
HAL Id: cea-03870393
https://cea.hal.science/cea-03870393v1

Submitted on 24 Nov 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

An approach to bridge ROS 1 and ROS 2 devices into an
OPC UA-based testbed for industry 4.0

Quang-Duy Nguyen, Saadia Dhouib, Yining Huang, Patrick Bellot

To cite this version:
Quang-Duy Nguyen, Saadia Dhouib, Yining Huang, Patrick Bellot. An approach to bridge ROS 1 and
ROS 2 devices into an OPC UA-based testbed for industry 4.0. ONCON 2022 - 1st IEEE Industrial
Electronics Society Annual On-Line Conference, Dec 2022, Online conference, India. �cea-03870393�

https://cea.hal.science/cea-03870393v1
https://hal.archives-ouvertes.fr

An Approach to Bridge ROS 1 and ROS 2 Devices
into an OPC UA-based Testbed for Industry 4.0

Quang-Duy NGUYEN∗, Saadia DHOUIB∗, Yining HUANG∗, and Patrick BELLOT†
∗Université Paris-Saclay, CEA, List, F-91120, Palaiseau, France

†LTCI, Télécom Paris, Institut Polytechnique de Paris, F-91120, Palaiseau, France
Email: quang-duy.nguyen@cea.fr, saadia.dhouib@cea.fr, yinning.huang@cea.fr, patrick.bellot@telecom-paris.fr

Abstract—ROS 1 and ROS 2 are two widely-used robotic
middleware. One of their essential features is to enable two robots
with the same middleware, ROS 1 or ROS 2, to connect and
collaborate directly. However, two robots running two different
middleware can only communicate by additionally using one of
the bridge solutions available in the robotic community. It is even
more challenging when deploying these robots as part of an OPC
UA-based industrial testbed. The first challenge is to network the
robots with other OPC UA devices. Second, a testbed environment
sometimes requires a robot to join the system rapidly and with
minimal configuration for quick experiments. While addressing
the above needs, this paper presents an approach to bridge ROS 1
and ROS 2 robots to an OPC UA PubSub network. The approach
derives from the actual experiences in developing an OPC UA-
based robotic testbed for Industry 4.0 research.

Index Terms—Industry 4.0, OPC UA, ROS 1, ROS 2, PubSub,
Bridge, Testbed

I. INTRODUCTION

The fourth industrial revolution, also known as Industry 4.0,
is an inevitable technological event of the 21st century. It
is about using the most advanced technologies in emerging
fields to radically improve industrial systems’ communica-
tion, automation, and intelligence. Robotics is one of the
nine fundamental pillars forming Industry 4.0 [1]. Indeed,
robots and automated machinery significantly impact today’s
industry: they replace human labor in complex, heavy, and
dangerous activities, besides adding more value and enhancing
performance in manufacturing. In the future, the Industry
4.0 expects autonomous robots to combine with the other
eight technology pillars, such as Digital Twin (DT) and the
Internet of Things (IoT), to put more intelligence, flexibility,
and interoperability into the industry. This vision requires
enormous research and innovation efforts; that also involve
the need for robotic testbeds for Industry 4.0.

Regarding robotic implementation, ROS 1 and ROS 2 are
two widely-used middleware. ROS stands for Robot Operating
System. They are open-source and receive great support from
the robotic community. Technically, ROS 1 includes a set
of libraries to build robot applications and a communication
layer that enables the processes generated by running the
applications to connect and exchange [2]. The mentioned
processes are called ROS 1 nodes. ROS 2 is not another
version of ROS 1 but instead another project. Indeed, ROS
2 adopts a new architectural concept with many redesigns
from the low-level core modules up to high-level application

libraries [3]. On the one hand, the changes enable ROS 2 to
approach the industrial level. On the other hand, they lead to
an issue: ROS 1 nodes cannot directly connect to ROS 2 nodes
since the network protocols of their communication stacks
are different. In detail, ROS 1 uses XMLRPC combined with
TCP/IP-based and UDP-based message transport, and ROS 2
relies on Data Distributed Service (DDS).

