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a Institut de Neurociències, Universitat Autònoma de Barcelona, Bellaterra 08193, Barcelona, Spain 
b Departament de Bioquímica, Unitat de Bioquímica, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain 
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A B S T R A C T   

The phenotypic transformation of astrocytes in Alzheimer’s disease (AD) is still not well understood. Recent 
analyses based on single-nucleus RNA sequencing of postmortem Alzheimer’s disease (AD) samples are limited by 
the low number of sequenced astrocytes, small cohort sizes, and low number of differentially expressed genes 
detected. To optimize the detection of astrocytic genes, we employed a novel strategy consisting of the locali
zation of pre-determined astrocyte and neuronal gene clusters in publicly available whole-brain transcriptomes. 
Specifically, we used cortical transcriptomes from 766 individuals, including cognitively normal subjects 
(Controls), and people diagnosed with mild cognitive impairment (MCI) or dementia due to AD. Samples came 
from three independent cohorts organized by the Mount Sinai Hospital, the Mayo Clinic, and the Religious Order 
Study/Memory and Aging Project (ROSMAP). Astrocyte- and neuron-specific gene clusters were generated from 
human brain cell-type specific RNAseq data using hierarchical clustering and cell-type enrichment scoring. Genes 
from each cluster were manually annotated according to cell-type specific functional Categories. Gene Set 
Variation Analysis (GSVA) and Principal Component Analysis (PCA) were used to establish changes in these 
functional categories among clinical cohorts. We highlight three novel findings of the study. First, individuals 
with the same clinical diagnosis were molecularly heterogeneous. Particularly in the Mayo Clinic and ROSMAP 
cohorts, over 50% of Controls presented down-regulation of genes encoding synaptic proteins typical of AD, 
whereas 30% of patients diagnosed with dementia due to AD presented Control-like transcriptomic profiles. 
Second, down-regulation of neuronal genes related to synaptic proteins coincided, in astrocytes, with up- 
regulation of genes related to perisynaptic astrocytic processes (PAP) and down-regulation of genes encoding 
endolysosomal and mitochondrial proteins. Third, down-regulation of astrocytic mitochondrial genes inversely 
correlated with the disease stages defined by Braak and CERAD scoring. Finally, we interpreted these changes as 
maladaptive or adaptive from the point of view of astrocyte biology in a model of the phenotypical trans
formation of astrocytes in AD. The main prediction is that early malfunction of the astrocytic endolysosomal 
system, associated with progressive mitochondrial dysfunction, contribute to Alzheimer’s disease. If this pre
diction is correct, therapies preventing organelle dysfunction in astrocytes may be beneficial in preclinical and 
clinical AD.  
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1. Introduction 

‘Reactive’ GFAP-overexpressing astrocytes are found in the vicinity 
of amyloid-β plaques in postmortem brains from patients with Alz
heimer’s disease (AD), in both the autosomal-dominant Alzheimer’s 
disease (ADAD) and the sporadic late-onset (AD) variants, as well as in 
mouse models of ADAD. The robust morphological transformation of 
astrocytes points to major phenotypical and, hence, functional alter
ations in astrocytes in AD (reviewed in (Perez-Nievas and Serrano-Pozo, 
2018)). 

However, despite non-negligible research in the last decade, 
knowledge about phenotypical alterations in human astrocytes from AD 
patients is still limited due, in part, to scarce and conflicting human 
astrocyte-specific omics data. Prior studies include transcriptomics of 
laser-microdissected astrocytes (Sekar et al., 2015; Simpson et al., 
2011), co-expression-based gene clustering of whole-brain AD tran
scriptomes (Zhang et al., 2013), and single-cell RNA sequencing 
(scRNAseq) analyses (Grubman et al., 2019; Mathys et al., 2019). 
Recently, the study of phenotypic changes of astrocytes in AD has been 
approached with network analysis of postmortem immunohistochemical 
data obtained from perusal of the literature (Viejo et al., 2021). 

Laser-microdissected astrocytes either presented an insufficient 
number of differentially-expressed genes (DEG) for pathway analysis 

(Sekar et al., 2015), or normalization anomalies, as suggested by the 
finding that 98% of the DEGs were down-regulated (Simpson et al., 
2011). The problem may lie in the low RNA yields of laser microdis
section, exacerbated by the poor RNA quality after long post-mortem 
intervals. As an alternative to laser microdissection, clustering statistics 
based on gene co-expression identified function-specific gene modules 
using 1647 whole-brain AD transcriptomes (Zhang et al., 2013). Cellular 
localization of modules was established using cell-specific markers, and 
causality between nodes was inferred with Bayesian statistics. Using this 
approach, alterations of glutamate and amino acid metabolism in an 
astrocytic module of 260 genes were discovered to be well-ranked for 
causal relevance in AD, but no further changes were unraveled. 

Finally, although scRNAseq improves the cellular resolution of 
transcriptomics to the point of unraveling populations within a given 
cell-type, two challenges arise in studying astrocytes from postmortem 
brain samples with this technique. One is the low numbers of astrocytes 
per patient being sequenced, which renders astrocytic datasets under
powered (discussed in (Liddelow et al., 2020)). The second challenge is 
to analyze a sufficiently large number of subjects to ensure that patient 
heterogeneity, a critical factor for drug development in AD (Devi and 
Scheltens, 2018), manifests itself. For example, (Mathys et al., 2019) and 
(Grubman et al., 2019) examined only 48 and 12 subjects, respectively, 
including patients and Controls. 

Fig. 1. Workflow for the identification of 
altered astrocytic functions in AD and MCI 
(See Methods for details). 
Step 1–3: Genes from human-brain cortex 
were classified as cell-specific or enriched 
using RNAseq data from cells isolated from 
aged healthy human brain cortices (Step 1), 
the univariate cell-type enrichment τ scoring 
(Step 2), and hierarchical clustering (Step 3). 
Step 4: The astrocytic and neuronal gene 
clusters were manually categorized into 
functions and subfunctions. 
Step 5: Control AD and MCI whole-brain 
transcriptomes from the MtSINAI, MAYO 
and ROSMAP databases were hierarchically 
sorted according to the cell-type specific 
clusters. 
Step 6–7: Alterations of astrocytic and 
neuronal functional categories in AD and 
MCI groups vs Controls were statistically 
established using gene set variation analysis 
(GSVA, Step 6), and principal component 
analysis (PCA, Step 7). 
Step 8: To compare patients with mice, the 
published transcriptome of APP/PS1 astro
cytes was re-analyzed using our functional 
categorization and GSVA. The figure in Step 
1 was created using cell art adapted from 
Servier Medical Art (https://smart.servier. 
com/).   
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The main goal of this study was to extract consensus data of astro
cytic changes from bulk transcriptomic data from three large indepen
dent clinical AD databases, encompassing 766 subjects. ‘Consensus data’ 
was defined as data detected in at least two out of the three databases. 
Identification of astrocyte-specific genes was optimized by taking a 
reverse approach as compared to previous studies: instead of deter
mining a posteriori which self-organized gene modules might be astro
cytic, we localized pre-determined astrocytic gene clusters in whole- 
brain AD transcriptomes with two-dimensional hierarchical clustering. 
The workflow is depicted in Fig. 1. First, we classified brain genes as cell- 
specific or non-specific using RNAseq data from astrocytes, neurons, 
microglia, endothelial cells and oligodendrocytes isolated from aged 
healthy human brains (Zhang et al., 2016), and a combination of two 
algorithms: hierarchical clustering, and a recently proposed univariate 
cell-type enrichment τ scoring (Kryuchkova-Mostacci and Robinson- 
Rechavi, 2017). Second, astrocytic and, for comparison, neuronal 
genes, were manually annotated according to functions. Third, neuronal 
and astrocytic gene clusters were localized in three AD whole-brain 
transcriptomes generated by the Mount Sinai Hospital (MtSINAI) 
(Zhang et al., 2013) the Mayo Clinic (MAYO) (Allen et al., 2016), and the 
Religious Order Study and the Rush Memory and Aging project (ROS
MAP), which also contains subjects diagnosed with MCI (Bennett et al., 
2018). These databases present the advantages of including large co
horts (78–219 subjects), which greatly facilitates the use of multivariate 
systems approaches, and of having been generated by two different 
approaches, microarrays and RNAseq, thus diminishing technique- 
associated bias. Finally, alteration of astrocytic and neuronal func
tional categories in AD and MCI groups vs Controls was statistically 
established using gene set variation analysis (GSVA), and principal 
component analysis (PCA). 

We present the most comprehensive transcriptomic analysis of 
human AD astrocytes to date. As advocated in a recent consensus article 
about reactive astrocytes (Escartin et al., 2021), the impact of pathway 
alterations suggested by omics was interpreted in the context of astro
cyte biology, instead of resorting to simplistic categorizations of astro
cytes as ‘neuroprotective’ or ‘neurotoxic’ from the point of view of 
neurons. In this vein, our analysis points to dysfunction of the endoly
sosomal system/mitochondrion axis as a key driver of the phenotypical 
transformation of reactive astrocytes in AD. 

2. Material & methods 

2.1. Transcriptome datasets 

Cell-type specific RNAseq datasets generated from healthy human- 
brain cortical tissue (Zhang et al., 2016) were downloaded from the 
National Center for Biotechnology Information (NCBI) Gene Expression 
Omnibus (GEO) under the accession number GSE73721. Data were pre- 
aligned to gene symbols by the authors using human genome version 19. 
Data consisted of transcriptomic data from brain cells isolated from 
temporal cortical lobes of juvenile (8–18 years old) and adult (21–63 
years old) non-demented individuals. Transcriptomes from 12 astro
cytic, one neuronal, five oligodendrocytic, three microglial, and two 
endothelial-cell samples from individual patients were included (Sup
plementary file 1, table 2). Principal component analysis (PCA, 
computed in R, R Foundation for Statistical Computing, Vienna, Austria) 
revealed that the transcriptomic data of astrocytes isolated from young 
(<47 years old) and old (>47 years old) were separated along principal 
component 1 (PC1, Supplementary file 1, table 3). Since the goal of the 
study was to identify cell-specific signatures in aged subjects, data from 
young individuals were discarded, retaining a total of six astrocyte 
transcriptomes from 47 to 63-year-old subjects, together with all 11 
transcriptomes from the remaining cell types. A threshold was set for 
gene expression such that a given transcript should present a count >1 in 
reads per kilo base per million mapped reads (RPKM) in at least one 
sample. Genes with no counts >1 were discarded from the analysis. 

