
HAL Id: cea-03870289
https://cea.hal.science/cea-03870289

Submitted on 24 Nov 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A unified method to design bridges for OPC UA
PubSub networks in the industrial IoT
Quang-Duy Nguyen, Saadia Dhouib, Patrick Bellot

To cite this version:
Quang-Duy Nguyen, Saadia Dhouib, Patrick Bellot. A unified method to design bridges for OPC UA
PubSub networks in the industrial IoT. IEEE CAMAD 2022 - IEEE 27th International Workshop
on Computer Aided Modeling and Design of Communication Links and Networks, Nov 2022, Paris,
France. �cea-03870289�

https://cea.hal.science/cea-03870289
https://hal.archives-ouvertes.fr

A Unified Method to Design Bridges for OPC UA
PubSub Networks in the Industrial IoT

Quang-Duy NGUYEN∗ , Saadia DHOUIB∗ , and Patrick BELLOT†
∗Université Paris-Saclay, CEA, List, F-91120, Palaiseau, France

†LTCI, Télécom Paris, Institut Polytechnique de Paris, F-91120, Palaiseau, France
Email: quang-duy.nguyen@cea.fr, saadia.dhouib@cea.fr, patrick.bellot@telecom-paris.fr

Abstract—Specification part 14 of the Open Platform Commu-
nication Unified Architecture (OPC UA) standard provides five
different profiles to implement the publish-subscribe messaging
pattern. The specification is also called OPC UA PubSub, and its
profiles are called PubSub profiles. Two devices deployed with the
same PubSub profile can exchange and collaborate; however, two
devices deployed with two different PubSub profiles are unable
to communicate. It is a limit for the Industry Internet of Things,
a complex environment where there would be heterogeneous
devices and networks. One approach to overcoming this issue
is to use a bridge for the devices deployed with different PubSub
profiles. In this sense, this paper provides a unified method to
design bridges for OPC UA PubSub networks. The proof-of-
concept experiment, also presented in this paper, is a use case of
bridging PubSub broker-less and broker-based networks.

Index Terms—Industry, IoT, OPC UA, PubSub, Bridge, Design,
Broker-based, Broker-less, Interoperability

I. INTRODUCTION

Recently, Open Platform Communication Unified Archi-
tecture (OPC UA) has become a high-demand standard for
building industrial systems. Its specification part 14, also
known as OPC UA PubSub, presents the details to implement
the publish-subscribe messaging pattern [1]. This pattern is
an asynchronous data exchange mechanism, in which some
components of a system work as subscribers, and some work
as publishers. A publisher manages data sources, generates
data, and sends them to subscribers. A subscriber needs to
subscribe to a data source once and receive newly generated
data as soon as available. OPC UA PubSub proposes two com-
munication modes: broker-less and broker-based. The broker-
less mode uses the multicast approach to spread new data from
publishers to subscribers. This approach relies on the UDP/IP
network protocols stack and requires only common network
infrastructures that support the multicast feature. In detail,
when a publisher sends a message to a multicast address, the
network infrastructure forwards the message to all devices in
the network; however, only the devices already subscribed to
the multicast address can process it. The broker-based mode
requires another computing device playing as a broker. The
broker’s first mission is to manage topics. A topic includes
information of data sources and the details required to create
links between publishers and subscribers. Its second mission
is to receive all data from publishers and forward them to
corresponding subscribers.

OPC UA PubSub defines five profiles1 for the two com-
munication modes: one profile for PubSub broker-less mode
and four others for PubSub broker-based mode. Each PubSub
profile contains two conformance units: a message mapping
and a transport protocol. A message mapping is a guide to
organizing data in a structured format. It is required by the
serialization process for data encoding/decoding. Two types
of message mapping proposed by the OPC UA PubSub are
JSON and UADP. The transport protocol specifies the protocol
used for data exchange in an OPC UA PubSub system. Their
supported protocols are PubSub UDP, MQTT, and AMQP.
Two devices implemented by the same PubSub profile join the
same network and can exchange and collaborate. This network
can be called a PubSub network. Unfortunately, two devices
deployed with two different PubSub profiles cannot communi-
cate directly. It becomes a limitation for the OPC UA system to
work in the Industry Internet of Things (IIoT). Indeed, the IIoT
is an industrial-specific case of the Internet of Things (IoT),
a scenario where "people and things are connected anytime,
anyplace, with anything and anyone, ideally using any network
and any services" [2]. In such complex environment, an OPC
UA PubSub system in the IIoT should support heterogeneous
devices communicated via multiple PubSub networks.

