is known that in thin foils of fcc and bcc metals, interstitial dislocation loops532

grow under irradiation [62, 63]. This growth is explained successfully by the so-called533

“dislocation bias model” [2]. Loops interact more strongly with SIAs than vacancies,534

which results in a preferential absorption of SIAs. The remaining net quantity of535

vacancies in the matrix is absorbed by sinks which generate shorter range, or less536

intense, elastic fields. These sinks can be cavities, surfaces or grain boundaries for537

example. However, shrinkage of interstitial dislocation loops has been observed in some538

cases under irradiation. In aluminum, it has been documented by Jitsukawa and Hojou539

in 600 nm thick foils irradiated in a transmission electron microscope [64]. These authors540

have explained loop shrinkage by a dependency of the elastic bias of loops on their size.541

Indeed, even though all loops have a positive elastic bias, which means they interact542

more strongly with SIAs than vacancies, it does not imply that they all grow. Since543

vacancies and SIAs are produced in equal quantities, loops with the smallest elastic544

bias necessarily absorb more vacancies than SIAs if no sinks with lower elastic bias are545

present (for example, surfaces). In general, small loops tend to exhibit lower growth546
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Figure 9. One of the 10 loop configurations considered to investigate loop growth

dependency on distance to surface and loop radius.

rates than large loops, which points to an increase of the elastic bias with size. Numerical547

evaluations of bias of isolated loops are consistent with these findings [65, 66, 67].548

Absorption efficiencies of loops depend not only on their size, but also on the549

surrounding microstructure [17, 16]. To assess more precisely the effect of elastic bias550

on loop behaviour, we simulate microstructures containing several loops of various sizes.551

We consider a system of size 100 nm × 100 nm × 200 nm, with free surfaces along e3552

and PBCs in the two other directions. 50 dislocation loops are randomly placed in553

the simulation box, which represents a loop density of 2.5 × 2022 m−3. Their radius is554

drawn from a normal distribution of mean 10 nm and of standard deviation 2 nm, and555

their habit plane is chosen randomly among the four possible ones. A total of 10 loop556

configurations are generated. Each configuration is simulated 5 times, with different557

random seeds, and the average growth rate of a loop is deduced from linear fits of the558

evolution of loop radius over 10 seconds. SIAs and vacancies are produced as Frenkel559

pairs, at a dose rate of 10−4 dpa/s. An example of a loop microstructure is shown560

in Fig. 9. No other sinks, such as cavities or grain boundaries, are introduced in the561

simulation.562
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Loop growth rate has a clear dependency on the distance of the loop to the surface563

d (Fig. 10-(a)). On average, loops close to the surface have the highest growth rate,564

because vacancies can easily reach the surface. For values of d larger than around 40 nm,565

surface effects become negligible. Vacancies are mostly absorbed by loops, which results566

in slow growth and even shrinkage of loops. The growth rate is plotted as a function567

of the loop radius in Fig. 10-(b), for loops which are more than 40 nm away from both568

surfaces. On average, the growth rate increases with the loop radius, although values are569

very scattered. This result is consistent with experiments and with the bias calculations570

on isolated loops, which show a strong increase of bias for small radii and a plateau571

at around 10 nm [66, 67]. The large scattering of growth rates points to an additional572

effect of the surrounding microstructure on the loop behaviour. Recently, it has been573

shown that to first order, the absorption efficiency of a loop is proportional to (V/V̄ )1/4,574

where V is the Voronoi volume of the loop and V̄ is the average Voronoi volume [16].575

The growth rate also seems to follow this trend (Fig. 10-(c)). The scattering is however576

large, which highlights the complex dependency of loop growth rate on the surrounding577

microstructure, especially when long range elastic interactions are taken into account.578

If other microstructural features with lower elastic bias, such as cavities, are present in579

sufficient number in the bulk, loop growth rates are expected to become all positive but580

still scattered.581

Conclusion582

A method has been proposed to efficiently and accurately estimate the strain field583

generated by defects in irradiated microstructures, in the framework of OKMC584

simulations. The strain field of cavities and dislocation segments is evaluated by a local585

expansion in spherical harmonics if the sources are sufficiently far from the evaluation586

point. Otherwise, a direct sum over the strain sources is performed. This leads to a587

drastic reduction in the evaluation time of the field compared to a direct summation588

over strain sources, especially if periodic boundary conditions are used.589

To evaluate efficiently the local expansion coefficients, the FMM for biharmonic590

kernels, which relies on two calls to FMM for harmonic kernels, is used. The number591

