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IMPACT OF PHYSICAL MODEL ERROR ON STATE ESTIMATION FOR

NEUTRONICS APPLICATIONS ∗

Y. Conjungo Taumhas, D. Labeurthre, F. Madiot1, O. Mula2 and T. Taddei3

Abstract. In this paper, we consider the inverse problem of state estimation of nuclear power fields
in a power plant from a limited number of observations of the neutron flux. For this, we use the
Parametrized Background Data Weak approach. The method combines the observations with a
parametrized PDE model for the behavior of the neutron flux. Since, in general, even the most sophis-
ticated models cannot perfectly capture reality, an inevitable model error is made. We investigate the
impact of the model error in the power reconstruction when we use a diffusion model for the neutron
flux, and assume that the true physics are governed by a neutron transport model.

Résumé. Dans ce papier, nous considérons le problème inverse d’estimation d’état du champ de
la puissance dans un coeur de réacteur nucléaire à partir d’un nombre limité d’observations du flux
de neutrons. Pour cela, nous utilisons l’approche Parametrized Background Data Weak. La méthode
combine les observations avec un modèle d’EDP paramètrée pour le comportement du flux de neutrons.
Puisque, en général, même le plus sophistiqué des modèles ne peut représenter parfaitement la réalité,
une erreur inévitable de modélisation est commise. Nous investiguons l’impact de l’erreur du modèle
dans la reconstruction de la puissance en utilisant un modèle de diffusion pour le flux de neutron, et
en supposant que la vraie physique est gouvernée par un modèle de transport de neutron.

Introduction

In the field of nuclear engineering, numerical methods play a crucial role at several stages: they are involved
in important assessments and decisions related to design, safety, energy efficiency, and reactor loading plans. In
this paper, we focus on the task of providing real time information about the spatial distribution of the nuclear
power generated by a nuclear reactor from a limited number of measurement observations. We combine this
data with physical models in order to provide a complete spatial reconstruction of the power field. This task is
a state estimation problem, and we work with the Parametrized Background Data Weak (PBDW), originally
introduced in [1]. The method has the appealing feature of providing very fast reconstructions by leveraging
techniques from model order reduction of parametric Partial Differential Equations (PDEs). We refer to [2–5]
for theoretical analysis of the method, optimal recovery results and nonlinear extensions. A recent overview
may be found in [6].

The main ideas of the above state estimation methodology have been applied to the field of nuclear physics
for applications connected to neutronics (see [7–9]). We could also cite other works such as [10–14] which study
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the forward reduced modeling problem for neutronics (compared to these works, note that there is a salient
difference in the nature of the task that we consider, which is inverse state estimation). In this paper, we again
consider neutronics but our goal is to study the impact of inaccuracies in the physical model that is involved
in the reconstruction algorithm, and which is often assumed to perfectly describe reality. This assumption goes
beyond the present application on neutronics but studying it for this particular topic has the advantage that we
have two very well identified models with different levels of accuracy, thereby allowing to examine synthetically
what one can expect when working in a real application scenario.

In neutronics, the most accurate physical model is the so-called neutron transport equation which describes
the evolution of the neutronic population in a reactor core by expressing it in the form of a balance between
produced and lost neutrons [15]. This model is often approximated at the reactor core scale by a neutron
diffusion model to save computing time. This is why in this work, we explore the impact of model inaccuracies
by applying a reconstruction based on a diffusion model for the neutron flux, and then assuming that the true
physical system is governed by a neutron transport model.

The paper is organized as follows. Section 1 is devoted to presenting inverse state estimation problems and
the PBDW method. Section 2 details the application of the methodology to the reconstruction of nuclear power.
Section 3 provides some numerical results.

1. Inverse State Estimation with PBDW

In this section, we introduce the problem of state estimation, and the Parametrized Background Data Weak
method which combines measurement observations and reduced models from parametric PDEs. We refer the
reader to [6] for an overview of inverse problem algorithms using these elements.