ROS 1 and ROS 2 are two excellent tools for building
robotic testbeds. However, a robotic testbed for Industry 4.0
has two further requirements. First, an industrial testbed may
follow some industrial standards. Consequently, robots engag-
ing in the system must adopt these standards to collaborate
with other industrial devices. Second, a testbed may be a shar-
ing experiment base for multiple Industry 4.0 technologies,
use cases, and projects. A robot may rapidly join and quit
the testbed for only one quick test. While regarding the above
needs, this paper aims to share our approach bridging ROS 1
and ROS 2 robots into an OPC UA-based robotic testbed for
Industry 4.0. The core of the testbed is the Open Platform
Communication Unified Architecture (OPC UA) standard,
currently one of the most high-demanded standards in the
industry. Suppose ROS 1 devices constitute a logical network
called ROS 1 space, and ROS 2 devices constitute a logical
network called ROS 2 space. This approach uses UA bridges
to bridge the ROS 1 and ROS 2 spaces to the testbed’s OPC
UA PubSub network. A UA bridge works as a logical portal
with two sides: one side is its ROS space, and the other side is
the OPC UA PubSub network. This approach enables robots
with the same middleware to collaborate in their space with
their default communication method and can still have a route
to exchange with other devices through a UA bridge.

The rest of this paper is organized as follows. Section II
presents this research’s background: the OPC UA standard and
its role in our OPC UA-based robotic testbed for Industry 4.0.
Section III is a literature review of some existing approaches to
bridging ROS 1, ROS 2, and OPC UA devices. Then, Section
IV focuses on explaining this paper’s approach. Section V
proves the concept by presenting a fault-tolerant product
assembly line (PAL) case study. Finally, a brief conclusion
sums up this paper and outlines some future works.

II. BACKGROUND

This section presents first some principles of OPC UA, then
the OPC UA-based testbed for Industry 4.0 at CEA LIST.

This paper is not the latest and official version but an open-access one.

A. OPC UA

OPC UA contains a set of more than 23 specifications
defined by the OPC Foundation to build an industrial sys-
tem with reliability, security, and interoperability [4]. Some
industrial partners also contribute to this standard by proposing
companion specifications (CS). In a limited scope, this paper
focuses only on the specifications related to our contribution
and groups them into two principles: (1) resource representa-
tion and (2) communication and networking.

The principle of resource representation relies on the OPC
UA address space and OPC UA information model. On the one
hand, the OPC address space contains a list of OPC UA nodes
representing all resources of an industrial system [5]. Each
OPC UA node’s identification (Id) comprises two information:
namespace index and identifier. While a namespace index is a
number, an identifier can be numeric, string, globally unique
identifier, or binary data blob. The OPC UA information model
is the schema modeling all the OPC UA nodes and their
relations; in other words, it represents the semantics of the
resources [6]. An OPC UA server manages the OPC UA
address space and provides access to the resources. OPC UA
clients connect to the OPC UA server and can understand
the structure of the resources by learning from its OPC UA
information model. Figure 1 illustrates an OPC UA-based
industrial system. In this figure, an external device uses an
OPC UA client application, such as UaExpert1, to connect to
the OPC UA server and access the system’s resources through
the OPC UA address space. For example, the OPC UA client
can read data from a joint of the robotic arm.

Address Space

 NET

OPC UA-based industrial system OPC UA client

Fig. 1. Example of an OPC UA-based industrial system

Concerning the communication and networking princi-
ple, OPC UA proposes two messaging patterns: request-
response and publish-subscribe. In the request-response pattern
(ResReq), a client sends a request to a server, and the server
answers the request with a response. Note that this pattern
is also known as the client-server pattern. In the publish-
subscribe pattern (PubSub), a subscriber subscribes to a data
source once, but they can receive every new message from the
publisher [7]. With more detail, OPC UA provides two PubSub
communication modes: broker-based and broker-less. Broker-
based means there is a broker in the middle that manages
topics. A topic is an association between a data source and the
information required to create links between the publisher and
subscriber sides. Broker-less relies on the multicast mechanism
of the UDP/IP stack. In detail, a publisher publishes a message

1https://unified-automation.com/products/development-tools/uaexpert.html

to a multicast address. All subscribers who subscribe to the
multicast address can receive the message. To verify if the
message contains the expected data, subscribers check the
three fields PublisherId, WriterGroupId, and DatasetWriterId
in the UA Datagram Protocol (UADP) header of the message.
In this paper, these three information fields are called a triple
of UADP Ids. At a point, a triple of UADP Ids has the same
meaning as a topic in broker-based communication mode.