of FMM calls is reduced with respect to previous approaches and kept independent on592

the number of field types (cavities, dislocation segments). These improvements could593

be interesting for other simulation methods which rely on FMM on biharmonic kernels,594

such as DDD.595

In addition to its efficiency, another advantage of FMM is the relatively596

straightforward treatment of finite systems. If surfaces are located far away in the597

three directions of space and if the strain field contains a dipolar component, the sum of598

strain contributions over periodic images is conditionally convergent. The correction to599

this sum to give a system free from surface tractions is easily obtained from the multipole600

expansion of the system, which is a by-product of FMM. This situation is quite common601

in practice: it arises, for example, when the microstructure contains dislocation loops602
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Figure 10. Loop growth rate in a 200 nm thick aluminum foil, irradiated at 10−4 dpa/s

at 300 K. The system size is 100 nm in the two other directions. 10 loop configurations

are simulated. Initial configurations contain a random arrangement of 50 loops, which

corresponds to a density of 2.5×2022 m−3. The loop radius is chosen randomly from a

gaussian distribution of mean value 10 nm and of standard deviation 2 nm. Error bars

correspond to the standard error of the mean calculated on 5 independent simulations

of the same configuration. (a) Loop growth rate as a function of the distance of the

loop to the closest surface d. (b) Loop growth rate as a function of the loop radius.

Only loops which are more than 40 nm away from both surfaces are shown. (c) Loop

growth rate as a function of (V/V̄ )1/4, where V is the Voronoi volume of the loop and

V̄ is the average Voronoi volume.
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and cavities. If some surfaces correspond to the boundaries of the simulation box, an603

elastic problem with prescribed tractions on some of the boundaries must be solved with604

FEM. The adaptive mesh of the FMM is particularly convenient to build a FEM mesh605

fitting the variations of traction forces.606

Preliminary simulations of loop microstructures with elastic interactions reveal the607

large scattering of loop growth rates, although correlations with loop radius and with608

the Voronoi volume of loops have been highlighted. These results show that using elastic609

bias of isolated defects is probably not sufficient to provide a quantitative description610

of irradiated microstructures.611
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Appendix A. Strain components for a dislocation loop619

Using the notations from Section 1.2.1, explicit expressions of the strain components for

a dislocation loop are (the dependency on vα is dropped for clarity):

ε11(x̄) =
1

8π

Nq∑
α=1

wα

[
1

1− ν
(b3x̄,112 − b2x̄,113)x′1,v

+

(
ν

1− ν
b1x̄,113 − b1x̄,223 − b1x̄,333 −

ν

1− ν
b3x̄,111 + b3x̄,221 + b3x̄,331

)
x′2,v

+

(
− ν

1− ν
b1x̄,112 + b1x̄,222 + b1x̄,332 +

ν

1− ν
b2x̄,111 − b2x̄,221 − b2x̄,331

)
x′3,v

]
(A.1)

ε22(x̄) =
1

8π

Nq∑
α=1

wα

[(
− ν

1− ν
b2x̄,223 + b2x̄,333 + b2x̄,113 +

ν

1− ν
b3x̄,222 − b3x̄,332 − b3x̄,112

)
x′1,v

+
1

1− ν
(b1x̄,223 − b3x̄,221)x′2,v

+

(
ν

1− ν
b2x̄,211 − b2x̄,331 − b2x̄,111 −

ν

1− ν
b1x̄,222 + b1x̄,332 + b1x̄,112

)
x′3,v

]
(A.2)
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ε33(x̄) =
1

8π

Nq∑
α=1

wα

[(
ν

1− ν
b3x̄,332 − b3x̄,112 − b3x̄,222 −

ν

1− ν
b2x̄,333 + b2x̄,113 + b2x̄,223

)
x′1,v

+

(
− ν

1− ν
b3x̄,331 + b3x̄,111 + b3x̄,221 +

ν

1− ν
b1x̄,333 − b1x̄,113 − b1x̄,223

)
x′2,v

+
1

1− ν
(b2x̄,331 − b1x̄,332)x′3,v

]
(A.3)

ε23(x̄) =
1

8π

Nq∑
α=1

wα

[
1

1− ν
(b3x̄,223 − b2x̄,332)x′1,v

+
1

2

(
b2x̄,111 + b2x̄,221 + b2x̄,331 − b1x̄,112 − b1x̄,222 +

1 + ν

1− ν
b1x̄,332 −

2

1− ν
b3x̄,123

)
x′2,v

+
1

2

(
−b3x̄,111 − b3x̄,221 − b3x̄,331 + b1x̄,113 −

1 + ν

1− ν
b1x̄,223 + b1x̄,333 +

2

1− ν
b2x̄,123

)
x′3,v

]
(A.4)