11,077 genes were above this threshold (Supplementary file 1, table 4). 
The MtSINAI database containing microarray data of samples from 

the prefrontal cortex of 101 Controls and 129 AD patients obtained from 
the Harvard Brain Tissue Resource Center was downloaded from GEO 
under accession number GSE44770 (Zhang et al., 2013). The Rosetta 
gene identifiers were converted to the corresponding gene symbols using 
the Rosetta/Merck Human 44 k 1.1 microarray platform table under 
accession number GPL4372. When multiple Rosetta identifiers mapped 
to the same gene, the identifier with the greatest variance across samples 
was selected. The MAYO database, which contains data from the tem
poral cortex of 78 Control samples and 82 ADsamples, was downloaded 
from Synapse.org under Synapse ID syn3163039 (Allen et al., 2016). 
The data were downloaded as MayoR
NAseq_RNAseq_TCXCounts_normalized.tsv, pre-aligned to Ensemble 
Gene Identifier. Ensemble Gene IDs were then converted to HGCN gene 
symbols using biomaRt v. 2.32.1 in R. When multiple Ensemble Gene 
IDs mapped to the same gene symbol, the one with greatest variance was 
selected. The ROSMAP database (Bennett et al., 2018) contains data 
from the dorsolateral prefrontal cortex obtained from autopsied non- 
demented individuals or patients diagnosed with AD. The data were 
downloaded from Synapse.org under synapse ID syn8456629 as ROS
MAP_DLPFC_netResidualExpression.tsv. The dataset contained 200 
Control cases, 157 MCI cases, and 219 ADcases. In the MCI group, there 
was no stratification into MCI and MCI-AD. The dataset as posted by the 
authors had been adjusted via voom (mean-variance modelling at the 
observational level) normalization to remove bias associated with batch 
number, RNA integrity, and other data acquisition and processing co- 
variates. Missing transcript values in the dataset were imputed using a 
nearest neighbor averaging method using the impute package in R. 

2.2. Univariate cell-type enrichment score 

To determine the cell-specificity of human genes listed in the brain- 
cell transcriptomics database (Zhang et al., 2016), we used the τ method, 
reported to be particularly robust compared with other scoring ap
proaches to identify tissue specificity of a gene among different mag
nitudes of expression and sizes of datasets (Kryuchkova-Mostacci and 
Robinson-Rechavi, 2017). The τ enrichment score was computed as: 

τ =

∑n

i=1
(1 − x̂i)

n − 1
; x̂i =

xi

max
1≤i≤n

(xi)

where xi is the mean expression of the gene within the ith cell type and n 
is the number of cell types. We then defined the cell type enriched in the 
gene as that with the greatest average expression among all cell types. 
Top τ scores per gene are in Supplementary file 1, table 5. A score of τ ≥
0.8 indicates that the gene is specific for a given cell type, and a score of 
0.8 > τ ≥ 0.6 that the gene is enriched in that cell type. For simplicity, 
henceforth we refer to genes with τ ≥ 0.6 as ‘enriched’, although note 
that the ‘enriched’ pool also includes specific genes. Finally, τ < 0.6 
indicates that the gene is non-specific, although it is assigned to the cell 
type with the greatest average expression. 

2.3. Hierarchical clustering 

The cell-type specific data from (Zhang et al., 2016) (Supplementary 
file 1, table 4) were z-scored for each gene across samples. Gene and 
sample hierarchical clustering were conducted using a Euclidian dis
tance measure, and the average agglomeration method in R. Hierar
chical clustering offers a clear visualization of data, facilitating a 
transparent analysis. A recent ranking of gene-module detection 
methods shows that agglomerative hierarchical clustering and WGCNA 
perform similarly (Saelens et al., 2018). It is worth nevertheless 
emphasizing that the primary statistical tool used in the present study 
was not hierarchical clustering, but gene set variation analysis (GSVA, 
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see below). In hierarchical clustering, gene clusters associated with 
neurons and astrocytes were determined by cutting the dendrogram at a 
height of 3.76 to achieve that at least 70% of the genes in the neuron and 
astrocyte clusters have the highest τ for that cell type (results from hi
erarchical clustering are in Supplementary file 1, tables 6–8). Corre
sponding cell-specific gene clusters in whole tissue data sets (MtSINAI, 
MAYO, and ROSMAP) were identified by sorting the genes of whole- 
tissue data according to cell-type specific gene clusters. Whole-tissue 
subject samples (columns) were then clustered within each Control, 
MCI, or AD cohort (Euclidian distance and Ward.D2 agglomeration) to 
identify molecularly defined sub-groups of samples. 

2.4. Data normalization within each cell type 

A recognized caveat of bulk transcriptomic analyses is that DEG may 
reflect changes in cell-type composition rather than real changes in cell- 
specific transcriptomes. This is relevant to AD because there is neuronal 
death (Gomez-Isla et al., 1997), and microglial proliferation (Marlatt 
et al., 2014). Since neurons are the most predominant cell type in the 
brain (40% in the human neocortex (Pelvig et al., 2003)), a decrease of 
the neuronal pool, with no change in the astrocytic pool (Marlatt et al., 
2014), arguably results in the artificial up-regulation of astrocyte genes. 
Several approaches have been employed to correct for cellular compo
sition, such as the use of the so-called ‘high fidelity’ genes primarily 
expressed by one cell type (Kelley et al., 2018). Here, we reasoned that 
reliance on a subset of highly cell-specific genes could lead to artifacts 
should their expression change in the course of the disease, because 
there is no assurance that they are stably expressed as house-keeping 
genes. Likewise, recent de-convolution approaches such as CIBER
SORTx and MuSiC proposed to identify cell type composition and 
contribution to bulk RNAseq or microarray datasets (Steen et al., 2020; 
Wang et al., 2019) did not work well with our data, for we did not find 
strong agreement among methods with regards to neuron and astrocyte 
densities in Control brains, and changes thereof in AD, when applied to 
our datasets. Therefore, we elected to remove gross variance due to 
changes in cell density by variance stabilizing normalization using 
limma in R, which assumes a so-called affine transformation of gene 
expression within each sample, consisting of an offset and scaling factor 
selected to minimize inter-sample variance. What variance stabilizing 
normalization does is to bring genes from different samples onto the 
same scale in a manner that is blind to the sample group/identity. 
Removal of gross variance is a well-established approach to normalize 
transcriptomic data, based on the premise that only a negligible pro
portion of genes change their expression following perturbations (Lin 
et al., 2008). We reasoned that a bulk shift in the distribution of gene 
expressions with respect to zero in a given cell population reflected 
changes in the proportion of that cell type among brain cell populations. 
Thus, correcting gene expression according to such shift would unmask 
the real changes in gene expression. Gross variance was separately 
corrected for astrocytic and neuronal gene clusters because their 
respective raw data presented an opposite shift (positive and negative) 
in the distribution of differential gene expressions in Controls vs AD 
samples (Results). 

2.5. Cell function annotation and gene set variation analysis 

Neuronal and astrocytic gene clusters generated by combining τ 
(Kryuchkova-Mostacci and Robinson-Rechavi, 2017) and hierarchical 
clustering of transcriptomes from cells from healthy brains (Zhang et al., 
2016), were organized into functional categories and subcategories 
(Supplementary file 2). Categories were manually curated by one expert 
and cross-validated by another expert using information from Gene
Cards, perusal of Medline and PubMed, and open-source platforms such 
as GO, KEGG, and Reactome. Manual curation was indispensable for two 
reasons. First, over 60% of the genes in the astrocytic cluster were not 
annotated in open-source platforms. This means a substantial loss of 

usable gene data if we only relied on genes annotated in open-source 
platforms. Second, annotation in such platforms represents ‘canonical’ 
pathways with little consideration for the fact that different CNS cell 
types are molecularly and functionally distinct (Zhang et al., 2016). This 
limitation is critical for astrocytes. For example, unlike neuronal com
partments such as ‘synapses’, ‘dendrites’ and ‘spines’, a highly special
ized astrocytic compartment termed ‘perisynaptic astrocyte processes’ 
(PAP), concentrating RNA transcripts related to glutamate and GABA 
metabolism, energy metabolism, as well as the ribosomal machinery to 
perform local RNA translation (Sakers et al., 2017), is not a category in 
current KEGG and GO databases. 

The genes were organized into general categories and subcategories 
using a mixed set of criteria including general pathways (e.g., carbo
hydrate metabolism or amino acid metabolism) and subcellular com
partments with a clear functional specialization (e.g., mitochondria, 
peroxisome, or lysosome). Such flexibility allowed us to optimize gene 
inclusion, while generating gene sets with enough genes for statistical 
purposes. Although most genes were assigned to only one category, 
around 100 genes were assigned to two categories (in blue, Supple
mentary file 2, tab ‘astrocyte cluster 4’). Most of those genes (96) were 
PAP genes, because we reasoned that their presence in PAP does not 
exclude relevance in other subcellular compartments. For example, 
ALDOC and ACO2 are, plausibly, ubiquitous enzymes relevant for gen
eral glycolysis and mitochondrial Tricarboxylic Acid (TCA) cycle 
throughout the cell. Likewise, genes related to ‘TNFalpha signaling’ are 
in ‘stress responses’/’cytokines’ as well as in ‘gliotransmission’, for 
TNFalpha has been described to modulate glutamate exocytosis (San
tello et al., 2011). Overlap between groups was less than 5% except for 
‘PAP and gliotransmission’: 17.8% genes in ‘gliotransmission’ were in 
‘PAP’, and 10.3% of PAP genes were in ‘gliotransmission’. For neurons, 
each gene was assigned to only one category. 