Let R be a fixed given domain of Rd with dimension d ≥ 1, and let V be a Hilbert space defined over R. In
our application, R will be defined as the nuclear reactor domain. The space is endowed with an inner product
⟨·, ·⟩ and induced norm ∥ · ∥. The choice of V must be relevant for the problem under consideration: typical
options are L2, H1; for pointwise measurements, a Reproducing Kernel Hilbert Space should be considered.

Our goal is to recover an unknown function u ∈ V from m measurement observations

yi = ℓi(u), i = 1, . . . ,m, (1)

where the ℓi are linearly independent linear forms from the dual V ′. Note that we have assumed that experimen-
tal observations are perfect; however, the methodology could be extended to deal with noisy measurements (see,
e.g., [16–18]). In practical applications, each ℓi models a sensor device which is used to collect the measurement
data ℓi(u). In the applications that we present in our numerical tests, the observations come from sensors for
the neutron flux which are placed in the reactor.

We denote by ωi ∈ V the Riesz representers of the ℓi. They are defined via the variational equation

⟨ωi, v⟩ = ℓi(v), ∀v ∈ V.

Since the ℓi are linearly independent in V ′, so are the ωi in V and they span an m-dimensional space

Wm = span{ω1, . . . , ωm} ⊂ V.

When there is no measurement noise, knowing the observations yi = ℓi(u) is equivalent to knowing the
orthogonal projection

ω = PWm
u. (2)

In this setting, the task of recovering u from the measurement observation ω can be viewed as building a recovery
algorithm

A :Wm 7→ V

such that A(PWm
u) is a good approximation of u in the sense that ∥u−A(PWm

u)∥ is small.
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Recovering u from the measurements PWmu is a very ill-posed problem since V is generally a space of very
high or infinite dimension so, in general, there are infinitely many v ∈ V such that PWmv = ω. It is thus
necessary to add some a priori information on u in order to recover the state up to a guaranteed accuracy. In
the following, we work in the setting where u is a solution to some parameter-dependent PDE of the general
form

P(u, µ) = 0,

where P is a differential operator and µ is a vector of parameters that describe some physical property and
belong to a given set D ⊂ Rp. For every µ ∈ D, we assume that the PDE has a unique solution u = u(µ) ∈ V .
Therefore, our prior on u is that it belongs to the so-called solution manifold

M := {u(µ) ∈ V : µ ∈ D}. (3)

In practical applications, the PDE model P might not be known exactly or might be too expensive to evaluate:
we should thus rely on a surrogate approximate model to perform state estimation.

Performance Benchmarks: The quality of a recovery mapping A is quantified in two ways:

• If the sole prior information is that u belongs to the manifold M, the performance is usually measured
by the worst case reconstruction error

Ewc(A,M) = sup
u∈M

∥u−A(PWm
u)∥ . (4)

• In some cases u is described by a probability distribution p on V supported on M. This distribution
is itself induced by a probability distribution on D that is assumed to be known. When no information
about the distribution is available, usually the uniform distribution is taken. In this Bayesian-type
setting, the performance is usually measured in an average sense through the mean-square error

E2
ms(A,M) = E

(
∥u−A(PWm

u)∥2
)
=

∫
V

∥u−A(PWm
u)∥2dp(u) , (5)

and it naturally follows that Ems(A,M) ≤ Ewc(A,M).

PBDW algorithm: In this work, we resort to the Parametrized-Background Data-Weak algorithm (PBDW,
[1]) to estimate the state u. Other choices would of course be possible but the PBDW algorithm is relevant for
the following reasons:

• Simplicity and Speed: It is easily implementable and it provides reconstructions in near-real time.
• Optimality: It has strong connections with optimal linear reconstruction algorithms as has been
studied in [4, 19].

• Extensions: If required, the algorithm can easily be extended to enhance its reconstruction performance
(see [5, 20]). In particular, it is shown in [5] that piecewise PBDW reconstruction strategy can deliver
near-optimal performance. The PBDW algorithm can also be easily adapted to accommodate noisy
measurements (see [16,17]) and some easy-to implement extension to mitigate the model error exist (in
the following however, we assume the PDE model is perfect for the sake of simplicity).