ε13(x̄) =
1

8π

Nq∑
α=1

wα

[
1

2

(
−b1x̄,222 − b1x̄,332 − b1x̄,112 + b2x̄,221 −

1 + ν

1− ν
b2x̄,331 + b2x̄,111 +

2

1− ν
b3x̄,123

)
x′1,v

+
1

1− ν
(b1x̄,331 − b3x̄,113)x′2,v

+
1

2

(
b3x̄,222 + b3x̄,332 + b3x̄,112 − b2x̄,223 − b2x̄,333 +

1 + ν

1− ν
b2x̄,113 −

2

1− ν
b1x̄,123

)
x′3,v

]
(A.5)

ε12(x̄) =
1

8π

Nq∑
α=1

wα

[
1

2

(
b1x̄,333 + b1x̄,113 + b1x̄,223 − b3x̄,331 − b3x̄,111 +

1 + ν

1− ν
b3x̄,221 −

2

1− ν
b2x̄,123

)
x′1,v

+
1

2

(
−b2x̄,333 − b2x̄,113 − b2x̄,223 + b3x̄,332 −

1 + ν

1− ν
b3x̄,112 + b3x̄,222 +

2

1− ν
b1x̄,123

)
x′2,v

+
1

1− ν
(b2x̄,112 − b1x̄,221)x′3,v

]
.

(A.6)

Expressions of x̄,ijk are given, for example, in Ref. [34].620

Appendix B. Definition of spherical harmonics, solid harmonics and621

recursion formulas622

The definition of spherical harmonics used here is the same as in Ref. [24]:623

Y m
l (θ, ϕ) =

√
(l − |m|)!
(l + |m|)!

P
|m|
l (cos θ)eimϕ, (B.1)
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where Pm
l are the associated Legendre polynomials, which are defined by624

Pm
l (x) = (−1)m(1− x2)m/2 dm

dxm
Pl(x). (B.2)

In Eq. (B.2), Pl are the Legendre polynomials. From Eq. (B.1) we deduce that625

(Y m
l (θ, ϕ))∗ = Y −ml (θ, ϕ). The normalisation is such that626 ∫ 2π

0

∫ π

0

Y m
l (θ, ϕ)(Y m′

l′ (θ, ϕ))∗ sin θ dθdϕ =
4π

2l + 1
δll′δmm′ . (B.3)

For example we have:627

Y 0
1 (θ, ϕ) = cos θ (B.4)

Y 1
1 (θ, ϕ) = − 1√

2
sin θeiϕ. (B.5)

Regular solid harmonics are defined by Rm
l (x, θ, ϕ) = xlY m

l (θ, ϕ) and irregular solid628

harmonics are defined by Iml (x, θ, ϕ) = Y m
l (θ, ϕ)/xl+1. Irregular solid harmonics can also629

be written as [68, 27]630

Iml (x, θ, ϕ) = (−1)mAml

(
∂

∂x1
+ i

∂

∂x2

)m(
∂

∂x3

)l−m(
1

x

)
, (B.6)

with631

Aml =
(−1)l√

(l −m)!(l +m)!
(B.7)

(the factor (−1)m in Eq. (B.6) is missing in [27]).632

We note633

Bm
l =

√
(l +m)(l −m), (B.8)

634

Cm
l =

√
(l +m)(l +m− 1), (B.9)

and635

s(m) =

{
1 if m ≥ 0

−1 if m < 0.
(B.10)

We can write recursion formulas under the form:636

Bm
l+1Y

m
l+1 − (2l + 1)Y 0

1 Y
m
l +Bm

l Y
m
l−1 = 0 (B.11)

s(m− 1)C−m+1
l+1 Y m−1

l+1 +
√

2(2l + 1)Y −11 Y m
l − s(m− 1)Cm

l Y
m−1
l−1 = 0 (B.12)

s(m)Cm
l+2Y

m+1
l+1 −

√
2(2l + 1)Y 1

1 Y
m
l − s(m)C−ml Y m+1

l−1 = 0. (B.13)
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Using these formulas, it can be shown that products xkI
m
l (x, θ, ϕ) can be637

decomposed as functions of Iqp(x, θ, ϕ) and x2Iqp(x, θ, ϕ):638

x1I
m
l (x, θ, ϕ) = − 1

2(2l + 1)
s(m)Cm

l+2x
2Im+1
l+1 (x, θ, ϕ)