Using our novel annotation database, the GSVA package in R was 
used to identify the enrichment of each gene set across all samples. 
GSVA is a generalized gene set enrichment method that detects varia
tions of pathway activity over a sample population in an unsupervised 
manner (Hanzelmann et al., 2013). Statistical differences in enrichment 
scores for each gene set between subject groups were computed by 
comparing the true differences in means against a null distribution ob
tained by permuting the gene labels and re-computing the GSVA 1000 
times. False discovery rate adjusted p-values (qFDR) were computed 
using the method of Benjamini & Hochberg (Hanzelmann et al., 2013). 
Gene sets with FDR adjusted p value qFDR <0.05 were considered 
significant. 

2.6. Relationships between clinical stages and GSVA scores 

The ROSMAP dataset includes Braak and CERAD (Consortium to 
Establish a Registry for Alzheimer’s disease) pathological scores, APOE 
genotype, and sex for each sample. To determine the relationship be
tween these phenotypes and the GSVA enrichment scores for each 
sample, we used the stats R package to fit linear models between 
enrichment scores and either Braak or CERAD for each gene set. The 
MAYO and MtSINAI databases do not include supplementary informa
tion per subject other than the clinical classification. 

2.7. Figure preparation 

The graphical abstract was made using BioRender. 

3. Results 

3.1. Hierarchical clustering identifies groups of cell-type specific genes 

To identify human astrocyte-specific genes, we calculated the metric 
τ (Kryuchkova-Mostacci and Robinson-Rechavi, 2017) for every gene in 
the transcriptome data from isolated brain cells generated by Zhang 
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et al., 2016 (Supplementary file 1, table 5 ‘τ scores’). Cell type-specific 
(τ ≥ 0.8) and cell type-enriched (τ  ≥ 0.6) genes represented 30% and 
60% of the 11,077 genes, respectively. 

In parallel, because cell-specific functions are arguably performed by 

co-expressed genes (Weirauch, 2011), we reasoned that cell-type spe
cific genes would be identified by clustering analysis. Thus, we applied 
hierarchical clustering (Methods) to the cell-type specific datasets, 
generating 194 clusters that contained 1–1651 genes (Fig. 2A; 

Fig. 2. Identification of cell-specific gene 
clusters in whole-brain transcriptomes by 
two-step hierarchical clustering. 
A. Hierarchical clustering was performed on 
transcriptomes of brain cell populations 
isolated from individual healthy subjects. 
Each column is a sample from a single sub
ject and each row is a z-scored gene. The 
squares annotate the number and location of 
clusters with the highest z scores, that 
coincide with the highest τ scores for a given 
cell type (cluster information in Supple
mentary file 1, tables 6–8). The turquoise 
and purple squares are the main astrocytic 
and neuronal clusters (cluster # 4 and clus
ter # 13), respectively. Microglia, oligoden
drocyte, and endothelial-cell clusters are 17, 
164 and 5, respectively (shown in yellow). 
Clusters 30, 15, 10 and 116 are highly 
enriched in microglial or neuronal genes, 
but fall below the criteria established for 
cell-specificity (Methods). 
B. Whole-brain transcriptomes from indi
vidual subjects of Control (blue), MCI 
(beige) and AD (red) groups from MAYO, 
ROSMAP, MtSINAI were hierarchically 
clustered. The rows from the cell-type clus
tering in A. were kept fixed to identify cell- 
specific clusters. The figure was generated 
with raw data before correction for cell 
composition. The clustering segregated all 
groups with the same clinical diagnosis into 
at least 2 subgroups (defined as 1 and 2) 
showing distinct changes in gene-expression. 
(For interpretation of the references to 
colour in this figure legend, the reader is 
referred to the web version of this article.)   
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Supplementary file 1, table 6 ‘Hierarchical clustering’ and table 7 
‘Cluster description’). We found that genes from the same cell type 
segregated together, defining clusters of highly co-expressed genes, 
plausibly representing cell-specific functions. The dendrogram height of 
hierarchical clustering was set to identify gene clusters that were highly 
enriched for individual brain cell types. The criteria for ‘enrichment’ 
were that the cluster contained more than 100 genes, of which over 70% 
corresponded to a unique cell type with τ  ≥ 0.6 (Supplementary file 1, 
table 8 ‘cluster selection’). Five clusters fulfilled these criteria, corre
sponding to astrocytes (cluster # 4), endothelial cells (cluster # 5), 
neurons (cluster # 13), microglia (cluster # 17) and oligodendrocytes 
(cluster # 164). There were other clusters containing over 77% of total 
of neuronal (e.g., clusters # 10, 116) or microglial (e.g., clusters # 30, 
15) genes (Supplementary file 1, table 8 ‘cluster selection’), but they 
were excluded from the analysis because less than 54% of their genes 
were enriched (τ ≥ 0.6) for that cell type, suggesting lower cell type 
specificity. 

We continued with astrocyte cluster # 4 (1651 genes) and neuronal 
cluster # 13 (1258 genes) for two reasons: (i) a cluster size of over 1000 
genes is sufficient for functional categorization and gene set analysis, 
and (ii) since molecular changes in neurons are better characterized in 
AD than changes in astrocytes, neurons served as a positive control to 
assure correct data mining. 

In the neuronal cluster # 13, 99.9% of the genes were neuronal ac
cording to τ score, of which 54.1% of genes were neuron-specific (τ ≥
0.8), meaning that they encode proteins that perform functions highly 
specific to neurons. Indeed, the top 10 ranked genes based on τ (τ >
0.98) were related to neurotransmission (SYNPR, GABRA1, CNR1, SYT1, 
GABRG2 and GAD1), regulation of membrane potential (KCN2), mi
crotubules (INA), and cell adhesion (RELN). The remaining 45.9% (τ <
0.8) were neuron-enriched or bulk genes plausibly supporting neuron- 
specific functions, since they were co-expressed with neuron specific 
genes (Supplementary file 1, table 8 ‘cluster selection’; Supplementary 
file 2, table 2 ‘Neurons cluster 13’). 

In astrocyte cluster # 4, 80% of the genes were astrocytic according 
to τ (Supplementary file 1, tables 7 and 8 ‘Cluster description’ and 
‘Cluster selection’; Supplementary file 2, tab ‘Astrocytes cluster 4’). 
Further, 30% had τ ≥ 0.8, including genes that encode typical astrocyte 
proteins such as GFAP (τ  = 0.95), glutamine synthase (GLUL, τ  = 0.95), 
glutamate decarboxylase (GLUD2, τ  = 0.91), glutamate transporters 
(EAAT1/SLC1A3, τ  = 0.83), lactate dehydrogenase (LDHB, τ  = 0.91), 
and enzymes involved in mitochondrial fatty-acid oxidation (ACADVL, 
τ  = 0.92). Enriched genes with τ between 0.6 and 0.8, or bulk genes 
below 0.6, arguably necessary for astrocyte functions, are the aqua
porins AQP1 (τ  = 0.739) and AQP4 (τ  = 0.744), and the chaperone 
clusterin CLU (τ  = 0.373), which was identified by GWAS as a risk factor 
in AD (Han et al., 2018). These findings indicated that the group of genes 
gathered in cluster #4 is relevant to astrocyte biology. 

3.2. Identification of cell-type specific gene clusters in AD databases 

We next searched for the astrocytic and neuronal gene clusters in 
three AD whole-tissue transcriptomic databases (heatmaps of z-scores in 
Fig. 2B). Unexpectedly, hierarchical clustering of subjects (columns) 
revealed heterogeneity in groups with the same clinical diagnosis. 
Subjects were divided into at least two broad molecular groups within 
each of the Control, MCI, and AD cohorts across the three databases, as 
shown by the division of the dendrograms into two large groups in each 
cohort. We refer to type 2 subjects as those showing blue z-scores within 
the neuron gene cluster, suggesting massive down-regulation of 
neuronal genes, as compared to type 1 subjects, in which genes with red 
z-scores predominated. Type 1 sub-cohorts included Control1, MCI1 and 
AD1, while type 2 included Control2, MCI2 and AD2. Numbers of Con
trol1/Control2 patients were 33/45 in MAYO, 51/149 in ROSMAP, and 
81/20 in MtSINAI. Numbers of AD1/AD2 patients were 28/54 in MAYO, 
70/149 in ROSMAP, and 66/63 in MtSINAI. MCI1/MC2 numbers were 

99/58 in ROSMAP. Heterogeneity in MtSINAI data has been recently 
reported and replicated in ROSMAP (Neff et al., 2021). 

The most profound down-regulation of genes within the neuronal 
gene cluster was observed in AD2. Because down-regulation of neuronal 
genes due to loss of synapses and neuronal demise is a hallmark of AD 
(Gomez-Isla et al., 1997), we reasoned that AD2 was advanced AD, and 
Control1 a bona fide control composed of subjects that were neither 
demented, nor preclinical or pre-symptomatic at the time of death. 
Because Control1 and AD2 appeared to be the extreme groups across the 
continuum of AD phenotypes, they were selected for further analysis. 