One approach to improving the above limitation is using
a network device to bridge different PubSub networks. This
network device is called a PubSub bridge. This paper aims to
present a unified method to design PubSub bridges.

The organization of this paper is as follows. The second
section identifies the characteristics of a bridge compared
to a forwarder and a gateway. The third section presents
some works related to this research. The fourth section fo-
cuses on the first contribution of this paper: a unified design
method dedicated to PubSub bridges. The second contribution,
presented in the fifth section, specifies a sample of using
the design method: a bridge between a PubSub broker-less
network and a PubSub broker-based network. Finally, a brief
conclusion summarizes this paper and opens a discussion.

II. BACKGROUND

The most fundamental mission of a bridge is to guarantee
that devices can exchange and collaborate with other devices
while they have different connection mediums, use different

1https://profiles.opcfoundation.org/profilefolder/320

This is not the lastest version. For the final and official one, please find on: https://ieeexplore.ieee.org/xpl/conhome/1002097/all-proceedings

https://orcid.org/0000-0002-3517-0945
https://orcid.org/0000-0003-3896-7295
https://orcid.org/0000-0002-1612-2251

network protocols, or have different configurations. However,
besides bridges, some other network devices, such as gateway
or forwarder, seem to have the same goal. This paper calls
these devices by the generic term "inter-connectors" and di-
vides them into three categories as follows. First, a forwarder is
a device that forwards messages from one network to another.
There is no transformation process at the forwarder; in other
words, the input message is the same as the output message.
Second, a bridge is a device that can transform one network
message into another network message and forward them from
one network to another. The information carried in the two
messages are unchangeable. Third, a gateway is a device that
can transform messages and forward them over networks,
and even more, the transformed message may contain other
information different from the information received before the
transformation process. In detail, one or several applications
run by the gateway may process input information to produce
a new output. Figure 1 illustrates the difference between a
forwarder, a bridge, and a gateway.

Forwarder

Bridge

Gateway

 Legend:

Data

Device

Message

Fig. 1. Three categories of inter-connectors: forwarder, bridge, and gateway

All three types of inter-connectors contribute to the in-
teroperability of devices by establishing the communications
between them. To distinguish a bridge from a forwarder and
a gateway, this paper proposes to project them on a stack of
interoperability of four layers, as shown in Figure 2. This stack
is inspired by the similar stack in the thesis of Nguyen [3].

Interoperability of connection medium
Interoperability of network protocol

Interoperability of data format
Interoperability of data semantic

Interoperability level

Syntactic

Semantic

Technical

Fig. 2. Stack of Interoperability between devices

Interoperability of connection medium is when two
devices exchange and process signals. The physical media
carrying signals can be electrical, optical, or wave. When two
devices use the same physical media, one plays the role of a
sender, and the other plays the role of a receiver, or both can be
receiver-sender. When the two devices use two different physi-
cal media, the inter-connector in the middle must support both
physical media. For example, an inter-connector connects a

device by cable and another device using its wireless antenna.
Inside the inter-connector, signals are two-sides converted by
software or hardware components. The forwarder, bridge, and
gateway must support this interoperability level.

Interoperability of network protocol: is when two devices
use a set of network protocols to ensure that data sent from
one side can be received and processed on another side over
the network. Each protocol has a different goal, but they all
provide rules to organize data into their pre-defined protocol
data unit (PDU). Some protocols even have rules not only for
one data but also for data sources, such as the topic mechanism
of the MQTT protocol [4]. In this sense, they contribute
to syntactic interoperability. Some protocols may guarantee
other network requirements, such as the quality of service and
security. Thus, they contribute to technical interoperability.
When the two devices use two sets of different network
protocols, the inter-connector in the middle must support both
the two sets. For example, an inter-connector has an interface
that supports the set of protocols of the UDP/IP stack for one
device and has another interface for the set of the TCP/IP stack
for another device. It must establish a mechanism to redirect
data flows between the two interfaces. The forwarder, bridge,
and gateway must support this interoperability level.