+
1

2(2l + 1)
s(m− 1)C−m+1

l+1 x2Im−1l+1 (x, θ, ϕ)

+
1

2(2l + 1)
s(m)C−ml Im+1

l−1 (x, θ, ϕ)

− 1

2(2l + 1)
s(m− 1)Cm

l I
m−1
l−1 (x, θ, ϕ) (B.14)

639

x2I
m
l (x, θ, ϕ) =

i

2(2l + 1)
s(m− 1)C−m+1

l+1 x2Im−1l+1 (x, θ, ϕ)

+
i

2(2l + 1)
s(m)Cm

l+2x
2Im+1
l+1 (x, θ, ϕ)

− i

2(2l + 1)
s(m)C−ml Im+1

l−1 (x, θ, ϕ)

− i

2(2l + 1)
s(m− 1)Cm

l I
m−1
l−1 (x, θ, ϕ) (B.15)

640

x3I
m
l (x, θ, ϕ) =

Bm
l+1

2l + 1
x2Iml+1(x, θ, ϕ) +

Bm
l

2l + 1
Iml−1(x, θ, ϕ). (B.16)

Similar expressions can be deduced for xkR
m
l (x, θ, ϕ), using Eqs (B.14)–(B.16) and641

the relation Rm
l (x, θ, ϕ) = x2l+1Iml (x, θ, ϕ):642

x1R
m
l (x, θ, ϕ) = − 1

2(2l + 1)
s(m)Cm

l+2R
m+1
l+1 (x, θ, ϕ)

+
1

2(2l + 1)
s(m− 1)C−m+1

l+1 Rm−1
l+1 (x, θ, ϕ)

+
1

2(2l + 1)
s(m)C−ml x2Rm+1

l−1 (x, θ, ϕ)

− 1

2(2l + 1)
s(m− 1)Cm

l x
2Rm−1

l−1 (x, θ, ϕ) (B.17)

643

x2R
m
l (x, θ, ϕ) =

i

2(2l + 1)
s(m)Cm

l+2R
m+1
l+1 (x, θ, ϕ)

+
i

2(2l + 1)
s(m− 1)C−m+1

l+1 Rm−1
l+1 (x, θ, ϕ)

− i

2(2l + 1)
s(m)C−ml x2Rm+1

l−1 (x, θ, ϕ)

− i

2(2l + 1)
s(m− 1)Cm

l x
2Rm−1

l−1 (x, θ, ϕ) (B.18)

644

x3R
m
l (x, θ, ϕ) =

Bm
l+1

2l + 1
Rm
l+1(x, θ, ϕ) +

Bm
l

2l + 1
x2Rm

l−1(x, θ, ϕ). (B.19)
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Appendix C. Translation and conversion of expansions for a biharmonic645

function646

In this section the results of Gumerov and Duraiswami [39] are given for our definition647

of spherical harmonics. Let ψ(x) = φ(x) + x2ω(x) be a multipole or local expansion of648

a biharmonic function. We want to set the origin of the expansion at t, i.e. we consider649

the new function (Fig. C1)650

ψ̂(x) = ψ(x+ t)

= φ(x+ t) + (x+ t) · (x+ t)ω(x+ t)

= φ̂(x) + (x2 + 2x · t+ t2)ω̂(x), (C.1)

where φ̂ and ω̂ are the same expansions as φ and ω, but with their origin at t, i.e.651

their coefficients are deduced from the expansions φ and ω by translation or conversion652

operators of harmonic functions [24, 25]. We want to set Eq. (C.1) under the form653

ψ̂(x) = φ̃(x) + x2ω̃(x), (C.2)

where φ̃ and ω̃ remain to be found. Operators which transform the coefficients654

of the expansion (φ, ω) into the coefficients of the expansion (φ̃, ω̃) are the655

translation/conversion operators which are used in the FMM.656

O

O′

t
x

Origin ofψ

Origin of ψ̂

Figure C1. Change of center of expansion.