Since our goal was to identify changes in astrocytic functions, it was 
critical to eliminate gross variability among samples within the astro
cytic and neuronal gene clusters due to global changes in cell compo
sition. To do so, we applied variance stabilizing normalization 
(Methods) to all samples. Prior to normalization, the distributions of 
gene-expression differences between AD2 and Control1 shifted to the 
left in the neuronal cluster, suggesting depletion of neurons in AD2, 
while the distribution of astrocytic genes shifted to the right, suggesting 
a relatively higher content of astrocytes in AD2. The normalization 
shifted the peaks of the distributions of differences in gene expression 
between AD2 and Control1 to zero, thus validating this step of data 
processing (Fig. 3A). After normalization, the global down-regulation of 
all neuronal genes in cluster # 13 in type 2 groups was attenuated, but 
intra-cohort heterogeneity persisted such that type 2 clusters still pre
sented a prominent down-regulation of neuronal genes as compared to 
type 1 clusters (Fig. 3B and Supplementary file 3). In addition, new gene 
clusters previously masked were unraveled by hierarchical clustering. 
Thus, there were three neuronal (Fig. 3B, N-a, b, c), and four astrocytic 
gene subgroups (Fig. 3B, A-a, b, c, d) with opposite expressions patterns 
in type 1 vs type 2 subjects. For example, N-b genes were globally 
downregulated in AD2 and Control2, as compared to Control1 and AD1. 
Importantly, N-b contained genes related to synaptic function, including 
glutamatergic and GABAergic neurotransmission (e.g., GABRB3; 
GABRB2; GAD1; PDYN; SYN2; GABRG2; SYN1 NAPB; GRIA2; SLC17A7; 
GRIK2), supporting that this cohort is a bona fide AD. The normalized 
expression of cluster # 4 genes in the three AD databases is in Supple
mentary file 4. It is worth stressing that although changes in functions 
follow the same trend (up or down) in Control1/MC1/AD1 and Con
trol2/MCI2/AD2 subjects, there are quantitative differences within 
type1 and type 2 groups; however, for simplicity, we limited herein the 
statistical comparison of all the sub-cohorts vs Control1. 

Because the ROSMAP database included clinical covariate data, such 
as CERAD and Braak scores, APOE genotype and sex, we examined 
whether type 1 or type 2 sub-cohorts were associated with specific 
covariates to gain insight into why they were molecularly heteroge
neous. We found that Braak and CERAD scores were significantly higher 
in AD groups than in Controls (Fig. 3C), confirming the clinical diag
nosis. However, type 1 and type 2 subjects with the same clinical di
agnoses did not significantly differ in their pathological stages according 
to CERAD and Braak scoring; nor were type 2 groups more enriched in 
APOE4 subjects or females (Fig. 3D). 

3.3. GSVA reveals altered functions in AD and MCI vs Control1 

We next identified changes in astrocytic and neuronal functions 
using the normalized expression data. Because most of the astrocytic 
genes were not annotated in existing pathways in open-source data
bases, we manually curated the astrocytic cluster into 17 functional 
categories (gene sets) and 135 subcategories, and the neuronal cluster in 
15 functional categories and 79 subcategories (Methods, Supplementary 
file 2). 

GSVA was then used to compare the gene sets corresponding to 
different functional categories among cohorts, yielding an enrichment 
score for each subject and gene set. We started by comparing the 
extreme cases, AD2 and Control1, using two criteria. First, probability 
values were computed using a permutation analysis across genes (cut-off 
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for statistical significance was set at FDR-adjusted q < 0.05, Methods). 
Second, we considered that a function was altered in AD2 as compared 
to Control1 if such alteration was detected in at least two out of the three 
databases (consensus criterion). 

For neurons, seven functions were altered in AD2 vs Control1 
(Fig. 4A, statistics in Supplementary file 5, extended graphs in Supple
mentary file 6): ‘neurotransmission’ and ‘gene expression’ were altered 
in the three databases, and ‘synaptic plasticity’, ‘regulation of membrane 
potential’, ‘neural development’, ‘mitochondria’ and ‘stress response’ in 
MAYO and ROSMAP, but not MtSINAI. ‘Synaptic plasticity’, ‘neuro
transmission’, ‘neural development’ and ‘membrane potential’ were 
down-regulated, and ‘gene expression’, ‘mitochondria’ and ‘stress 
response’ up-regulated. In MAYO and ROSMAP, the altered functions in 
Control2 and MCI2 followed trends like in AD2, and AD1 and MCI1 like 
in Control1 (Fig. 4B). In MtSINAI, we found no statistically significant 
difference between Control1 and Control2, and AD groups were similar, 

although changes in AD2 were more dramatic, as compared to Control1 
(Fig. 4B). 

For astrocytes, five functions were altered in AD2 vs Control 1 
(Fig. 5A, statistics in Supplementary File 5): ‘PAP’, ‘plasticity’, ‘stress 
response’ were up-regulated in three/three databases, ‘mitochondria’ 
was down-regulated in three/three databases, while ‘endolysosomal 
system’ was down-regulated in two/three databases. Because ‘PAP’ are 
specialized astrocyte-neuron contacts and, hence, this category includes 
many genes related to gliotransmission, and since ‘gliotransmission’ was 
highly significantly changed in ROSMAP (qFDR<0.001), and trending in 
MAYO (qFDR = 0.07), henceforth ‘PAP’ and ‘gliotransmission’ were 
considered together. As with neurons, Control2 and MCI2 showed the 
same direction of change as AD2 compared to Control1 (Fig. 5B). 
Likewise, the enrichment of these gene sets in AD1 resembled that of 
Control1, particularly in MAYO and ROSMAP, while AD1 appeared to be 
a milder version of AD2 in MtSINAI. 

Fig. 3. Neuronal and astrocytic gene sub-clusters in the three clinical databases. 
A. Distributions of gene expression differences between AD2 and Control1 cohorts before (yellow) and after (blue) variance stabilizing normalization, yielding zero- 
centered distributions (Methods). 
B. Hierarchical clustering of Control (blue), MCI (beige), and AD (red) subjects from Fig. 2B using normalized data in rows. For both astrocytic and neuronal genes, 
subjects self-organized into at least two distinct subgroups (defined as 1 and 2) within each group with the same clinical diagnosis, while genes self-organized into up 
to four groups (Na-c and Aa-d). In MAYO and ROSMAP, clusters showed opposite directions of change in type 1 and 2 subjects. In MtSINAI, Control2 was like 
Control1, and AD1 like AD2, although with less pronounced changes. 
C. Violin plots of pathological stages according to CERAD and Braak scoring shows no significant difference in pathological stages between sub-groups within each 
cohort in ROSMAP (means ± SEM, one-way ANOVA with Tukey post-hoc). 
D. Distribution of APOE genotypes and sex in the six groups. While 3/3 was the predominant genotype across all groups, and 3/4 was more abundant in AD, there 
were no differences in frequency of APOE4 alleles between type 1 and 2 subgroups of subjects with the same clinical diagnosis. Likewise, females were more abundant 
than males in all groups, but not in type 2 subjects as compared to type 1 (p values determined by pairwise Fisher’s Exact test with Bonferroni adjustment). 
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3.4. Co-variance of gene sets with one another and with pathological 
covariates 

Correlations between altered functions and pathological stages. Since 
CERAD and Braak scores were available for the ROSMAP data, we 
examined relationships between general functions and pathological 
stages by regressing enrichment scores for each gene set and sample 
against the corresponding CERAD and Braak scores, regardless of clin
ical diagnoses (Methods). Data from all the individuals in the three 
groups (Control, MCI and AD) were used in the analysis. For neurons, we 
found no statistically significant correlations between Braak and CERAD 
stages for any of the seven top dysregulated categories described in 
(Fig. 4A and Supplementary file 7). The lack of correlation can be 
interpreted to indicate similar gene dysregulation in all stages, sug
gesting that neuronal dysfunction is an early event in AD pathology, 
such that it appeared in subjects with no (i.e., Control2) or incipient (i.e., 
MCI2) cognitive deficits, and low CERAD and Braak scores. 

For astrocytes, of the five functions that were significantly altered in 
AD2 vs Control1 (Fig. 5A), the following ones significantly correlated 

with Break/CERAD according to p-values: ‘mitochondria’ (0.0000203/ 
0.000742), ‘stress response’ (0.000742/0.00196) and ‘plasticity’ 
(0.0768/0.00967) (Supplementary file 8). In contrast, ‘PAP’, ‘glio
transmission’, and ‘endolysosomal system’ did not correlate with path
ological stages, suggesting that, as we reasoned with neurons, they 
represent early manifestations of alterations in astrocytic functions. For 
example, there was a progressive decline in the expression of nuclear- 
encoded mitochondrial genes from CERAD 1 to 3 and from Braak 1 to 
6, while the expression of genes involved in ‘endolysosomal system’ was 
altered at early CERAD and Braak stages, before the detection of 
cognitive deficits in subjects. 

Correlations among altered functions. We examined correlations 
among all neuronal and astrocytic gene sets by regressing enrichment 
scores for each gene set against each other gene set. Hierarchical clus
tering of correlation coefficients and adjusted p-values are in Supple
mentary file 9 for ROSMAP, MAYO, and MtSINAI. In neurons, the 
strongest direct correlations were among highly related functions such 
as ‘membrane potential’, ‘neurotransmission’ and ‘synaptic plasticity’. 
Likewise, in astrocytes, the strongest correlations were between ‘PAP’ 

Fig. 4. GSVA unravels neuron-enriched functions altered in AD. Differences in the general functional categories among cohorts in MAYO, ROSMAP and MtSINAI 
databases were examined by GSVA. 
A. Comparison between AD2 and Control1. Functions are ranked according to the difference in enrichment scores (ES). Significantly changed functions (qFDR <0.05) 
are labeled in red. 
B. Enrichment scores of functional categories significantly changed in at least 2 out of 3 databases. (#) qFDR<0.05 (&) qFDR <0.01, and (*) qFDR <0.001, vs 
Control1. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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and ‘gliotransmission’. The strongest anti-correlations point to inter
twined changes between: (i) morphological remodeling of PAP and loss 
of synaptic functions, and (ii) organelle dysfunction and ‘plasticity’ 
(which is enriched in survival pathways, see below). 

3.5. Alteration of functional subcategories in astrocytes 

We next aimed to gain further insight into which factors drive the 
functional alterations in AD astrocytes by searching for functional sub
categories with statistically significant differences in enrichment scores 
between AD2 and Control1 (qFDR<0.05) in at least two out of three of 
the databases (statistics in Supplementary file 10). 