Interoperability of data format: is when a device can
extract information received from another device due to an
agreement in structured data format sharing between them.
The data format can be the order of pieces of information,
or it follows a convention of using markup keywords that
helps distinguish and recognize pieces of information. When
two devices use two different message mappings, the inter-
connector in the middle must support both and have a strategy
to transform data from one format to another. For example,
a bridge can support the UADP message mapping for one
device and support the JSON message mapping for another
device. Then, it can transform data from UADP into JSON
format and vice versa. Only the bridge and gateway support
this interoperability level.

Interoperability of data semantic: is when two devices
share the same information model so that they can understand
the meaning of the exchanged information and use them
correctly in applications. When two devices have different
information models and run different applications, an inter-
connector in the middle runs applications that can understand
the input information of one side, operates complex computa-
tions, such as aggregation and reasoning, and produce output
usable for the other side. Many IoT gateways support these
complex computations [3]. Only the gateway supports this
interoperability level.

To recap: while designing a bridge, it is necessary to
consider the three lower layers of the stack of interoperability.

III. RELATED WORK

Several commercial OPC UA inter-connectors are available
in the market. Some of them are products of industrial mem-
bers of the OPC Foundation2. However, to the best of our

2https://opcfoundation.org/products

knowledge, no academic research analyzes and conceptualizes
the characteristics of inter-connectors to produce a unified
design method dedicated to OPC UA PubSub bridges.

The MQTT-SN standard, a version of the MQTT standard
dedicated to sensor networks, provides a network solution for
the IoT with some new-defined inter-connectors [5]. In detail,
it has some modifications dedicated to constrained devices,
such as reducing the protocol header’s size, using UDP instead
of TCP/IP as in MQTT, and shortening topics by replacing
long text with two-bytes identification. To afford the above
advanced, it defines two new network devices. First is the
data forwarder that allows extending the distance between
devices. This device is in the forwarder category of Section
II. The second device is the MQTT-SN gateway. On the
one hand, the MQTT-SN gateway plays as an MQTT client
to maintain the connection with an MQTT broker and be
a part of the corresponding MQTT network. On the other
hand, it receives UDP messages from the MQTT-SN network.
This inter-connector converts UDP to TCP and maps MQTT-
SN topics with MQTT topics. Thus, the MQTT-SN gateway
corresponds to a bridge in our definition.

As in this research, Dave et al. [6], [7] provide a concept
of interoperability in the IoT and rely on it to classify the
complexity of IoT systems. Our vision is different from theirs
on two points. First, our interoperability stack serves as a tool
to distinguish different network inter-connectors. Second, the
final goal of this research is a unified method to design bridges
dedicated to OPC UA PubSub networks.

IV. OPC UA PUBSUB BRIDGE DESIGN METHOD

A PubSub bridge has two principles. First, it can join
multiple networks, so it must have multiple interfaces. In each
interface, it plays the role of both a publisher and subscriber.
For example, a PubSub bridge having two interfaces, A and
B, can subscribe to topics, receive and process messages at
interface A, then publish processed messages to interface B.
It acts the same in the reversed sense from interface B to A.
The second principle is that the PubSub bridge must respect
the OPC UA standard. In other words, while designing a bridge
for PubSub networks, the golden rule is to adopt the net-
work protocols (transport and security protocols) and message
mappings defined in the OPC UA profiles. However, bridge
designers have no constraint when choosing communication
mediums to integrate into PubSub bridges.

Figure 3 presents the basic steps to develop a PubSub
bridge. The steps are grouped by the three lower layers of the
interoperability stack presented in Section II. The red stars are
pinned at the corner of the steps that must strictly follow the
golden rule. The arrows show the flow to implement the steps.
1.1 Communication Medium Verification: is the step to verify

the communication mediums of the PubSub networks in
which the bridge will join. When the PubSub bridge has
network interface cards that support these mediums, then
this step is valid.

1.2 Communication Medium Setup: is the step to set up and
ensure that a PubSub bridge can exchange signals with

1.1. Communication
Medium Verification

1.2. Communication
Medium Setup

Valid?

2.1. Network Protocol
Verification

3.2. Data Format
Transformation

Valid?

2.2. Network Protocol
Setup

2.3. Data Flow
Mapping

3.1. Data Format
Verification

Valid?
 Yes

 No

 No

 Yes

 Yes

 No

Legend:
Interoperability of
connection medium

Interoperability of
network protocol

Interoperability of
data format

Fig. 3. Steps to design and develop a PubSub bridge

other devices in a PubSub network using a communica-
tion medium. It can be a simple action, such as turning on
the Wi-Fi. It is possible to use portable network interface
cards when necessary.