B. LocalSEA: An OPC UA-based Testbed for Industry 4.0

LocalSEA is a testbed for Industry 4.0 developed and
supervised by CEA List [8]. Its principal mission is to provide
a local experimental base for new research, technologies, and
use cases dedicated to Industry 4.0. Open Platform Commu-
nication Unified Architecture (OPC UA) standard is selected
to be the core of LocalSEA since it is a potential candidate to
overcome the Information Technology (IT) and Operational
Technology (OT) convergence challenge [9]. The challenge
reflects the need in Industry 4.0 to reduce the complexity of
networking between IT and OT layers and view the resources
of both layers in a unified architecture; that involves real-
time monitoring, reliable control, and effective management.
Figure 2 illustrates LocalSEA separated into the IT and OT
layers. At the OT layer, LocalSEA has a robotic cell containing
multiple robots, embedded devices, and an OPC UA server.
The server follows the OPC UA standard to represent and
manage the resources of the robotic cell’s devices. Note that,
in this paper, a device that follows the OPC UA standard
will be called an OPC UA device. All devices connect to
the local wireless network and the primary communication
method is OPC UA PubSub. At the IT layer, applications run
on distributed computers can access the robotic cell through
the OPC UA server using OPC UA ResReq. Some developing
applications are DT with Asset Administration Shell (AAS),
DT with 3D visualization, and a framework for orchestration,
choreography, and supervisor monitoring.

Robotic cell

 Digital Twin: AAS

Digitial Twin: 3D Supervisor Monitoring

 Orchestration & Choreography

 OT layer

 IT layer

 Legend:

PubSub pattern

ReqRes pattern

Fig. 2. The LocalSEA testbed and its IT and OT layers

OPC UA’s resource representation principle improves the
semantics of the whole system. Also, the complexity of
networking between IT and OT layers reduces since all com-
munication methods are from the OPC UA standard.

III. RELATED WORK

Five possible directions for ROS 1, ROS 2, and OPC UA
devices collaborating are: (1) make all devices use the ROS
1 communication method; (2) make all devices use the ROS
2 communication method; (3) make all devices use an OPC
UA communication method; (4) make all devices use another
communication method, none of the previous ones; (5) make
a bridge for ROS 1 space to join an OPC UA network, make
another bridge for ROS 2 space to join the network, and make
non-ROS devices use an OPC UA communication method.

The first and second directions have two requirements. The
first requirement is to install ROS middleware on the OPC UA
server and other devices, to turn them into the hosts of ROS
nodes. Note that ROS means ROS 1 or ROS 2, and non-ROS
means neither of them. The second requirement is to install
bridges that turn all ROS 2 into ROS 1 devices in the first
direction, or turn all ROS 1 into ROS 2 devices in the second
direction. The advantage of the two directions is that many
robots run a ROS middleware by default, and there are many
available documents for installing ROS 1, ROS 2, and bridges
between them. However, when a new device joins the system,
it must be configured to ROS 1 or ROS 2.

The third and fourth directions require all devices to have
extra installation and configuration. The third is more effective
than the fourth since all devices become OPC UA devices;
thus, the OPC UA server can natively understand arrived
messages without conversion. One example of the fourth
direction is the rosbridge middleware that proposes a web
service abstraction layer for ROS 1 [10]. As the authors claim,
this middleware can be extensible for other devices, so it
probably works with ROS 2 and other non-ROS devices.