The category ‘PAP’ includes different categories related to 
morphology, metabolism, and gene expression. The consensus subcat
egory significantly upregulated was ‘PAP morphology’ (qFDR <0.001, 
AD2 vs Control1, in MAYO and ROSMAP). Because PAP are specialized 
in the functional refinement of adjacent synapses at a micro scale (Sa
kers et al., 2017), increased expression of PAP-related genes in AD as
trocytes may be a compensatory reaction to locally optimize 

compromised synaptic functions. 
Subcategories in ‘plasticity’ include annotations associated with 

morphological remodeling (e.g., ‘adherens junction’, ‘ECM’, ‘cytoskel
eton’, ‘ciliogenesis’, ‘TGFbeta signaling’, ‘metalloproteases’), and 
pathways involved in brain development whose role in adult astrocytes 
is not well understood, although they are characteristically up-regulated 
in reactive astrocytes, perhaps as a mechanism of astro- or neuro
protection (e.g., ‘axon outgrowth’, ‘synaptogenesis’, ‘WNT signaling’, 
‘hippo signaling’, ‘smoothened signaling’, ‘hedgehog signaling’, ‘ho
meobox signaling’, ‘notch signaling’, ‘FGF signaling’, ‘pluripotency’, 
and ‘glial cell fate commitment’). Significantly dysregulated pathways 
in AD2 vs Control1 were ‘ECM’, upregulated in the three databases, and 
‘hippo signaling’ and ‘ciliogenesis’ (i.e., the process of generation of a 
microtubule-based and centriole-derived cilium), respectively upregu
lated and down-regulated in two databases—note that the fact that the 
general trend of a given general category is towards up-regulation does 
not preclude that some subcategories are down-regulated. 

‘Stress responses’ includes ‘AMPK signaling’, ‘antioxidant response’, 
‘cell death’, ‘chaperone’, ‘DNA repair’, ‘hypoxia’, ‘complement system’ 

Fig. 5. GSVA unravels astrocyte-enriched functions altered in AD. Differences in the functional categories among cohorts in MAYO, ROSMAP and MtSINAI databases 
were examined by GSVA. 
A. Comparison between AD2 and Control1. Functions are ranked according to the difference in enrichment scores (ES). Significantly changed functions (qFDR <0.05) 
are labeled in red. 
B. Enrichment scores of functional categories significantly changed in at least 2 out of 3 databases. (#) qFDR <0.05, (&) qFDR <0.01, and (*) qFDR <0.001, vs 
Control1. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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and ‘cytokines’. No subcategory was dysregulated according to qFDR in 
at least two databases. However, it is worth noting genes related to 
TNFalpha in ‘cytokines’ were significantly dysregulated as the subcat
egory ‘TNFalpha’ of ‘gliotransmission’ in MAYO and ROSMAP, and 
trending in MtSINAI (qFDR = 0.093). 

In ‘endolysosomal system’, encompassing genes related to ‘endo
plasmic reticulum’, ‘Golgi’, ‘lysosome’ and ‘vesicles’, no single sub
categories were significantly dysregulated, while in ‘mitochondria’, 
‘ETC’ and ‘TCA cycle’ were significantly downregulated in AD2 vs 
Control1 in three and two databases, respectively. For ‘ETC’, qFDR was 
<0.001 in MAYO, < 0.001 in ROSMAP, and < 0.012 in MtSINAI. For 
‘TCA cycle’, qFDR was <0.001 in MAYO, <0.39 in ROSMAP, and < 0.01 
in MtSINAI. In total, the dysregulated subcategories in astrocytes point 
to alterations in mitochondrial respiration concomitant with morpho
logical remodeling. 

3.6. PCA confirms main functional changes in AD astrocytes 

GSVA was dependent on gene sets organized into pre-determined 
functions. For this reason, we also used PCA as an alternative, 

unsupervised approach to gain independent insight into the predomi
nant molecular changes of AD astrocytes. First, we examined whether 
expression of genes contained in the astrocytic cluster # 4 segregated 
cohorts in ROSMAP. PCA segregated the Control1, MC1 and AD1 groups 
to the left, and the Control2, MCI2 and AD2 groups to the right, ac
cording to the principal component 1 (PC1, horizontal axis, Fig. 6A). 
Violin plots of PC1 scores per group confirmed this tendency. 

Second, we examined the functions performed by the proteins 
encoded by the top 50 dysregulated genes in PC1, representing the 
maximally co-varying astrocytic genes (Supplementary file 11). Mir
roring our results with GSVA, genes related to ‘plasticity’ and ‘PAP/ 
gliotransmission’ were over-represented in the up-regulated portion, 
whereas genes related to ‘endolysosomal system’, ‘gene expression’, and 
‘signaling’ were predominant in the down-regulated portion (Fig. 6B). 
Genes related to ‘mitochondria’ and ‘stress responses’ appeared in both 
sections, indicating mixed direction of dysregulation in these functions. 
Unlike GSVA, PCA also detected changes in ‘signaling’, as suggested by 
the presence of genes related to this function in the up and down seg
ments of the top PC1 genes. 

Third, we asked if the changes detected in AD astrocytes in ROSMAP 

Fig. 6. PCA identifies top altered functions in AD astrocytes. 
A. PCA analysis of astrocyte-enriched genes in ROSMAP. Dot plots and violin plots along PC1 (mean ± SEM) show differential expression of astrocyte genes in type 2 
vs type 1 subjects. 
B. Top varying genes in PC1 (up-regulated and down-regulated), colour-coded for function according to the circos plot, inform about functions altered in AD as
trocytes. The vertical axis represents the relative contribution (importance/weight) of each gene for the scoring C. of individual samples in panel A along PC1. 
C. Scoring of MtSINAI and MAYO databases using genes overlapping with ROSMAP PCA in A. discriminates Control and AD cohorts along PC1, as shown by the dot 
and violin plots (means ± SEM). 
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with PCA were reproducible. Thus, we determined the capacity of the 
PC1 genes to segregate cohorts in MAYO and MtSINAI. As in ROSMAP, 
Control1 subjects were mostly negative, and AD2 cases were mostly 
positive in MAYO and MtSINAI, thus validating the discriminating ca
pacity of the maximally co-varying genes in PC1 (Fig. 6C). AD1 segre
gated with Control1 in MAYO, but not in MtSINAI, where AD1 aligned 
with AD2, confirming less intra-cohort heterogeneity in MtSINAI than in 
the other two databases, as shown with GSVA. Altogether, these results 
point to multi-factorial changes in AD astrocytes, encompassing changes 
in astrocyte-neuron interactions and organelle dysfunction (model in 

Fig. 7A and description in Discussion). 

3.7. Comparison with other human studies 

Comparisons among whole-tissue transcriptomic analysis (Zhang 
et al., 2013), scRNAseq studies (Grubman et al., 2019) (Mathys et al., 
2019) and the present study are in (Supplementary file 11). The greatest 
concordance was found between our study and (Zhang et al., 2013). 
Thus, 60% of the genes of the astrocytic cluster in the Zhang et al. study 
were in cluster # 4. Importantly, 94.9% of the common genes were 

Fig. 7. Model of cortical human AD astrocytes and comparison with mice. 
A. The model revolves around two predictions. 
First prediction: Amyloid-β drives the phenotypical change of cortical astrocytes in AD by direct and indirect mechanisms. Direct: Amyloid-β causes endolysosomal and 
mitochondrial dysfunction in astrocytes, resulting in an adaptive astroprotective shift of gliotransmission to a GABA-predominant mode as a strategy to preserve 
mitochondrial respiration. Indirect: Synaptic dysfunction caused by amyloid-β in neurons augments the production of the PAP machinery and synaptogenic factors in 
astrocytes—a phenomenon of enhanced astrocytic plasticity to protect neurons. 
Second prediction: The phenotypical transformation of astrocytes in AD happens in early and late stages. Control2 subjects, cognitively normal, would be at stage a, 
and AD2 patients, diagnosed with dementia, at stage b. In stage a, the astroprotective change in glutamate/GABA fluxes may preserve neural-circuit homeostasis, 
because the GABA produced by MAO-B may locally compensate for the deficits in inhibitory tone that disrupts circuitry synchronization (Lee et al., 2020). By 
contrast, deficits in the endolysosomal system would result in partial phagocytosis of amyloid-β (Sollvander et al., 2016) and dystrophic neurites (Gomez-Arboledas 
et al., 2018), thus exacerbating amyloid-β accumulation, and hindering neuronal repair due to lack of debris elimination. In stage b, the mechanisms triggered to 
protect mitochondria may fail, and cortical astrocytes become deeply malfunctional, as suggested by the reduction in TCA cycle and ETC transcripts, despite the 
increase in protective stress responses and pro-survival pathways aimed at preventing astrocyte demise. For simplicity, only predominantly altered functions are 
depicted. ECM, extracellular matrix; ETC: electron transport chain, GLU: glutamate; oAβ: oligomeric amyloid-β; PAP: perisynaptic astrocyte processes; TCA: 
tricarboxylic acid. Figure adapted from Servier Medical Art (https://smart.servier.com/). 
B. GSVA of the transcriptome of astrocytes isolated from APP/PS1 mouse cortices using our manually curated functional categorization shows down-regulation of 
astrocyte-enriched functions. 
C. Left, GSVA of the transcriptome of APP/PS1 astrocytes using gene sets consisting of the top/bottom 50 dysregulated human astrocyte genes in PC1 from the 
ROSMAP database, and the top/bottom 50 DEGs from APP/PS1 astrocytes (Orre et al., 2014). Human astrocyte-enriched genes dysregulated in AD (up and down) are 
down-regulated in APP/PS1 astrocytes, confirming B. Right, GSVA of PC1 AD and mouse APP/PS1 DEG gene sets in ROSMAP, MAYO and MtSINAI whole-brain 
transcriptomes shows that both the up and down-regulated mouse gene pools tend to be up-regulated in AD databases. Discussion of the result of this compari
son can be found in the main text. 
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concentrated in the UP portion of our PC1 list, and were particularly 
enriched in the 50 top UP PC1, which presented a 50% overlap with the 
Zhang et al. list. Common genes were related to ‘gliotransmission’ (e.g., 
glutamate transporter SLC1A3), ‘plasticity’ (e.g., hippo signaling 
TP53BP2), ‘stress response ‘(e.g., antioxidant PON2), and ‘mitochondria’ 
(e.g., amino acid metabolism HADHB). By contrast, there was scarce 
representation of astrocytic genes from (Zhang et al., 2013) in the down- 
regulated portion of our cluster # 4, where most of the genes related to 
mitochondrial metabolism and the endolysosomal system lie. Since the 
astrocytic cluster was generated by co-expression within AD tran
scriptomes in (Zhang et al., 2013), we reason that down-regulated 
astrocytic genes may not co-express any longer with up-regulated 
ones, thus explaining why down-regulation of organelle-related genes 
was not detected in (Zhang et al., 2013). In summary, our study confirms 
the relevance of glutamate and amino acid metabolism in AD patho
genesis reported in large-scale network analysis (Zhang et al., 2013), 
and links it to mitochondrial dysfunction, which, we stress, presented a 
marked negative correlation with pathological stages according to re
gressions with Braak/CERAD. 