2.1 Network Protocol Verification: is the step to verify the
network protocols of the PubSub networks in which the
PubSub bridge will join. As defined in OPC UA PubSub,
the transport protocols that the PubSub bridge can support
are the protocols of TCP/IP and UDP/IP stacks, MQTT
protocol, and AMQP protocol. The security protocols that
the bridge can support are AES128-CTR and AES256-
CTR. When the networks use the mentioned protocols
for communications, this step is valid.

2.2 Network Protocol Setup: is the step to deploy one or
some of the above network protocols in an interface of
the bridge to ensure that the PubSub bridge can exchange
data with other devices in the corresponding network.

2.3 Data Flow Mapping: is the step to redirect the data flows
from an interface to other interfaces of the PubSub bridge.
Bridge designers need to define mapping rules for them.

3.1 Data Format Verification: is the step to verify the message
mapping methods of the networks in which the bridge
will join. The message mapping methods that the PubSub
bridge supports are UADP and JSON. When the PubSub
networks use these two message mappings to format data,
this step is valid.

3.2 Data Format Transformation: is the step to transform the
data format required by the serialization at an interface
into another data format required by the serialization at
another interface. This step can be ignored when two
sides use the same message mapping.

Following the arrows, the three verification steps, (1.1), (2.1),
and (3.1), should be performed first. This approach allows
bridge designers to save time by quickly recognizing if all
conditions to make a PubSub bridge for their target networks
are satisfied. If all are valid, they can step by step follow (1.2),
(2.2), (2.3), and (3.2).

V. BRIDGING PUBSUB UDP UADP AND PUBSUB MQTT
UADP NETWORKS

This section presents a use case of our bridge design
method: a PubSub bridge for PubSub UDP UADP profile3 and
PubSub MQTT UADP profile4 networks. This former profile is
for PubSub broker-less mode, and the latter one is a profile of
broker-based mode. The two first subsections briefly describe
the basic concepts of the two profiles. The third subsection
focuses on the proof-of-concept experiment and its results.

A. PubSub UDP UADP Profile

PubSub UDP UADP comprises the UADP message map-
ping for serialization and the UDP protocol for transport.
While UDP is quite popular as a part of the UDP/IP stack,
UADP is a specific message mapping defined in the OPC
UA specification part 14. UADP stands for UA Datagram
Protocol. UADP message mapping is a guide for binary
data encoding/decoding. The application data after the UA
binary encoding is encapsulated to become a UADP network
message. Then, the UADP network message can be put into
a datagram, such as a UDP datagram, to become a network
message. On the receiver side, the UADP network message is
extracted from the network message. The UA binary decoding
uses UADP message mapping to decode the datagram for the
application data. Figure 4 illustrates the relation of UADP
message mapping with the UA data encoding/decoding. Note
that the message-oriented middleware (MOM) in this figure
can be a broker in the broker-based mode and be a network
infrastructure supporting the multicast address mechanism in
the broker-less mode.

Message
Oriented

Middleware

(MOM)

 Subscriber Publisher
 UADP
 Message
 Maping

 Legend:
Process Data Message Device

UA Data Encoding

Application Data

UA Data Decoding

Application Data

UADP Network Message UADP Network Message

Convention

Fig. 4. Data exchange using UADP message mapping of OPC UA PubSub

Three fundamental parameters that a UADP network
message requires are PublisherId, WriterGroupId, and
DataSetWriterId. From now on, this paper uses the term "triple

3http://opcfoundation.org/UA-Profile/Transport/pubsub-udp-uadp
4http://opcfoundation.org/UA-Profile/Transport/pubsub-mqtt-uadp

of UADP IDs" to mean these three parameters. A subscriber
can further process a UADP network message based on the
triple of UADP IDs. In detail, PublisherId is the identifier
of a publisher, that is, a device that sent the UADP network
message. DataSetWriterId is the identifier of a dataset writer,
that is, the data source. WriterGroupId is the identifier of
an abstracted group of dataset writers sharing one or several
similar features.

PubSub UDP is about reusing the multicast addresses to
publish data. For example, a group of subscribers can listen
to the multicast address 224.0.0.2 to wait for data from a data
source. The publisher managing this data source can send data
to the subscribers by publishing the data to 224.0.0.2.