Two cases can be distinguished:657

• For a multipole-to-multipole (M2M) transformation (translation), φ̂(x) and ω̂(x)658

are expanded with irregular solid harmonics. Eqs (B.14)–(B.16) can be used to659

write the term 2x · tω̂(x) as contributions to φ̃(x) and ω̃(x). We obtain660

φ̃ml = φ̂ml + t2ω̂ml − ω̂m+1
l+1

t1 + it2
2l + 3

s(m)Cm+1
l+1 + ω̂ml+1

2t3
2l + 3

Bm
l+1 + ω̂m−1l+1

t1 − it2
2l + 3

s(m− 1)C−m+1
l+1

(C.3)

ω̃ml = ω̂ml + ω̂m+1
l−1

t1 + it2
2l − 1

s(m)C−ml + ω̂ml−1
2t3

2l − 1
Bm
l − ω̂m−1l−1

t1 − it2
2l − 1

s(m− 1)Cm−1
l+1 .

(C.4)

These expressions correspond to expression 57 in Ref. [39] obtained with a different661

definition of spherical harmonics.662
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• For a multipole-to-local (M2L) or a local-to-local (L2L) transformation, φ̂(x) and663

ω̂(x) are expanded with regular solid harmonics. Eqs (B.17)–(B.19) can be used to664

write the term 2x · tω̂(x) as contributions to φ̃(x) and ω̃(x). We obtain665

φ̃ml = φ̂ml + t2ω̂ml + ω̂m+1
l−1

t1 + it2
2l − 1

s(m)C−ml + ω̂ml−1
2t3

2l − 1
Bm
l − ω̂m−1l−1

t1 − it2
2l − 1

s(m− 1)Cm−1
l+1

(C.5)

ω̃ml = ω̂ml − ω̂m+1
l+1

t1 + it2
2l + 3

s(m)Cm+1
l+1 + ω̂ml+1

2t3
2l + 3

Bm
l+1 + ω̂m−1l+1

t1 − it2
2l + 3

s(m− 1)C−m+1
l+1 .

(C.6)

These expressions correspond to expression 56 in Ref. [39].666

Appendix D. Derivatives of irregular solid harmonics667

Derivatives of irregular solid harmonics are used in the local expansion of the strain field668

of a cavity (Eq. (25)) and a dislocation segment (Eqs (32)-(33)). They are also used669

to obtain the derivatives of regular solid harmonics (Appendix E). To determine them,670

it is convenient to use expression (B.6). The dependency of Iml functions on x, θ, ϕ is671

dropped for clarity.672
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Second derivatives674
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• m ≥ 2
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Third derivatives675
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• m ≥ 3
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Appendix E. Derivatives of regular solid harmonics676

Derivatives of regular solid harmonics are useful for the multipole expansion of the strain677

field of a cavity (Eq. (23)) and a dislocation segment (Eqs. (28)-(29)). They can be678

obtained by writing Rm
l (x, θ, ϕ) = x2l+1Iml (x, θ, ϕ), then using Eq. (B.6) and recursion679

formulas (B.12) and (B.13). First and second derivatives are given in Ref. [27]. They680

are recalled here for the sake of completeness.681
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l−3 (E.63)

∂3

∂x1∂x2∂x3
(Rm

l ) = − i
4

√
(l +m)(l −m)(l −m− 1)(l −m− 2)(l −m− 3)(l −m− 4)Rm+2

l−3

+
i

4

√
(l +m)(l +m− 1)(l +m− 2)(l +m− 3)(l +m− 4)(l −m)Rm−2

l−3 (E.64)

Appendix F. Correction ε0 to the dipolar field685

The field which must be subtracted from the discrete sum of the dipolar field over686

neighbour boxes, in order to get a periodic solution, has an analytical form if the sum is687

performed over a cuboid domain centered on the similation box [48]. We recall here its688

expression for the sake of completeness. Let the dimensions of the summation domain689

be l1, l2 and l3. We have for the two components ε011 and ε012 (other terms are obtained690

by cyclic permutation of indices):691

ε011 =
p11

2π(1− ν)µ
[2(1− 2ν)A(l1, l2, l3) +B(l1, l2, l3)]

− p22
2π(1− ν)µ

E(l2, l1, l3)−
p33

2π(1− ν)µ
E(l3, l1, l2) (F.1)

692

ε012 =
p12

2π(1− ν)µ
[2(1− ν) (A(l1, l2, l3) + A(l2, l1, l3))− (E(l1, l2, l3) + E(l2, l1, l3))] .

(F.2)

Functions A, B and E are given by693

A(x, y, z) = arctan

(
yz

x
√
x2 + y2 + z2

)
(F.3)

B(x, y, z) =
xyz(2x2 + y2 + z2)

(x2 + y2)(x2 + z2)
√
x2 + y2 + z2

(F.4)

E(x, y, z) =
xyz

(x2 + y2)
√
x2 + y2 + z2

. (F.5)
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