As to scRNASeq studies, only 1.1% of Cluster # 4, and 0.3% of the top 
50 PC1 genes, overlap with the 69 astrocytic DEG listed in (Mathys et al., 
2019) (Supplementary file 11). Although the low number of DEG hin
ders statistically sound pathway analysis, it is worth noting that the top 
GO Biological Process of astrocyte DEGs in (Mathys et al., 2019) is ECM 
(GO:0030198), which coincides with our detection of consensus up- 
regulation of the ECM functional category. Indeed, common genes be
tween top 50 PC1 and (Mathys et al., 2019) include PAP genes PREX2 
and PLXNB1. 

The overlap between the astrocyte cluster listed in (Grubman et al., 
2019) and cluster # 4 is 12.7%, and 1.3% considering only the top 50 
PC1 genes, although the glutamate transporter SLC1A3 is common to 
both lists. Considering functions, among the most dysregulated GO 
Biological Process in (Grubman et al., 2019), including ‘central nervous 
system myelination’ (GO:0022010), ‘axonogenesis’ (GO:0007409) and 
‘chemical synaptic transmission’ (GO:0007268), only the latter two 
functions are equivalent to our detected up-regulation of developmental 
pathways and gliotransmission-related genes. 

It is worth noting that the astrocytic DEG listed in (Mathys et al., 
2019) and (Grubman et al., 2019) only share 32 genes, representing 47% 
of the DEG in (Mathys et al., 2019) and 4.5% of those in (Grubman et al., 
2019) (Supplementary file 11). Moreover, only 2.3% and 14.6% of the 
astrocytic cluster from (Zhang et al., 2013) overlap with (Mathys et al., 
2019) and (Grubman et al., 2019). 

The only partial equivalence among studies may be due to several 
factors, including: (i) differences in methodologies, (ii) classifications of 
disease (e.g., clinical in (Zhang et al., 2013), (Grubman et al., 2019) and 
our study, but associated to amyloid-β pathology regardless of clinical 
diagnosis in (Mathys et al., 2019), (iii) brain regions sampled (prefrontal 
or temporal cortex in (Mathys et al., 2019) (Zhang et al., 2013) and in 
our case, but entorhinal cortex in (Grubman et al., 2019)), and (iv) the 
total number of subjects analyzed (1647 in (Zhang et al., 2013), 48 in 
(Mathys et al., 2019), 12 in (Grubman et al., 2019), and 766 herein.) 

Finally, the main consistent finding between our study and the 
network analysis of proteins detected immunohistochemically in AD 
brains (Viejo et al., 2021) is the detection of up-regulation of ECM and 
oxidative stress (included in ‘stress responses’ in our case’). As with the 
rest of studies, the main difference is that the study by (Viejo et al., 
2021) does not include down-regulation of proteins related to endoly
sosomal systems and mitochondrial functions such as TCA and ETC 
associated with AD astrocytes, because their analysis is centered on up- 
regulated proteins. Nor is subject heterogeneity reported in any of the 
studies discussed above. 

3.8. Comparison with cortical APP/PS1 astrocytes 

We concluded our analysis by asking whether changes identified in 

cortical AD astrocytes are recapitulated in cortical astrocytes isolated 
from 15–18-month-old APP/PS1 mice (Orre et al., 2014). Comparison 
with recent snRNAseq mouse data (Habib et al., 2020) was not appro
priate because this latter study was carried out in the hippocampus. 

We performed the following head-to-head comparisons between 
human and mouse data. First, we examined the changes of the functional 
categories identified in the human astrocytic cluster # 4 in APP/PS1 vs 
WT mice (n = 4 per group). GSVA revealed down-regulation of all 
functional categories (Fig. 7B). That is, APP/PS1 astrocytes mimic the 
down-regulation in ‘endolysosomal system’ and ‘mitochondria’ detected 
in human AD astrocytes, but not the up-regulation of ‘PAP’, ‘stress re
sponses’ and ‘plasticity’. 

Second, we examined the expression of the top ranked down- and up- 
regulated PC1 genes of human AD astrocytes in the mouse tran
scriptomes (gene sets 1 and 3, Fig. 7C-left panel), and the expression of 
the 50 most downregulated and upregulated DEG in APP/PS1 astrocytes 
(Orre et al., 2014) in the clinical databases (gene sets 2 and 4, Fig. 7C- 
right panel). Fig. 7C shows the hierarchical clustering of GSVA- 
generated enrichment scores. To help interpret these comparisons, it is 
worth stressing that, in addition to a difference in species, human gene 
sets 1 and 3 consisted of astrocyte-enriched genes, while the mouse data 
consisted of the entire mouse astrocyte transcriptome, encompassing 
enriched and ubiquitous genes. Thus, gene set 2 is enriched in typical 
homeostatic astrocytic genes related to neuronal support (e.g., FZD10, 
HES5, SOX9), and gene set 4 in inflammation-related genes (e.g., 
TREM2, IL1β, CCL3, CCL4, CCL5, C14). These genes are predominantly 
microglial, according to τ scores, and except for C1S, did not coincide 
with functionally related human astrocyte-enriched genes in cluster # 4 
subcategories such as ‘cytokines’ and ‘complement’ (Supplementary file 
12). 

Both human clusters segregated with the down-regulated mouse 
gene set 2 (Fig. 7C left panel), confirming the global down-regulation of 
astrocyte-enriched genes in APP/PS1 astrocytes, as opposed to the up- 
regulation of generic inflammation-related genes. As also concluded in 
(Orre et al., 2014), this divergence points to a loss of homeostatic 
astrocytic functions and the adoption of a microglia-like phenotype, 
suggesting that cortical APP/PS1 astrocytes may undergo a phenotypical 
involution with time. 

As expected, AD astrocyte gene sets 1 and 3 were respectively 
downregulated and upregulated in AD2 cohorts (Fig. 7C right panel), 
while the mouse gene set 2, containing neuron support genes, down
regulated in APP/PS1 mice tended to be upregulated in AD2 cohorts. 
This might mean that the loss of homeostatic genes may be more 
advanced in APP/PS1 mice at 15–18 months of age than in AD2 patients. 
On the other hand, gene set 4 containing inflammation-related genes 
was largely upregulated in AD2, suggesting a predominant expression of 
typical microglial genes in AD2, plausibly upregulated in both microglia 
and astrocytes. Collectively, the comparison of human and mouse data 
suggests that there are both shared and distinctive changes in astrocytes 
in human AD and 15–18-month APP/PS1 mice. This factor should be 
taken into consideration when using animal models of AD. 

4. Discussion 

Because of the challenges associated with the isolation of astrocytes 
or their nuclei, and to profit from the wealth of large publicly available 
human-brain transcriptomes, the goal of this study was to gain insight 
into what happens to astrocytes in AD using systems-biology tools. The 
approach consisted of the re-compartmentalization of whole-brain 
transcriptomes from Control, MCI, and AD subjects into contributions 
from individual cell types by using pre-clustered cell-specific gene sets. 
The study has four main findings. 

First, unbiased hierarchical clustering of patient cohorts reveals 
major intra-cohort heterogeneity, i.e., relationships are not robust be
tween gene profiles, clinical diagnosis, and pathological stage according 
to CERAD and Braak scoring, as recently reported in (Neff et al., 2021). 
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In other words, some non-demented subjects present AD-like astrocytes 
and neurons, while some demented subjects present healthy-like ones, 
particularly in MAYO and ROSMAP. 

Second, GSVA and PCA show that AD astrocytes—so defined because 
they appear in patients with the typical down-regulation of neuronal 
synaptic functions documented in AD—undergo a profound phenotyp
ical transformation encompassing up-regulation of genes related to 
‘PAP’, ‘gliotransmission’, ‘plasticity’ and ‘stress responses’, and down- 
regulation of genes encoding organelle proteins (e.g., nuclear-encoded 
mitochondrial genes related to TCA and ETC). The detection of down- 
regulated astrocytic genes that may have gone unnoticed in large-scale 
clustering (Zhang et al., 2013), for their expression change in opposite 
direction to most genes in the original cluster, is an asset of the study. 

Third, according to regression analyses between functions and 
CERAD or Braak scores, some astrocytic functions may be altered early 
in the AD continuum (e.g., ‘PAP’, ‘gliotransmission’ and ‘endolysosomal 
system’), while other functions may be increasingly dysregulated in 
parallel with the deposition of neuritic plaques and neurofibrillary 
tangles (e.g., mitochondrial functions, plasticity-related pathways, and 
stress responses). 

Fourth, multivariate statistics and hierarchical clustering show that 
cortical astrocytes from human AD and from a 15–18-month-old mouse 
model of ADAD (Orre et al., 2014) are distinct transcriptional entities. 