B. PubSub MQTT UADP Profile

PubSub MQTT UADP profile comprises the UADP message
mapping for serialization and the MQTT protocol for transport.
Since Subsection V-A has already introduced the principle
of the UADP message mapping, the following focuses on
the concept of the MQTT protocol. It is a lightweight open
messaging protocol for the broker-based mode [4]. In MQTT
specification, the broker is an MQTT server that serves
its MQTT clients, which are publishers and subscribers. It
defines several messages to manage the communication be-
tween a broker, and publishers, subscribers. Each message
has a meaning and contains different information. The com-
munication between a broker and MQTT clients relies on
the TCP/IP standard. The seven basic MQTT messages are
CONNECT, CONNACK, PINGREQ, PINGRESP, PUBLISH,
SUBSCRIBE and DISCONNECT. The couple CONNECT and
CONNACK messages are for creating a connection between
a broker and MQTT clients. This connection is called the
MQTT connection. The couple PINGREQ and PINGRESP
are to update the keep-alive value to maintain the MQTT
connection between a broker and its clients. The SUBSCRIBE
message is from a subscriber towards the broker to subscribe
to topics. The PUBLISH message sent from a publisher to the
broker contains published data. The DISCONNECT message
is used to end a MQTT connection.

C. Use Case

This use case relies on the need for the LocalSEA testbed of
CEA List [8]. All the robots and devices of LocalSEA connect
locally inside an OPC UA PubSub broker-less network. The
testbed cannot satisfy the new working scenarios which require
the devices to publish data over the Internet using MQTT
protocol. Thus, the strategy is to develop a bridge for the
PubSub UDP UADP and PubSub MQTT UADP networks.

Our system developers then follow the method in Section
IV. In step (1.1), our developers verify that all devices in
LocalSEA have a port RJ45 for Ethernet cable connections
and a standard Wi-Fi antenna for wireless connections. We
choose a laptop to work as a PubSub bridge. Since the laptop
supports the two types of connection mediums, the first step
is valid. Steps (2.1) and (3.1) are also valid as, from the
beginning, the development strategy of the testbed is to adopt

all network protocols of the OPC UA standard. Step (1.2) is
to branch an Ethernet cable to the laptop. Its Wi-Fi antenna is
always on. Next, in step (2.2), our developers install the library
and develop programs so that the laptop can work as both a
publisher and a subscriber for both required PubSub profiles.
The network interface for the PubSub UDP UADP profile
communications has wired connections (eth0), and the network
interface for the PubSub MQTT profile communications has
wireless connections (wlan0). In order to redirect the data
flows from wlan0 to eth0 and vice versa, it is necessary to map
MQTT topics to triples of UADP IDs. The ideal candidate
to standardize the mapping rules is to use the Sparkplug B
standard [9]. It defines the rules to define MQTT topics and
payloads for use in the industry. A Sparkplug B topic is a
text composed of five elements. In which, Sparkplug version
(namespace) and message type are selective elements. In
other words, users can only select terms in the vocabulary
defined in Sparkplug B but cannot create a new one. The
other three: groud id, edge node id, and device id, are
open for users to define. It is possible to associate them
with the triple of UADP IDs. In detail, our developers map
PublisherId to edge node id, WriterGroupId to group id,
and DatasetWriterId to device id. In this sense, a triple of
UADP IDs can be converted into an MQTT topic following
the SparkPlug B topic format, and vice versa. In the final step
(3.2), since both PubSub profiles use UADP data format, no
data format transformation is required. Figure 5 illustrates our
PubSub bridge. Note that the PubSub bridge and MQTT broker
can run on one device, as in our scenario, or can run on two
separate devices. In this paper, we call the device in the first
case a BnB (Bridge & Broker) device. The PubSub bridge
subscribes to triples of UADP Ids in the network interface
against the local wireless network, and subscribes to topics in
the interface connecting to the MQTT broker.