Since the geometry of M is generally complex, optimization tasks posed on M are difficult (lack of convexity,
high evaluation costs for different parameters). Therefore, instead of working with M, PBDW works with a
linear (or affine) space Vn of reduced dimension n which is expected to approximate the solution manifold well
in the sense that the approximation error of the manifold

δ(wc)
n := sup

u∈M
dist(u, Vn) , or δ(ms)

n := E
(
dist(u, Vn)

2
)1/2

(6)

decays rapidly if we increase the dimension n. It has been proven in [21] that it is possible to find such hierarchies
of spaces (Vn)n≥1 for certain manifolds coming from classes of elliptic and parabolic problems, and numerous
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strategies have been proposed to build the spaces in practice (see, e.g., [22, 23] for reduced basis techniques
and [21,24] for polynomial approximations in the µ variable).

Assuming that we are given a reduced model Vn with 1 ≤ n ≤ m, the PBDW algorithm

A(pbdw)
m,n :Wm → V

gives for any ω ∈Wm a solution of

A(pbdw)
m,n (ω) ∈ argmin

u∈ω+W (R)⊥
dist(u, Vn). (7)

The minimizer is unique as soon as n ≤ m and β(Vn,Wm) > 0, which is an assumption to which we adhere in
the following. The quantity β is defined as follows. For any pair of closed subspaces (E,F ) of V , β(E,F ) is
defined as

β(E,F ) := inf
e∈E

sup
f∈F

⟨e, f⟩
∥e∥ ∥f∥

= inf
e∈E

∥PF e∥
∥e∥

∈ [0, 1]. (8)

We can prove that A
(pbdw)
m,n is a bounded linear map from Wm to Vn ⊕ (Wm ∩ V ⊥

n ).
In practice, solving problem (7) boils down to solving a linear least squares minimization problem whose

cost is essentially of order n2 + m, and we can compute β(Vn,Wm) by finding the smallest eigenvalue of an
n × n matrix. We refer, e.g., to [6, Appendix A, B] for details on how to compute these elements in practice.
It follows that, since in general m is not very large, if the dimension n of the reduced model is moderate, the
reconstruction with (7) can take place in close to real-time.

For any u ∈ V , the reconstruction error is bounded by

∥u−A(pbdw)
m,n (ω)∥ ≤ β−1(Vn,Wm)∥u− PVn⊕(Wm∩V ⊥

n )u∥ ≤ β−1(Vn,Wm)∥u− PVnu∥, (9)

where we have omitted the dependency of the spaces on R in order not to overload the notation, and we will
keep omitting this dependency until the end of this section. Depending on whether Vn is built to address the
worst case or mean square error, the reconstruction performance over the whole manifold M is bounded by

e(wc, pbdw)
m,n := Ewc(A

(pbdw)
m,n ,M) ≤ β−1(Vn,Wm) max

u∈M
dist(u, Vn ⊕ (V ⊥

n ∩Wm)) ≤ β−1(Vn,Wm) δ(wc)
n , (10)

or

e(ms, pbdw)
m,n := Ems(A

(pbdw)
m,n ,M) ≤ β−1(Vn,Wm)E

(
dist(u, Vn ⊕ (V ⊥

n ∩Wm))2
)1/2

≤ β−1(Vn,Wm) δ(ms)
n . (11)

Note that β(Vn,Wm) can be understood as a stability constant. It can also be interpreted as the cosine of the
angle between Vn and Wm. The error bounds involve the distance of u to the space Vn ⊕ (V ⊥

n ∩Wm) which
provides slightly more accuracy than the reduced model Vn alone. This term is the reason why it is sometimes
said that the method can correct model error to some extent. In the following, to ease the reading we will write
errors only with the second type of bounds (11) that do not involve the correction part on V ⊥

n ∩Wm.
An important observation is that for a fixed measurement space Wm (which is the setting in our numerical

tests), the error functions

n 7→ e(wc, pbdw)
m,n , and n 7→ e(ms, pbdw)

m,n

reach a minimal value for a certain dimension n∗wc and n
∗
ms as the dimension n varies from 1 to m. This behavior

is due to the trade-off between:

• the improvement of the approximation properties of Vn as n grows (δ
(wc)
n and δ

(ms)
n → 0 as n grows)

• the degradation of the stability of the algorithm, given here by the decrease of β(Vn,Wm) to 0 as n→ m.
When n > m, β(Vn,Wm) = 0.
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As a result, the best reconstruction performance with PBDW is given by

e
(wc, pbdw)
m,n∗

wc
= min

1≤n≤m
e(wc, pbdw)
m,n , or e

(ms, pbdw)
m,n∗

ms
= min

1≤n≤m
e(ms, pbdw)
m,n .

Noise and Model Error: To account for measurement noise and model bias in the above analysis, let us
assume that we get noisy observations ω̃ = ω + η with ||η|| ≤ εnoise. Suppose also that the true state u does
not lie in M but satisfies dist(u,M) ≤ εmodel. We can prove that the error bound (9) should be modified into

∥u−A(pbdw)
m,n (ω̃)∥ ≤ β−1(Vn,Wm)(∥u− PVn

u∥+ εnoise + εmodel).

Thus (10) and (11) become

e(wc, pbdw)
m,n := Ewc(A

(pbdw)
m,n ,M) ≤ β−1(Vn,Wm) (δ(wc)

n + εnoise + εmodel), (12)

and

e(ms, pbdw)
m,n := Ems(A

(pbdw)
m,n ,M) ≤ β−1(Vn,Wm) (δ(ms)

n + εnoise + εmodel). (13)

Note that the estimation accuracy benefits from decreasing the model error, and the noise. Since both errors
have the same additive effect on the reconstruction accuracy, model error could be understood as measurement
error and vice-versa. However, since the underlying physical reasons leading to model and measurement error are
entirely different, it is preferable to clearly keep both concepts separately. Note further that the computational
complexity of the method is not affected by these errors. This is in contrast to Bayesian methods for which
small noise levels induce computational difficulties due to the concentration of the posterior distribution.
Sensor modeling error: Another error that can occur comes from our choice of the observation functions ωi

which are built to mimic the response of the sensor devices. Suppose that we work with imperfect functions
ω̃i that deviate from the exact one ωi with ∥ωi − ω̃i∥ ≤ ρ for some ρ > 0. Then noiseless observations can be
written as

yi = ℓi(u) = ⟨ωi, u⟩ = ⟨ω̃i, u⟩+ ⟨ωi − ω̃i, u⟩ .
The right hand side tells us that by working with the inexact ω̃i, we are introducing a term of noise which
is ⟨ωi − ω̃i, u⟩. The noise has level ρ∥u∥. It follows that working with an inexact representation of the sensor
response can be understood as introducing additional noise to the observations.

2. Application to the reconstruction of nuclear power

In this work, we apply the above general framework to reconstruct the nuclear power P generated in a nuclear
reactor core defined on a convex domain R. The power P is a real-valued function in R, P : R → R+, and in
the following we reconstruct it by viewing it as a function in the space

V = L2(R).

The nuclear power P we want to rebuild always comes from the neutron transport model. However, the
spaces used to reconstruct P will be divided in two cases. One space is made up of solutions of the transport
model while the other is made up of solutions of the diffusion model as discussed in the following sections.

2.1. The neutron transport model

We assume that the reactor is in a stationary state where the neutron population ψ, usually called the angular
flux, depends on (r, ω,E), namely the spatial position r ∈ R ⊂ Rd, the direction of propagation ω ∈ Sd where
Sd is the unit sphere of Rd, and the kinetic energy E ∈ R+. We work with a multi-group approach where we
consider a discrete set of energies EG < · · · < E0, and we denote

ψ(r, ω, [Eg, Eg−1]) := ψg(r, ω), ∀(r, ω) ∈ R× Sd, ∀g ∈ {1, . . . , G}.
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With this notation, the neutron transport equation is a generalized eigenvalue problem in which we search
for a multigroup flux ψ = (ψg)Gg=1, and a generalized eigenvalue λ ∈ C∗ (see [25]){