4.1. Limitations 

A limitation of the study is the potential differences in gene expres
sion due to different cortical regions being used in the three databases. 
However, the fact that consensus differences were found in astrocytic 
functional categories associated with AD supports the possibility that 
reactive astrocytes share common changes across brain areas, and that 
our method is robust enough to detect them. Likewise, our analysis with 
a single astrocytic gene cluster does not reveal astrocyte populations, as 
recently described in a mouse model of AD using snRNAseq (Habib et al., 
2020), although it is tempting to speculate that the four astrocytic gene 
sub-clusters identified in the clinical cohorts (Aa-d, Fig. 3) might 
represent distinct transcriptomic states. Arguably, future studies and 
approaches such as spatial transcriptomics will reveal local and regional 
differences of human astrocytes in AD. 

Another limitation of our study is that pathway dysregulation during 
AD may result in the remodeling of cell-type specific gene clusters, such 
that gene clusters identified in healthy brain transcriptomes may no 
longer exist in AD. However, quantification of network reorganization in 
AD subjects using a metric called modular differential connectivity 
showed equal or enhanced connectivity in 95.5% of the modules (Zhang 
et al., 2013), suggesting that clusters identified by co-expression ana
lyses in healthy cells are, for the most part, preserved in AD. Never
theless, we recognize that our analysis may overlook changes in 
transcripts ubiquitous in all cell types (e.g., glycolysis-related tran
scripts), as well as the up-regulation in astrocytes of transcripts typical of 
non-astrocytic cells, namely microglia, including the inflammatory 
response common to both glial cells described in 15–18-month-old APP/ 
PS1 transgenic mice (Orre et al., 2014). Hence, our results may be just 
the tip of the iceberg in terms of defining the totality of changes in 
human AD astrocytes. 

Because transcriptomic data are cross-sectional and descriptive, they 
do not demonstrate cause-effect relationships between pathway dysre
gulation and pathology, or unequivocally prove that changes are 
adaptive (meant to compensate for dysregulated functions and maintain 
or restore homeostasis), maladaptive (irreversibly contributing to dys
homeostasis and neurodegeneration), or epiphenomena with scarce 
bearing on disease onset and progression. Finally, genetic data does not 
directly inform about changes in proteins and metabolites. Hence, pre
dictions, based upon these data need validation in appropriate models. 

4.2. Key implications and predictions 

Use of molecular data for subject stratification in clinical trials. A 
disconnect between presence of AD pathology and cognition has been 
long recognized (Neuropathology Group. Medical Research Council 
Cognitive, F., and Aging, S, 2001). Neurocognitive measurements, at
rophy patterns assessed with neuroimaging, neurofibrillary tangles 
assessed postmortem, CSF levels of amyloid-β1–42 and Tau, as well as 
Tau neuroimaging, have revealed subtypes of AD (Devi and Scheltens, 
2018; Dujardin et al., 2020). The clinical and biological heterogeneity in 
AD, which is increasingly being recognized as a major obstacle to 
establishing drug efficacy in clinical trials, starts to be addressed with 
molecular tools. An example is the recent detection of three molecular 
classes in an extended MtSINAI cohort (MMBB-AD), using RNAseq 
transcriptomics of four brain regions (Neff et al., 2021). They found the 
largest global change between AD patients and non-demented controls 
in the parahippocampal gyrus (PHG), with AD patients presenting three 
molecular subtypes termed A, B and C. Although our analysis was per
formed in cortical samples rather than the PHG, our AD2 group might 
correspond to their ‘C typical’ AD class, and our AD1 to their ‘A atypical’ 
AD class. The reason is that both AD2 and C present down-regulation of 
synaptic networks as compared to AD1 and A. No further comparison 
between our study and (Neff et al., 2021) can be performed with respect 
to astrocytes because, among the only three astrocytic genes reported to 
be upregulated in the ‘C typical’ AD class’, only GNA12 appears in our 
astrocytic cluster # 4—although it is indeed upregulated in ROSMAP 
(Supplementary data 13). 

What are Control2 and AD1? The terms ‘resistance’ and ‘resilience’ 
have been coined to describe two distinct clinical scenarios in AD con
sisting of avoiding pathology (‘resistance’) vs coping with pathology 
(‘resilience’) (reviewed in (Arenaza-Urquijo and Vemuri, 2018)). Thus, 
resistant subjects would be cognitively normal without significant am
yloid-β or Tau pathology, despite their being at high-risk considering 
factors such as age or APOE genotype. By contrast, resilient subjects 
would remain cognitively normal despite significant AD pathology. We 
speculate that our AD1 subjects were perhaps ‘resilient’ to AD pathol
ogy, which they had, according to high CERAD and Braak scores, but 
that they developed dementia due to comorbidities (e.g., Lewy bodies, 
vascular disease, TDP43 deposits). However, the possibility exists that 
the tissues used for transcriptomic analysis and neuropathological 
assessment of neuritic plaques and neurofibrillary tangles were not the 
same. This means that the transcriptomic analysis in demented AD1 
subjects with a healthy-like molecular profile might have been per
formed in cortical tissue spared from ongoing pathology, such that AD1 
subjects were not truly resilient to AD pathology. By contrast, regardless 
of where omics and neuropathological assessments were performed, 
Control2 subjects with AD-like molecular profiles in ROSMAP and 
MAYO were cognitively normal. Thus, Control2 subjects might be high- 
risk, pre-symptomatic, resistant subjects in whom the appearance of 
neuritic plaques, Tau tangles, and cognitive impairment was delayed 
despite the decreased expression of synaptic genes, plausibly caused by 
the incipient accumulation of soluble oligomeric amyloid-β (Marsh and 
Alifragis, 2018). Whatever the case, our study supports the use of omics- 
based molecular phenotyping and clustering statistics as unbiased tools 
to stratify patients in clinical trials in the spirit of personalized medicine. 

Early dysregulation of the endolysosomal system in astrocytes. The 
category ‘endolysosomal system’ was found down-regulated in AD2 vs 
Control1 by GSVA. Further, genes related to endoplasmic reticulum (e. 
g., FAF2, PIGX), endocytosis (e.g., ATXN2, MEGF8, RAB11FIP2), and 
autophagy (ATG9A) ranked among the top 50 PC1 downregulated in 
ROSMAP (Fig. 6B), and were significantly down-regulated in at least two 
of the three databases according to the Wilcoxon test (Supplementary 
file 4). These findings support cumulative evidence of inefficient 
phagocytosis and degradation of amyloid-β protofibrils (Funato et al., 
1998; Sanchez-Mico et al., 2020; Sollvander et al., 2016) and dystrophic 
neurites (Gomez-Arboledas et al., 2018) in astrocytes in mouse and in 
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vitro models of AD. The decreased production of exosomes from astro
cytes exposed to amyloid-β (Abdullah et al., 2016) also points to mal
function of the astrocytic endolysosomal system in AD models. Thus, our 
study and others do not support the popular notion that astrocytes may 
efficiently clear amyloid-β plaques, as initially suggested by evidence in 
non-primary cultured astrocytes (Wyss-Coray et al., 2003), which, 
arguably, are endowed with greater motility and morphological plas
ticity than primary or in situ astrocytes. Moreover, targeted enhance
ment of lysosomal biogenesis by overexpression of the transcription 
factor EB (TFEB) in astrocytes enhances Tau clearance, and reduces 
pathological hallmarks in the hippocampus of PS19 tauopathy mice 
(Martini-Stoica et al., 2018), suggesting that the improvement of lyso
somal function in astrocytes may reverse Tau pathology in AD. Along 
these lines, TFEB has been reported to regulate AD risk genes in an 
astrocyte subpopulation detected in AD brains by snRNAseq (Grubman 
et al., 2019). 

Early and concomitant alteration of neuron-astrocyte contacts. This 
prediction is based on two findings: the inverse correlation of changes in 
synaptic functions and PAP, and the lack of correlation between these 
functional categories with pathological stages, suggesting that they 
change early in AD. Accordingly, both PAP and synaptic genes are 
dysregulated in non-demented subjects with a type 2 molecular profile 
(Control2), which, as noted earlier, may represent preclinical AD. Spe
cifically, GSVA showed up-regulation of ‘PAP morphology’, whose 
leading gene EZR encodes ezrin, a protein involved in PAP motility, and 
in the anchoring of the astrocyte membrane to neurons or the extra
cellular matrix (Derouiche and Geiger, 2019). Also, genes related to 
integrin and cell motility (e.g., FERMT2, PREX2) were part of the top 
genes detected by PCA as defining AD astrocytes (Fig. 6B). We posit that 
up-regulation of PAP genes is an adaptive change to improve the 
coverage of neurons to counteract the down-regulation of synaptic ele
ments directly caused by oligomeric amyloid-β (Marsh and Alifragis, 
2018). This scenario is further supported by the up-regulation of genes 
encoding for synaptogenic factors such as thrombospondin and glypi
cans (THSD1, GPC4) in the three databases (Supplementary file 4). 