The final direction is relevant to testbed environments.
Indeed, ROS devices can join and work as default without
particular configuration since a bridge in their ROS space can
help them route data to the outside OPC UA network. The first
requirement is to design the two bridges so they can convert
and forward messages. The second requirement is to map data
sources in ROS spaces with OPC UA nodes in the address
space. Note that the second requirement is necessary to archive
the OPC UA resource representation principle. Concerning the
first requirement, Tripath et al. successfully bridge ROS 1
devices with OPC UA devices using the Eclipse Arrowhead
framework working as a bridge [11]. Ioana et al. introduce
another bridge solution that defines multiple functional devices
for the exchange between DDS and OPC UA sides [12].
However, both provide no mechanism to map ROS spaces’
data sources with OPC UA nodes.

IV. UA BRIDGES FOR ROS 1 AND ROS 2
The approach proposed by this paper follows the fifth

direction in Section III. Logically, a UA bridge is a portal with
two interfaces: one interface for communication with devices
in its ROS space and one OPC UA PubSub interface for
communication with other devices using the OPC UA PubSub
communication method. Technically, a UA bridge is a ROS 1
node when it provides a ROS 1 interface. It will be called ROS

1 UA bridge. Likewise, a UA bridge is a ROS 2 node when it
provides a ROS 2 interface. It will be called ROS 2 UA bridge.
Explicitly, a UA bridge is also a node in the OPC UA PubSub
network. From now on, the network that OPC UA PubSub
nodes communicate will be called an OPC UA PubSub space.
At each interface, a UA bridge plays the role of both publisher
and subscriber, and it respects the communication method of
the corresponding space. Figure 3 illustrates an architecture
with three different spaces, including a ROS 1 space, a ROS
2 space, and an OPC UA PubSub space.

 Legends:

ROS 1 UA bridge node

ROS 2 node
ROS 1 node
OPC UA PubSub node

ROS 2 space

OPC UA PusSub space

ROS 1 space

ROS 2 UA bridge node

Fig. 3. The architecture of ROS and ROS 2 with UA bridges

UA bridge has two jobs. First, it receives OPC UA PubSub
messages at the OPC UA PubSub interface, converts them into
ROS messages, and publishes them in the ROS space through
the ROS interface. Second, it reverses the processes of the first
job when receiving ROS messages at the ROS interface.

Two following subsections present the two main steps to
implementing UA bridges. It is worth mentioning that, since
UA bridges are components of an OPC UA-based system, it is
necessary to have a preamble step to prepare two fundamental
elements: the OPC UA address space and the OPC UA PubSub
communication method. However, these works are out of the
scope of this paper.

A. Mapping OPC UA Nodes to ROS space’s Data Sources

In a ROS space, a topic can represent a data source.
Thus, the mapping from OPC UA nodes to ROS space’s
data source is similar to the mapping from OPC UA node
Ids to ROS space’s topics. This mapping comprises two
partial mappings: (1) mapping OPC UA node Id with OPC
UA PubSub topic, and (2) mapping OPC UA PubSub topic
with ROS space’s topic. Note that an OPC UA PubSub
topic in the broker-less is a triple of UADP Ids. This paper
proposes a unified format, called UaRosSpace, to design
ROS space’s topics: ua_<ROS space ID>_<Node Id name
space index>_<Node Id identifier>. In which, ua is an
unchangeable element identifying the format, <ROS space
Id> provides the ROS space of the mapping data source,
<Node Id namespace index> provides the mapping OPC UA
node’s namespace index, and <Node Id identifier> provides
the mapping OPC UA node’s identifier. The ROS space Id
of a data source from ROS 1’s space is always 1. The ROS
space Id of a data source from the OPC UA PubSub’s space
is always 0. The ROS space Id of a data source from ROS
2’s space can be from 2 to 232, corresponding to the ROS 2
domain ID. Note that with this configuration, a ROS 2 device
must always have a domain ID superior to 1. The Node Id

namespace index value and the Node Id identifier value of a
data source can be found on the OPC UA address space by
querying the corresponding OPC UA node Id.