Lgψg(r, ω) = Hgψ(r, ω) + λF gψg(r, ω) in R× S2, ∀g ∈ {1, . . . , G}
ψ(r, ω) = 0 on ∂Γ− := {(r, ω) ∈ ∂R× Sd : n(r) · ω < 0},

(14)

where

Lgψg(r, ω) := (ω · ∇+Σg
t (r))ψ

g(r, ω) is the advection operator,

Hgψ(r, ω) :=

G∑
g′=1

∫
S2
Σg′→g

s (r, ω′ · ω)ψg′
(r, ω′)dω′ is the scattering operator,

F gψ(r, ω) :=
χg(r)

4π

G∑
g′=1

(νΣf )
g′
(r)

∫
S2
ψg′

(r, ω)dω is the fission operator.

In the listed terms, Σg
t (r) denotes the total cross-section and Σg′→g

s (r, ω′ ·ω) is the scattering cross-section from
energy group g′ and direction ω′ to energy group g and direction ω, Σg

f (r) is the fission cross-section, νg(r) is

the average number of neutrons emitted per fission and χg(r) is the fission spectrum. We suppose that all the
coefficients are measurable bounded functions of their arguments.

Under certain conditions (which we assume to be satisfied in the following), the eigenvalue λmin with the
smallest modulus is simple, real and strictly positive. We refer to [26, Theorem 2.2] for the sketch of the proof
detailed in [27, Theorem 2.1.1, p 92]. The associated eigenfunction ψ belongs to the Hilbert space W 2(R)G

where W 2(R × S2) = {ψ ∈ L2(R × S2) s.t. ω · ∇ψ ∈ L2(R × S2)}, is also real and positive at almost every
(x, ω) ∈ R × S2. With this model, once the neutron flux is computed by solving (14) numerically, the nuclear
power is given by

P (r) :=

G∑
g′=1

(κΣf )
g′
∫
S2
ψg′

(r, ω) dω, ∀r ∈ R a.e,

where κg ∈ L∞(R) is the released energy per fission and since ψ ∈ (W 2(R× S2))G, we have that P ∈ V .

2.2. The neutron diffusion equations

In this work, the neutron flux ϕ is modeled with the two-group neutron diffusion equation with null flux
boundary conditions. So ϕ has two energy groups ϕ = (ϕ1, ϕ2). Index 1 denotes the high energy group and 2
the thermal energy one. The flux is the solution to the following eigenvalue problem (see [15])

Find (λ, ϕ) ∈ C×
(
H1(R)×H1(R)

)
such that for all x ∈ R,{

−∇
(
D1(r)∇ϕ1(r)

)
+Σ1

a(r)ϕ
1(r)− Σ2→1

s,0 (r)ϕ2(r) = λ
(
χ1(r)(νΣf )

1(r)ϕ1 + χ1(r)(νΣf )
2(r)ϕ2(r)

)
−∇

(
D2(r)∇ϕ2(r)

)
+Σ2

a(r)ϕ
2(r)− Σ1→2

s,0 (r)ϕ1(r) = λ
(
χ2(r)(νΣf )

1(r)ϕ1(r) + χ2(r)(νΣf )
2(r)ϕ2(r)

)
,

(15)
with

Dg(r)∇ϕg(r) · n+
1

2
ϕg(r) = 0 on ∂R, for g = 1, 2.

The coefficients involved are the following:

• Dg(r) is the diffusion coefficient of group g with g ∈ {1, 2}.
• Σg

a(r) is the macroscopic absorption cross section of group g.

• Σg′→g
s,0 (r) is the macroscopic scattering cross section of anisotropy order 0 from group g′ to g.

• χg(r) is the fission spectrum of group g.