Mitochondrion dysfunction in AD astrocytes may impact glio
transmission. It is generally assumed that the well-established mito
chondrion dysfunction (Swerdlow, 2018) and reduced glucose 
metabolism in AD (often referred to as ‘hypometabolism’ (Hoffman 
et al., 2000)) are neuronal phenomena. However, our analysis reveals 
down-regulation of nuclear-encoded mitochondrial genes encoding TCA 
cycle and ETC components in astrocytes, suggesting deficiencies in 
energy-generating mitochondrial pathways. For example, one of the 
consensus downregulated genes, ATPAF1, is a component of the ATP 
synthase (complex V), and it is known that impairment of the ETC 
beyond complexes I-III increases reactive‑oxygen species generation 
while decreasing ATP production (Shi and Gibson, 2007). In vitro and ex 
vivo studies link mitochondrial dysfunction in astrocytes to amyloid-β. 
Thus, in co-cultures of rat hippocampal neurons and astrocytes, amy
loid-β causes loss of mitochondrial potential and transient mitochondrial 
depolarization, concomitant to activation of NADPH oxidase and 
decrease glutathione production, in astrocytes, but not neurons (Abra
mov et al., 2004). The latter study also shows that loss of membrane 
potential and depolarization of astrocytic mitochondria is prevented by 
antioxidants, and by the administration of glutamate as a substrate for 
the mitochondrial complex I. This suggests that amyloid-β-elicited 
mitochondrial dysfunction in astrocytes is caused by oxidative stress and 
deficits in substrate supply, such that increasing the supply of fuels 
amenable for mitochondrial oxidation including aromatic amino acids 
such as glutamate may be astroprotective. Based on this evidence, we 
interpret the consensus up-regulation of the mitochondrial glutamate 
transporter SLC25A18, and the plasma membrane glutamate trans
porters SLC1A3, SLC7A11 and SLC6A11 (Supplementary file 4) to 
indicate that AD astrocytes may take up glutamate to counteract the 
damage caused by amyloid-β to mitochondrial respiration. Along these 
lines, HADH8, which encodes an enzyme involved in mitochondrial 

β-oxidation, was found upregulated in AD astrocytes by PCA. 
Likewise, the consensus up-regulation in AD astrocytes of the 

monoamine oxidase MAO-B, a dopamine-degrading enzyme located in 
the outer mitochondrial membrane, may be interpreted as an attempt to 
reverse respiratory deficits. This is supported by the recent discovery 
that MAO-B increases the polarization of the inner mitochondrial 
membrane and ATP production by shuttling electrons through the inter- 
membrane space (Graves et al., 2020). MAO-B up-regulation in AD is 
relevant for two reasons. First, the MAO-B ligand (11)C‑deuterium-L- 
deprenyl may serve as a PET-based biomarker of early astrocyte 
dysfunction in AD, as documented in ADAD (Rodriguez-Vieitez et al., 
2016). Second, MAO-B may affect the excitatory/inhibitory balance of 
neural circuits by producing GABA from putrescine, as shown in APP/ 
PS1 mouse hippocampus (Jo et al., 2014). In support of this scenario, the 
genes encoding the GABA transporter SLC6A11/GAT3, which may 
extrude GABA coupled to glutamate uptake, and SLC7A2, which imports 
the putrescine precursor L-arginine, are consensus dysregulated genes 
(Supplementary file 4). 

Taken together, the data support that impaired mitochondrial 
respiration in astrocytes switches gliotransmission to a GABA-dominant 
mode. What may the clinical impact of this switch be? A detrimental 
effect of astrocytic GABA has been proposed based on the beneficial 
effects of the MAO-B inhibitor selegiline on electrophysiological read
outs in APP/PS1 mouse hippocampi (Jo et al., 2014); however, there is 
no benefit of selegiline in patients (Birks and Flicker, 2003), thus raising 
doubts as to whether APP/PS1 mice appropriately model the impact of 
astrocytic GABA in AD. Alternatively, astrocytic GABA might counteract 
the loss of GABAergic tone that has been causally related with neuronal 
hyperactivity, desynchronization of neural circuits, and amyloid-β pro
duction (Lee et al., 2020). Since our regression analyses reveal that 
mitochondrial dysregulation in astrocytes progressively increases in 
advanced pathological stages, and since the up-regulation of MAO-B 
detected by PET in prodromal ADAD is transient (Rodriguez-Vieitez 
et al., 2016), we reason that the two strategies used by the astrocytic 
mitochondria to preserve membrane potential and ETC (i.e., enhanced 
supply of substrates such as aromatic amino acids like glutamate, and of 
electrons via MAO-B) eventually fail. As a consequence, glutathione 
production might be decreased and NADPH oxidase activity increased 
(Shi and Gibson, 2007), perhaps exacerbating oxidative stress and 
overall astrocyte malfunction in advanced AD. 

Pathological-stage dependent up-regulation of ‘plasticity’ and ‘stress 
response’ pathways might explain why, unlike neurons, astrocytes survive in 
AD. The progressive up-regulation of the subcategory ‘ECM’, which in
cludes integrins and proteoglycans, is not surprising considering the 
indisputable adoption of a ‘reactive’ morphology by astrocytes in AD, 
consisting of engrossment of primary and secondary processes due to 
over-expression of the intermediate filament protein GFAP, and 
increased production of ECM proteins (Escartin et al., 2019). More 
intriguing is the consensus up-regulation of ‘hippo signaling’, an 
evolutionarily conserved network with a central role in the regulation of 
cell proliferation, cell fate, organ growth and regeneration (Misra and 
Irvine, 2018), and no reported role in healthy adult astrocytes, despite 
the fact that some of the genes in this pathway are highly specific to 
human adult astrocytes according to τ (e.g., WWC1 τ = 0.91; WWOX τ 
= 0.86, and YAP1 τ = 0.88). YAP1 was, moreover, detected by PCA as a 
relevant gene in the astrocytic phenotype in AD. The up-regulation of 
‘hippo signaling’ in AD astrocytes, as well as the global up-regulation of 
genes involved in brain development may be a manifestation of the well 
documented phenomenon of re-activation of developmental pathways 
in reactive astrocytes that some authors interpret as a failed attempt at 
reprogramming into neural stem cells (Torper and Gotz, 2017), but we 
interpret to be a protective response to facilitate the survival of defective 
astrocytes. In addition, the recent observation that YAP1 regulates scar- 
border formation in spinal cord injury in mice (Xie et al., 2020), suggests 
that hippo signaling is coordinated with the increased production of 
ECM in AD astrocytes. Finally, the consensus dysregulation of the 
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subcategory ‘TNF-alpha’ (Supplementary file 10), and the consensus up- 
regulation of members of ‘TNFalpha’ TNFRSF11B, TNFSF13 and TRA
F3IP2, as well as of members of the IL17 family (Il17D, IL17RB, and 
IL17RD), and of complement factors (CD59, C1S) (Supplementary file 4), 
might be interpreted as detrimental ‘neuroinflammation’, although ev
idence also supports modulatory or protective actions of these factors 
(Masgrau et al., 2017). First, TNFα may facilitate the release of gluta
mate by improving vesicle docking at the astrocyte plasma membrane 
prior to exocytosis (Santello et al., 2011), such that TNFα signaling may 
help adjust gliotransmission in AD astrocytes. Second, the finding that 
Nrf2/IL17D axis acts as an antioxidant protective pathway in stress re
sponses induced by tumorigenic stimuli and viral infections (Saddawi- 
Konefka et al., 2016), supports an astroprotective role of members of the 
IL17 family in AD. Also, members of the complement system have been 
shown to facilitate amyloid-β phagocytosis (Iram et al., 2016). 

4.3. Model of the phenotypical transformation of cortical astrocytes in AD 

The key predictions from our analysis are summarized in Fig. 7A. We 
posit that amyloid-β drives the phenotypical change of astrocytes in AD 
in several stages by causing dysfunction of the endolysosomal/mito
chondrial axis, which, in turn, prompts a change in the balance of 
excitatory/inhibitory neurotransmission. Impairment of mitophagy due 
to endolysosomal malfunction may further exacerbate mitochondrial 
dysregulation. Control2 subjects (cognitively normal/AD-like molecular 
profile) would be at stage a, and AD2 patients (demented, AD molecular 
profile) at stage b. In both a and b, the phenotypical change is complex 
and mixed with regards to possible clinical impact, for changes that may 
disrupt the homeostasis of astrocytes themselves and/or astrocyte- 
neuron communications coexist with changes that may protect astro
cytes and/or their interactions with neurons. The model thus represents 
a departure from simplistic neuroprotective/neurotoxic classifications 
of reactive astrocytes from the point of view of neurons. As recently 
discussed (Escartin et al., 2021), an ‘astrocyte-centric’ stance focused on 
the clarification of the maladaptive or adaptive nature of pathway 
changes in the complex astrocyte biology should be adopted. What is 
then the net impact of the mixed functional changes of reactive astro
cytes in AD? In short, we posit that, despite organelle dysfunction, as
trocytes manage in early disease stages to partially preserve their 
functions, including the modulation of neural circuits, through adaptive 
changes, while they become globally malfunctional in advanced stages. 
Thus, the early changes in astrocyte-neuron interplay may delay the 
onset of clinical symptoms, while detrimental phenomena would prevail 
in stage b. If these predictions are correct, therapies aimed at protecting 
and restoring the functions of the endolysosomal system and mito
chondria to halt the transformation of astrocytes to stage b might help 
arrest the progression of AD. Even if GABA were detrimental, as reported 
in (Jo et al., 2014), preservation of mitochondrial respiration is thera
peutically indicated because increased GABA production, whatever its 
effect, would be the result of mitochondrial impairment. In summary, 
the present study points to prevention of organelle dysfunction in as
trocytes as a therapeutic strategy in AD. These predictions need to be 
tested in transgenic mice or human cellular models that appropriately 
recapitulate the complex transformation of astrocytes in the AD 
continuum. 

5. Conclusions 

Our systems-biology based identification of astrocytic clusters in 
three independent datasets was aimed to extract consensus data of the 
main pathway changes in reactive astrocytes in AD. Arguably, the large 
number of subjects analyzed allowed us to detect molecular heteroge
neity of subjects with the same clinical diagnosis by hierarchical clus
tering. We highlight that manually curated functional annotations were 
implemented to circumvent deficits in astrocyte-specific annotations in 
current platforms. The findings, supported by two independent 

statistical analysis, have led to a model of stage-dependent astrocyte 
dysfunction in AD caused by amyloid-β-elicited damage of the endoly
sosomal and mitochondrial systems. Defective mitophagy due to lyso
somal malfunction may further exacerbate the mitochondrial 
dysfunction caused by Aβ. Future studies may clarify whether the highly 
significant negative correlation between down-regulation of nuclear- 
encoded mitochondrial genes and Braak and CERAD scores means that 
mitochondrion stress in astrocytes contribute to the progression of AD. 
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