The mapping from OPC UA node Ids to OPC UA Pub-
Sub topics occurs at the OPC UA server. In the OPC UA
PubSub broker-based mode, the PubSub topics also use the
UaRosSpace format. In the OPC UA PubSub broker-less
mode, the PublisherId value is the value of ROS space, the
WriterGroupId value is designed to the mapping OPC UA
node Id’s namespace index, and the DatasetWriterId value is
designed to the mapping OPC UA node Id’s identifier.

The mapping from OPC UA PubSub topics to ROS space’s
topics occurs at a UA bridge. In the PubSub broker-based
mode, since these two topics use the same format, the UA
bridge can process exchange between two OPC UA PubSub
and ROS interfaces without trouble. In the PubSub broker-less
mode, PublisherId maps to ROS space, WriterGroupId maps
to Node Id namespace index, and DatasetWriterId maps to
Node Id identifier.

B. Designing a UA bridge

Since a UA bridge is a ROS node, it can profit from the
publish and subscribe mechanism in the ROS space. However,
developers must write codes following one OPC UA PubSub
profile2 for communication in the OPC UA PubSub space.

In this approach, a UA bridge uses the same topic for both
actions of publishing and subscribing. Thus, we propose a
loop-prevention mechanism implied in the algorithm of the
UA bridge program as in Figure 4. It relies on the origin and
destination of a message. From a UA bridge’s viewpoint, when
the message’s origin is from its ROS space, the message’s
destination must be in an OPC UA PubSub space or another
ROS space. In reverse, when the message’s origin is from the
OPC UA PubSub space or another ROS space, the message’s
destination must be in its ROS space. While the topic’s ROS
space Id can represent the message’s origin information, the
UA bridge’s two interfaces can be used to detect the message’s
expected destination. In detail, when a UA bridge receives
a message at its OPC UA PubSub interface, the message’s
expected destination should be in ROS space. Continuously,
if the message’s origin contains the ROS space Id that equals
the UA bridge’s ROS space Id, the origin and destination of
the message are the same. Thus, it is a looped message, and
the UA bridge drops it. We can apply the same logic to the
remaining case.

The result of a UA bridge implementation is a ROS pro-
gram. In good practice, a UA bridge program should run on
a stable device. Thus, the UA bridge is always available for
other devices in the same ROS space.

V. CASE STUDY: FAULT-TOLERANT PAL SYSTEM

PAL is "a manufacturing process where the bill-of-material
parts and components are attached one-by-one to a unit in
a sequential way by a series of workers to create a finished

2https://profiles.opcfoundation.org/profilefolder/320

product" [13]. The PAL system deployed at LocalSEA im-
itates the box manufacturing process, in which the finished
product is a box with its cover. In this PAL, there are two
workers. First is Niryo Ned, a 6-axis robotic arm that picks a
cover and places it into a carrier. This procedure is called
a pick-and-place cycle. Second is a human that assembles
a box with the cover received from the carrier to create a
finished product. The primary carrier is a conveyor belt. To
ensure the production line works even when the conveyor belt
accidentally stops working, a TurtleBot3 Waffle Pi plays the
role of a substitute carrier. Technically, Niryo Ned runs ROS
1 Melodic, and TurtleBot3 runs ROS 2 Foxy. The conveyor
belt connects to the controller inside the Niryo Ned through
a wired connection. Also, a Raspberry Pi 3B plus plays as an
OPC UA server and a gateway at the same time. As a gateway,
on the one hand, it creates a hotspot local Wi-Fi network for
LocalSEA and, on the other hand, connects to the Internet. The
two robots join the LocalSEA Wi-Fi. Supervisors can monitor
the PAL from a distance with an Internet connection. Figure
5 illustrates the fault-tolerant PAL system.

Two robots with two different programs can choreograph
due to the states of two elements: park and bucket. The park
represents a position where TurtleBot3 receives a new cover.
The bucket is a container that holds the cover on top of
TurtleBot3. They both have two states: busy or free. When
TurtleBot3 is at the park, the park is busy; when a cover is
in the bucket, the bucket is busy. If the park is busy and the
bucket is free, Niryo Ned can place a cover in the bucket. If
the park is busy and the bucket is busy, TurtleBot3 moves to
the human worker. Otherwise, the two robots wait.