We assume that they are either constant of piecewise constant in R so we can view them as functions from
L∞(R).
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The generated power is

P := (κΣf )
1ϕ1 + (κΣf )

2ϕ2, (16)

and since ϕ1 and ϕ2 ∈ H1(R), we have P ∈ V .
We next make some comments on the coefficients and recall well-posedness results of the eigenvalue problem

(15). First of all, the first four coefficients (Dg, Σg
a, Σ

1→2
s,0 , Σ2→1

s,0 and (νΣf )
g) might depend on the spatial

variable. In the following, we assume that they are either constant or piecewise constant so that our set of
parameters is

µ = {D1, D2,Σ1
a,Σ

2
a,Σ

1→2
s,0 , (νΣf )

1, (νΣf )
2, χ1, χ2}. (17)

By abuse of notation, in (17) we have written Dg to denote the set of values that this coefficient might take in
space and similarly for the other parameters.

Under some mild conditions on the parameters µ, the eigenvalue λmin with the smallest modulus is simple,
real and strictly positive (see [25, Chapter XXI]). The associated eigenfunction ϕ is also real and positive at
almost every point x ∈ R and it is what is classically called the flux. In neutronics, it is customary to work
with the inverse of λmin, which is called the multiplication factor

keff := 1/λmin. (18)

Therefore keff is not a parameter in our setting because, for each value of the parameters µ, keff is determined
by the solution to the eigenvalue problem.

If the parameters of our diffusion model range in, say,

D1 ∈ [D1
min, D

1
max], D

2 ∈ [D2
min, D

2
max], . . . , χ

2 ∈ [χ2
min, χ

2
max],

then

D := [D1
min, D

1
max]× · · · × [χ2

min, χ
2
max], (19)

and the set of all possible states of the power is given by

Mdiff = {P (µ) : µ ∈ D} ⊂ V, (20)

which is the manifold of solutions of our problem.

3. Numerical Examples

3.1. Description of the test case and the numerical solver

The test-case: We consider Model 1 Case 1 of the well-known Takeda neutronics benchmark [28] to build our
test case. The geometry of the core is three-dimensional and the domain is {(x, y, z) ∈ R3, 0 ≤ x ≤ 25 cm; 0 ≤
y ≤ 25 cm; 0 ≤ z ≤ 25 cm}. This test is defined with G = 2 energy groups and isotropic scattering and we set
κg = 1 MeV for g = 1, 2. The reactor core geometry is depicted in Figure 1. In the following, we implicitly
refer to the cross-sections and the other coefficients of this test case. Our goal is to reconstruct in real time the
spatial power field of the reactor. We assume that the neutron transport equation perfectly describes reality,
and the set of all possible states is given by the manifold

Mtr = {P tr(µ) : µ ∈ D} ⊂ V.

The set of solutions of the neutron diffusion equation is

Mdiff = {P diff(µ) : µ ∈ D} ⊂ V.

It is an imperfect description of the true states given by Mtr.
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Reflector
Core
Void

Reflexion

Reflexion

Vacuum

Vacuum

Figure 1. Cross-sectional view of the core (z = 0 cm).

The parameter set µ from equation (17) is generated by the mapping

µ : [0.8, 1]
5 ⊂ R5 → R9

α 7→ µ(α)

(
D1

α1
,
D2

α2
, α1Σ

1
a, α2Σ

2
a, α3Σ

1→2
s,0 , α4(νΣf )

1, α5(νΣf )
2, χ1, χ2

)
.

We can thus view the parameter set either as the 5 dimensional tensorized subset [0.8, 1]
5
where α ranges, or

as a 5-dimensional surface manifold from R9 where the 9 coefficients µ of the neutronic model live.
We work with m = 54 measurements observations that are placed uniformly in the reactor. They are defined

as local averages over small subdomains Ri ⊂ R

ωi(x) =
1

|Ri|
1Ri

(x), ∀x ∈ R, i = 1, . . . ,m. (21)

We compare two cases:

(1) Perfect physical model: We apply PBDW using reduced models from the transport manifold which
represents the true reality in our experiments.

(2) Imperfect physical model: We assume that a perfect model is out of reach and we use the diffusion
manifold. The reconstruction will thus be affected by a model bias.