PubSub
Bridge

MQTT
Broker

 Mapping Rules:

Subscribe:
Publish:

Subscribe:
Publish:

 Legend:
 TCP connection
 UDP connection
 MQTT topic
 Triple of UADP IDs

BnB Device

Subscribe: &
Publish: &

Fig. 5. PubSub bridge for PubSub UDP UADP and MQTT UADP networks

In order to evaluate the PubSub bridge, our developers
design a test case as in Figure 6. In this test case, there are
five main elements. First, an OPC UA server plays the role of
a publisher that publishes a data value periodically every five
seconds. The data value increases by 0.1 after each publication.
Next, three devices, called echoer 1, echoer 2, and echoer 3,
have three different paths to connect to the OPC UA server.
Their mission is to receive and modify the data value and
repeat the modified data value back to the OPC UA server.
To realize the idea, they perform the following jobs: (1) listen
to receive network messages, (2) extract the data value from

each received network message, (3) add a number to it to
produce a new data value, (4) put the new data value and a new
creation timestamp in a new message, and (5) send the new
network message back to the OPC UA server. In job (3), three
echoers add three different numbers to the received data. The
final element is a BnB device that guarantees communications
between the OPC UA server and the three echoers.

Technically, the OPC UA server publishes to the triple
of UADP Ids {101,1001,10002} and subscribes to the three
triples of UADP Ids: {101,1001,10001}, {101,1001,10011},
{101,1001,10021}. Inside the BnB device, the PubSub bridge
maps the four mentioned triples of UADP Ids to four topics.
It subscribes to the four topics on the connection side with
the MQTT broker and the four triples of UADP Ids on
the side with the OPC UA server. Echoer 1 is an external
device of the LocalSEA’s network but is an internal device
of the CEA List’s network. Echoer 2 is an internal device
of the LocalSEA’s network. Both echoers use PubSub MQTT
UADP profile and subscribe to the topic mapped to the triple
of UADP Ids {101,1001,10002} at the BnB device’s MQTT
broker. Echoer 3 is an internal device of LocalSEA, and it
connects directly to the OPC UA server through an Ethernet
cable connection. It uses the PubSub UDP UADP profile and
can process UADP messages containing the triple of UADP
Ids {101,1001,10002}. In other words, Echoer 3 subscribes
directly to the triple of UADP Ids {101,1001,10002}.

 Legend: Cable connection Wi-Fi connection

OPC UA server
Echoer 3 Echoer 2

LocalSEA Network

Echoer 1

CEA List Network

BnB Device

Fig. 6. Physical Architecture of the experimentation

After launching the test scenario, we can access the address
space of the OPC UA server using UaExpert5. The three OPC
UA variable nodes data_echo_1, data_echo_2, data_echo_3
are created to hold the data returned respectively from echoer
1, echoer 2, and echoer 3. The historical values of each
variable node are recorded in the History Data window, as
in Figure 7. With each variable node, there are nine instances.
Each instance has a data value projected on the vertical Y-axis
and a message creation timestamp projected on the horizontal
X-axis. Table I shows the detail of these timestamps.

The above result has three meanings. First, it is obvious to
conclude that the PubSub bridge produced from our design
method works. Second, time records in Table I show that the
delay of the echoer 3 is the smallest. The delay of echoer

5https://unified-automation.com/products/development-tools/uaexpert.html

Fig. 7. History data received from the three echoers shown on UaExpert

TABLE I
TIME WHEN THE ECHOERS CREATE NEW A MESSAGE TO SEND TO THE

OPC UA SERVER (SOURCE TIMESTAMP)

No. t(Echoer 1) t(Echoer 2) t(Echoer 3)
1 09:35:11.264 09:35:11.272 09:35:11.264
2 09:35:16.265 09:35:16.272 09:35:16.264
3 09:35:21.265 09:35:21.272 09:35:21.264
4 09:35:26.265 09:35:26.272 09:35:26.264
5 09:35:31.265 09:35:31.272 09:35:31.264
6 09:35:36.265 09:35:36.272 09:35:36.264
7 09:35:41.265 09:35:41.272 09:35:41.265
8 09:35:46.265 09:35:46.273 09:35:46.265
9 09:35:51.266 09:35:51.273 09:35:51.265

1 is nearly the same as echoer 3; sometimes, they have a
tiny difference of 0.001 seconds. The delay of the echoer
2 is the largest. Its gap from the delay of the echoer 3
is about 0.008 seconds. The reason for such differences is
that connection mediums between echoer 1 and the OPC UA
server, and between echoer 3 and the OPC UA server are
wired cables, while the connection mediums between echoer
2 and the OPC UA server are a mix of wired and wireless.
Then, it is possible to conclude that the transmission of wired
networks is still slightly better. Third, with the same conditions
of communication mediums and a small-scale scenario, there
is nearly no transmission difference between a PubSub UDP
UADP network and a PubSub MQTT network.