Following the approach defined in Section IV, we imple-
ment one ROS 1 UA bridge and one ROS 2 UA bridge. In
this case study, the ROS 1 space contains ROS 1 nodes hosted
in Niryo Ned, and the ROS 2 space contains ROS 2 nodes
hosted in TurtleBot3. TurtleBot3 has a domain ID equal to
2. In the preamble step, our developers reuse the OPC UA
information model of another PAL monitoring case study as
presented in [14], and the minimal configuration OPC UA
PubSub Broker-less as presented in [15]. In the mapping step,
besides mapping the variables representing the status of bucket
and park to the two topics in the ROS 2 space, our developers
also map other variables required for the monitoring process,
to their related topics. Some variables are the status of the
conveyor belt, the number of covers put on the conveyor belt,
the number of covers put on the TurtleBot3, and the number
of covers in the storage. Figure 6 illustrates the mapping of
the case study. In the bridge designing step, our developers
put the hard-coded deployment of the OPC UA PubSub UDP
UADP profile into the two UA bridges for the publish and
subscribe at their OPC UA PubSub interface. The final result
is two UA bridge programs for two ROS spaces.

Running the case study includes two steps. The first step is
to run the two UA bridge programs. The second step is to run
the business programs of Niryo Ned and TurtleBot3.

Our developers propose a testing scenario for the case study
with two phases. The default phase is when Niryo Ned works

Is the message
from the OPC UA PubSub

interface ?

Drop message

Wait for a new
message

Convert and publish
the message to the

ROS space

No YesYes

No

Start

Does ROS space
Id of the message differ from

 its ROS space Id?

Convert and publish
the message to the

OPC UA PubSub space

Does ROS space
Id of the message equal to

its ROS space Id?

Drop message

No

Yes

Fig. 4. Flow chart of the algorithm of the UA bridge’s program

BucketParkNiryo Ned

Cover

Box

Product

TurtleBot3 Waffle Pi

Conveyor Belt

NET

Storage

OPC UA
Server

Fig. 5. The architecture of the fault-tolerant PAL case study of LocalSEA

ns=6;i=6011

ns=6;i=6043

ns=6;i=6053

ns=6;i=6064

ns=5;i=6180

ns=6;i=6031

ns=6;i=6021

[1,6,6011]

[1,6,6043]

[1,6,6053]

[1,6,6064]

[2,5,6180]

[2,6,6031]

[2,6,6021]

/ua_1_6_6011

/ua_1_6_6043

/ua_1_6_6053

/ua_1_6_6064

/ua_2_5_6180

/ua_2_6_6031

/ua_2_6_6021

OPC UA
Node

Identification
Triple of

UADP Ids ROS Topic

Fig. 6. Mapping from OPC UA node Ids to ROS 1 and ROS 2 topics

with the conveyor belt. The fault-tolerant phase is when the
conveyor belt is off, then Niryo Ned works with TurtleBot3.
The testing scenario requires two other computers. The first
computer opens our supervisor monitoring application to ob-
serve the variables of the OPC UA address space. The second
computer joins the ROS 1 space to turn off the conveyor belt
when necessary. Figure 7 shows a testing sample’s events. In

this testing sample, we put four covers on the storage, so there
are four pick-and-place cycles. The conveyor belt is turned off
at the 25th second.