The solver: To generate the snapshots and the reduced models, we have worked with MINARET [29], a
deterministic solver for reactor physics calculations developed in the framework of the APOLLO3® code [30].
MINARET can solve either the multigroup neutron transport or diffusion problem from Equations (14) and
(15). The numerical scheme to compute the multiplication factor keff is based on the inverse power method (see,
e.g., [15]). MINARET uses the SN discrete ordinate method to deal with the angular variable, and Discontinuous
Galerkin Finite Elements to solve spatially the neutron transport equation [31]. It applies the Symmetric Interior
Penalty Galerkin method (SIPG) [32, Chapter 4] for the discretization of the neutron diffusion equation (15). In
all cases, the solver uses cylindrical meshes devised by extrusion of a 2D triangular mesh. For our simulations,
we work with a level-symmetric formula of order N = 8 for the SN quadrature, and the spatial approximation
uses discontinuous P1 finite elements of a uniform mesh. The physical output power map is post-processed on
an approximation space of dimension Nh = 540 (Nh degrees of freedom).
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3.2. Case 1: Reconstruction with a perfect physical model

Here we assume that we have access to a perfect description of the physics, and we work with the neutron
transport manifold Mtr.

In order to create a reduced space Vn of small dimension n≪ Nh, we apply a Proper Orthogonal Decompo-
sition (POD) based on the training set

Ptraining = {P tr(µ(α)), α ∈ {0.8, 0.9, 1}5} ⊂ Mtr

of power maps obtained from solutions of the transport neutron equations, also called snapshots.

We measure the relative approximation error δ̃
(wc)
n as defined in Equation (6). For this, we define a collection

of power maps of reference

Ptest = {P tr(µ(α)) , α ∈ {0.85, 0.95}5}. (22)

Figure 2 shows that the training space is well approximated with a few POD modes. For n ≥ 30, the relative
error between one power map and its projection onto Vn is smaller than 10−6.

Figure 2. Relative approximation error δ̃
(wc)
n of the transport manifold Mtr with respect to

the dimension n of the reduced space. Here the reduced space is a POD computed using the
same manifold Mtr.

We next study the ability to reconstruct the power field with measurement observations, and the PBDW
method, as Figure 3 shows in the 3D space. For this, we compute for 1 ≤ n ≤ m:

• The relative reconstruction error given by ẽ
(wc, pbdw)
m,n = max

u∈M̃tr

∥u−A
(pbdw)
m,n (ω)∥
∥u∥

,

• The upper bound of the reconstruction error given by β−1(Vn,Wm)δ̃
(wc)
n , as given in Equation (11).

Figure 4 shows that the upper bound is about two orders of magnitude above the actual reconstruction error.
This gap is expected to decrease if we use more functions in the test set. The second observation is that the
reconstruction accuracy reaches a minimum for a dimension n∗ ≈ 25. If we work with the optimal dimension n∗,
an important result is that we can recover the power field from measurement observations at almost the same
accuracy (≈ 10−6, see Figure 2) as the one given by the orthogonal projection onto Vn (to see this, compare the
errors at n∗ in Figures 2 and 4).
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Figure 3. 3D representation of the power map P tr(µ(α)) with α = {0.85}5 (upper left), the
algebraic reconstruction error by PBDW (upper right) and the m = 54 measurements

The behavior of the reconstruction error with the dimension n is connected to a loss of stability illustrated in
Figure 5. It warns about a compromise to find between the approximation error of the manifold and the stability
in order to optimize the accuracy of the power map reconstruction. One strategy to mitigate stability problems
is to find locations for the sensor measurements that span spaces Wm maximizing the value of β(Vn,Wm) (see,
e.g., [33]).

3.3. Case 2: Reconstruction of the power map from diffusion snapshots

We now consider the diffusion neutron equations as the best available model while the true states are given
by the neutron transport model. They are therefore members of Mtr.