VI. CONCLUSION AND DISCUSSION

In conclusion, this paper presents a unified method to design
bridges dedicated to OPC UA PubSub networks. To determine
the requirements of a bridge, we projected it into a stack
of interoperability and compared it to other similar network
device types. A use case of designing a PubSub bridge for two
PubSub profiles: UDP UADP and MQTT UADP, and using it
in the LocalSEA testbed, is proof of our concept. This bridge
becomes a part of the testbed’s toolset.

This paper has two points to discuss further. First, we plan to
upgrade the LocalSEA testbed with the 5th generation mobile
network (5G) technologies. In theory, our design method can
help communicate new 5G devices with the old ones. However,
since the OPC Foundation and the 5G Alliance for Connected
Industries and Automation are collaborating to produce new
specifications for OPC UA over industrial 5G, it is necessary
to consider their updates before taking action.

Second, the implementation of the PubSub bridge, presented
in Section V-C, profits from some open-source libraries, in-
cluding open625416 and Eclipse Mosquitto 7. Since several
implementations and libraries for the AMQP transport protocol
are also available; thus, it is possible to reuse such tools to
realize this conformance unit. Unfortunately, to the best of
our knowledge, there is not yet any tool that supports the data
format transformation step (3.2) between OPC UA PubSub
UADP and JSON. Then, it can be challenging to implement
the PubSub bridges that require this feature.

Our near future goal is to automate the network protocol
setup (3.2) step. Following the SysML-based model-driven
approach, we aim to model communications between devices
using SysML internal block diagrams (IBD). The connectors
between the blocks in the IBD will be refined to specify
network protocols. Theoretically, when the system model has
all network protocols required by a bridge, it is possible to
generate the bridge automatically from the SysML model. This
work will be a plugin for Eclipse Papyrus8, an open-source
model-based engineering tool developed by CEA List.

ACKNOWLEDGMENT

This work is partially funded by DIMOFAC, an EU Horizon
2020 research and innovation programme under grant agree-
ment N°870092.

REFERENCES

[1] OPC Foundation, “OPC Unified Architecture - Part 14: PubSub,” Industry
Standard Specification OPC 10000-14, 2018.

[2] International Telecommunication Union, “ITU Internet Reports - The
Internet of Things,” Nov. 2005.

[3] Q.-D. Nguyen, “Interoperability and Upgradability Improvement for
Context-Aware Systems in Agriculture 4.0,” Ph.D. dissertation, Université
Clermont Auvergne, Aubière, France, 2020.

[4] Oasis, “MQTT Version 3.1.1,” OASIS Standard v3.1.1, Sep. 2014.
[5] A. Stanford-Clark and H. L. Truong, “MQTT For Sensor Networks

(MQTT-SN) Protocol Specification,” IBM Corporation, Technical report
v1.2, 2013.

[6] M. Dave, M. Patel, J. Doshi, and H. Arolkar, “Ponte Message Broker
Bridge Configuration Using MQTT and CoAP Protocol for Interoper-
ability of IoT,” in Computing Science, Communication and Security.
Singapore: Springer Singapore, 2020, vol. 1235, pp. 184–195.

[7] M. Dave, J. Doshi, and H. Arolkar, “MQTT- CoAP Interconnector: IoT
Interoperability Solution for Application Layer Protocols,” Oct. 2020, pp.
122–127.

[8] Q.-D. Nguyen, F. Tmar, Y. Huang, and S. Dhouib, “Early lessons learned
from the development of a local OPC UA-based robotic testbed for re-
search,” in IEEE 31st International Symposium on Industrial Electronics,
Anchorage, Alaska, United States, Jun. 2022, pp. 1–4.

[9] Eclipse Foundation, “Sparkplug : MQTT Topic & Payload Definition,”
Technical report v2.2, 2019.

6http://www.open62541.org/
7https://mosquitto.org/
8https://www.eclipse.org/papyrus/

	Introduction
	Background
	Related Work
	OPC UA PubSub Bridge Design Method
	Bridging PubSub UDP UADP and PubSub MQTT UADP Networks
	PubSub UDP UADP Profile
	PubSub MQTT UADP Profile
	Use Case

	Conclusion and Discussion
	References