There are four remarks from the recording events of the
testing scenario. First, the duration when Niryo Ned does a
pick-and-place cycle is around 5 or 7 seconds, depending on
the position to pick and one to place. However, the last pick-
and-place cycle in the Figure is about 16 seconds. The reason
is that TurtleBot3 leaves the park before Niryo Ned can finish
the cycle. Thus Niryo Ned needs to wait until the 76th second.
Second, both Niryo Ned and the OPC UA server can detect
the event that the conveyor belt is off. However, Niryo Ned
recognizes the situation about two seconds before the OPC UA
server does. Since the conveyor belt connects directly to Niryo
Ned by cable, Niryo Ned can recognize the situation instantly.
The OPC UA server is in the OPC UA PubSub space, so it
has an extra delay of two seconds. This extra delay is a sum
of three sub-durations: the data transport time in ROS 1 space
(tTR1), the processing time at the ROS 1 UA bridge (tPB1),
and (3) the data transport time in the OPC UA PubSub network
(tTR0). Third, another method to detect the delay between the
ROS 1 space and the OPC UA PubSub space is to calculate the
duration starting when Niryo Ned places a cover on a carrier
and ending when the OPC UA server detects a counter’s value
change. On average, this duration is about four seconds. It
is a combination of four sub-durations: the time for Niryo
Ned to complete its action before publishing a notification
(tAR1), tTR1, tPB1, and tTR0. Fourth, the duration starting
when Niryo Ned places a cover on TurtleBot3 and ending
when this mobile robot moves forwards is about ten seconds
on average. This duration represents the delay in sending data
from the ROS 1 to the ROS 2 space. It is the combination of
seven sub-durations: tAR1, tTR1, tPB1, tTR0, the processing
time at the ROS 2 UA bridge (tPB2), the data transport time in
the ROS 2 space (tTR2), and the time for TurtleBot3 to load
the action (tAR2). Other details, such as the delays between
the storage counter and the two carrier counters, relate to the
Niryo Ned business program.

From the above observation, we can conclude that the two
UA bridges work. The delays are quite high since the codes
of the programs are non-optimized. For example, the tAR1 is
about two seconds, and the tPB1 is another two seconds.

TurtleBot3

Niryo Ned

Time (s)10 20 30 40 50 60 70 800 5 15 25 35 45 55 65 75 85

OPC UA Server

CB(0)
CT(0)
CS(4)

CB(1)

CS(3)

CB(2)

CS(2)

CT(1)

CS(1)

CT(1)

CS(0)

 Pick
 Place

 Move forward
 Move backward

 Stop and wait Conveyor Belt off Event point
CB/T/S(x): Counter of Conveyor Belt/TurtleBot3/Storage has value x

Legend:

Fig. 7. Recording events of a testing sample of the fault-tolerant PAL case study

VI. CONCLUSION AND FUTURE WORKS

This paper presents an approach to making UA bridges
that enable ROS devices with the same middleware and
configuration to join OPC UA-based robotic testbeds for
Industry 4.0 through one logical portal. Compared to other
existing approaches, this approach is better in three points.
First, it can profit the most from the advances of the OPC UA
standard. Second, it supports ROS 1 and ROS 2 in the same
scenario. Third, new ROS devices can join the system without
configuration when a relevant UA bridge is running. The fault-
tolerant PAL case study, also presented in this paper, proves
that this approach is realizable. However, the case study is
still simple, and the implementation is not optimized enough
to show all difficulties and potential of the approach.

This paper has three points to discuss further. First, in
our testbed, even though the OPC UA standard already
shortens the gap between IT and OT layers: the resource
representation principle to improve semantic interoperability
and the communication and networking principle to reduce
the networking complexity, there are not yet direct connections
between devices of the two layers. Considering this, we plan to
deploy the OPC UA PubSub MQTT JSON profile that enables
the OT layers’ devices to serve data to IoT applications without
passing the OPC UA server.

Second, our UA bridge approach is for general purpose in
developing testbeds for Industry 4.0. It is worth noting that the
path from a data source to a UA bridge, then to the OPC UA
server, is sometimes longer than the direct path from the data
source to the server. For some specific applications that require
the strict constraint on delay time, such as the synchronization
between a physical robot and its DT, developers may need to
deploy more than one UA bridge in a ROS space to create a
shorter path for data transferring.

Third, manual mapping can be a heavy job, especially when
there are too many OPC UA nodes to map. Our future goal
is to develop a plugin in Papyrus3 that facilitates the mapping
design with SysML. The tool should support generating UA
bridges automatically from the SysML models.

3https://www.eclipse.org/papyrus/

ACKNOWLEDGMENT

This work is partially funded by DIMOFAC, an EU Horizon
2020 research and innovation program under grant agreement
No 870092.