Similarly as done in Section 3.2, we apply a POD over a collection

Ptraining = {P diff(µ(α)) : α ∈ {0.8, 0.9, 1}5} ⊂ Mdiff,

to create a reduced space Vn of dimension n≪ Nh. The main difference lies in the fact that the snapshots are
obtained from the neutron diffusion equations, as we consider that the transport model cannot be computed in
this section.
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Figure 4. Relative reconstruction error ẽ
(wc, pbdw)
m,n (in blue) and error estimate

β(Vn,Wm)−1δ̃
(wc)
n (in yellow) with respect to the dimension n of the reduced space

Figure 5. Stability constant β(Vn,Wm) with respect to the dimension n of the reduced space

Figure 6 shows that the approximation error of the transport manifold Mtr is less accurate than in the
previous case due to the bias between the two models. Typically, for n = 50, we approximate the manifold
at the accuracy of 6 × 10−3, whereas the approximation with the transport model was about 103 times better
(compare Figure 6 and Figure 4). Therefore, the reconstruction error will have a similar order of magnitude to
those observed for the approximation error.

Similarly, we compute for 1 ≤ n ≤ m:

• The relative reconstruction error given by ẽ
(wc, pbdw)
m,n = max

u∈M̃tr

∥u−A
(pbdw)
m,n (ω)∥
∥u∥

,
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Figure 6. Relative approximation error δ̃
(wc)
n of the transport manifold Mtr with respect to

the dimension n of the reduced space. Here the reduced space is a POD computed using the
diffusion manifold Mdiff.

• The upper bound of the reconstruction error given by β−1(Vn,Wm)δ̃
(wc)
n , as given in Equation (11).

As done before, the PBDW reconstruction procedure is then performed by extracting measurements over the
collection power maps of reference defined in (22). Figure 7 illustrates that the minimum for the reconstruction
error reaches about 1.5× 10−2 for n∗ ≈ 35. The gap between the reconstruction error and its estimate here is
bigger as the stability plays a secondary role. Hence, the reconstruction error is only led by the model bias.

Figure 7. Relative reconstruction error ẽ
(wc, pbdw)
m,n (in blue) and error estimate

β(Vn,Wm)−1δ̃
(wc)
n (in yellow) with respect to the dimension n of the reduced space
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Figures 8 shows that the stability constant presents the same behavior as in the case of Vn built with transport
snapshots.

Figure 8. Stability constant β(Vn,Wm) with respect to the dimension n of the reduced space
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Conclusion of the numerical results and outlook

From the numerical experiments, it follows that the PBDW algorithm can reconstruct data very efficiently
when the physical model is perfect. An interesting fact is that there are optimal values n∗ for the dimension
in the reduced models Vn used in the PBDW algorithm which make the reconstruction with measurement
observations be comparable to the approximation accuracy by projection on Vn (see, e.g., Figures 2 and 4).

In presence of model error, the conclusions are analogous. However, the approximation accuracy by direct
projection is degraded by the presence of the model error as the comparison between Figure 2 and Figure 6
shows. This degradation may be reduced if some snapshots are computed with the transport model. The
selection of these snapshots may be based on a posteriori estimators devised specifically for the model error.

In principle, the PBDW is expected to be able to correct to some extent the model error due to fact that
reconstructions lie in Vn⊕(W ∩V ⊥

n ) and not only in Vn. There, if the model is biased and yields a reduced model
Vn which is not perfectly appropriate, the component (W ∩ V ⊥

n ) is expected to help to correct this inaccuracy.
However, our results tend to indicate that this correction component has a very limited effect in our case. This
may be due to the poor approximation properties of the observation space W , which is, in our case, spanned
by functions that are very localized in space (see equation (21) for the definition of the ωi). This behavior
could be improved by working with parametrized families of spaces such as Reproducing Kernel Hilbert spaces
(see [34]). In that case, we could try to find an appropriate space for which the ωi would better enhance the
final reconstruction quality. Another option would be to consider purely data-driven corrections on top of the
PBDW reconstruction, making use of supervised learning techniques and feed forward neural networks. These
ideas will be the starting point of future works in mitigating the effect model error in state estimation.
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