REFERENCES

[1] F. Yang and S. Gu, “Industry 4.0, a revolution that requires technology
and national strategies,” Complex & Intelligent Systems, vol. 7, no. 3,
pp. 1311–1325, Jun. 2021.

[2] M. Quigley, B. Gerkey, K. Conley, J. Faust, T. Foote, J. Leibs, E. Berger,
R. Wheeler, and A. Ng, “ROS: an open-source Robot Operating Sys-
tem,” in IEEE International Conference on Robotics and Automation
Workshop on Open Source Software, vol. 3, 2009, p. 6.

[3] S. Macenski, T. Foote, B. Gerkey, C. Lalancette, and W. Woodall, “Robot
Operating System 2: Design, architecture, and uses in the wild,” Science
Robotics, vol. 7, no. 66, p. eabm6074, May 2022.

[4] OPC Foundation, “OPC Unified Architecture - Part 1: Overview and
Concepts,” Industry Standard Specification OPC 10000-1, 2017.

[5] OPC Foundation, “OPC Unified Architecture - Part 3: Address Space
Model,” Industry Standard Specification OPC 10000-3, 2017.

[6] OPC Foundation, “OPC Unified Architecture - Part 5: Information
Model,” Industry Standard Specification OPC 10000-5, 2017.

[7] OPC Foundation, “OPC Unified Architecture - Part 14: PubSub,” Indus-
try Standard Specification OPC 10000-14, 2018.

[8] Q.-D. Nguyen, F. Rekik, Y. Huang, and S. Dhouib, “Early lessons
learned from the development of a local OPC UA-based robotic testbed
for research,” in 2022 IEEE 31st International Symposium on Industrial
Electronics, Anchorage, United States, Jun. 2022, pp. 1–4.

[9] H. M. Park and J. Wook Jeon, “OPC UA based Universal Edge Gateway
for Legacy Equipment,” in 2019 IEEE 17th International Conference on
Industrial Informatics, vol. 1, Jul. 2019, pp. 1002–1007.

[10] C. Crick, G. Jay, S. Osentoski, B. Pitzer, and O. C. Jenkins, “Rosbridge:
ROS for Non-ROS Users,” in Robotics Research. Cham: Springer
International Publishing, 2017, vol. 100, pp. 493–504.

[11] A. Tripathy, J. van Deventer, C. Paniagua, and J. Delsing, “Interoper-
ability Between ROS and OPC UA: A Local Cloud-Based Approach,”
in 2022 5th International Conference on Industrial Cyber-Physical
Systems, Coventry, United Kingdom, May 2022, pp. 1–5.

[12] A. Ioana and A. Korodi, “DDS and OPC UA Protocol Coexistence
Solution in Real-Time and Industry 4.0 Context Using Non-Ideal In-
frastructure,” Sensors, vol. 21, no. 22, p. 7760, Nov. 2021.

[13] N. T. Thomopoulos, Assembly Line Planning and Control. Cham:
Springer International Publishing, 2014.

[14] Q.-D. Nguyen, S. Dhouib, K. Suri, and F. Rekik, “From requirement
specification to OPC UA information model design: A product assembly
line monitoring case study,” in 2022 IEEE 20th International Conference
on Industrial Informatics, Perth, Australia, Jul. 2022, pp. 1–6.

[15] Q.-D. Nguyen, P. Bellot, and P.-Y. Petton, “An OPC UA PubSub
Implementation Approach for Memory-Constrained Sensor Devices,”
in 2022 IEEE 31st International Symposium on Industrial Electronics,
Anchorage, United States, Jun. 2022, pp. 1–7.

	Introduction
	Background
	OPC UA
	LocalSEA: An OPC UA-based Testbed for Industry 4.0

	Related Work
	UA Bridges for ROS 1 and ROS 2
	Mapping OPC UA Nodes to ROS space's Data Sources
	Designing a UA bridge

	Case Study: Fault-Tolerant PAL System
	Conclusion and Future Works
	References

