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SUMMARY
An emerging view regarding neurodegenerative diseases is that discreet seeding of misfolded proteins leads
to widespread pathology. However, the mechanisms by whichmisfolded proteins seed distinct brain regions
and cause differential whole-brain pathology remain elusive. We used whole-brain tissue clearing and high-
resolution imaging to longitudinally map pathology in an a-synuclein pre-formed fibril injection model of Par-
kinson’s disease. Cleared brains at different time points of disease progression were quantitatively
segmented and registered to a standardized atlas, revealing distinct phases of spreading and decline. We
then fit a computational model with parameters that represent a-synuclein pathology spreading, aggrega-
tion, decay, and gene expression pattern to this longitudinal dataset. Remarkably, our model can generalize
to predicting a-synuclein spreading patterns from several distinct brain regions and can even estimate their
origins. This model empowers mechanistic understanding and accurate prediction of disease progression,
paving the way for the development and testing of therapeutic interventions.
INTRODUCTION

Parkinson’s disease (PD) is the second most common neurode-

generative disorder. It is characterized by postural instability,

tremor, rigidity, and bradykinesia (Goetz, 2011; Kalia and Lang,

2015). These clinical manifestations are caused primarily by

loss of dopaminergic neurons from the substantia nigra. The hall-

mark pathology of PD is the presence of Lewy bodies, cyto-

plasmic neuronal inclusions composed of misfolded aggregates

of the protein a-synuclein (a-syn) (Dickson, 2012; Goedert et al.,

2013; Kalia and Lang, 2015; Oliveira et al., 2021; Spillantini et al.,

1997). A long-standing hypothesis about the etiopathogenesis of

this debilitating disease has been the Braak hypothesis—which

posits that pathological a-syn seeds form early in the disease

and subsequently spread through the nervous system, corre-

lating with the progression of motor and cognitive symptoms

(Beach et al., 2009; Braak et al., 2002, 2003). An exciting area

in neurodegenerative disease research is the emerging phenom-

enon of prion-like spreading of neurodegenerative disease pro-

teins, including a-syn in PD (Aguzzi and Rajendran, 2009; Angot

et al., 2010; Cushman et al., 2010; Guo and Lee, 2014; Jucker
This is an open access article under the CC BY-N
and Walker, 2013). Prions are well established as the protein-

based infectious agent underlying the spongiform encephalopa-

thies (for example, bovine spongiform encephalopathy in cattle

and Creutzfeldt-Jakob disease in humans). In these rare, albeit

devastating, diseases, the prion protein, PrP, converts from the

normal soluble form to the aggregated self-templating infectious

form. This process initiates an inexorable spread of pathology

and contingent neurodegeneration throughout the brain (Aguzzi

and Calella, 2009; Prusiner, 1998). But could this phenomenon

extend to the more common neurodegenerative diseases like

PD?

Early hints of this type of possibility came frompostmortem an-

alysesof individualswhohad received fetal nigral transplants as a

PD treatment and then had subsequently died several years later

and come to autopsy (Kordower et al., 2008; Li et al., 2008). In

some of the fetal grafts (which were only 11–16 years old at the

time of autopsy), Lewy bodies, comprised of a-syn fibrils, were

present. The findings were startling because they suggested

the possibility that somehow a-syn aggregates from the

host diseased tissue propagated to the new graft tissue. These

findings were consistent with the long-standing Braak
Cell Reports 41, 111631, November 8, 2022 ª 2022 1
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hypothesis—that PD pathology seems to spread through the

brain in anatomically defined ways (Braak et al., 2003).

Although several studies have questioned this ‘‘prion-like’’

hypothesis owing to its inability to explain the sparsity of staged

distributions in postmortem human PD brains (Surmeier et al.,

2017), studies in primary neurons and animal models demon-

strate that a-syn pathology can and does spread in a cell-to-

cell manner, causing impairments in excitability and ultimately

leading to neuronal degeneration (Desplats et al., 2009; Hansen

et al., 2011; Volpicelli-Daley et al., 2011). Injecting a-syn fibrils

into a-syn-overexpressing transgenic mice causes pathology

and degeneration (Luk et al., 2012b). Importantly, a-syn fibrils in-

jected into wild-type mice causes spread of pathology along

anatomically interconnected brain regions, decrease in tyrosine

hydroxylase-positive dopaminergic neurons, and results inmotor

impairments (Luk et al., 2012a). Countering the argument that

these results could be a secondary consequence of a signaling

pathway induced by aggregated a-syn, injection of a-syn fibrils

into a-syn knockout mice causes no spread of pathology, no

degeneration, and no motor impairment. Furthermore, injection

of fibrils ina-synheterozygousmice causes a reduction in pathol-

ogy and a reduction inmotor impairments (Luk et al., 2012a). This

proves that spreading is a-syn dependent. These observations

have been extended to rats, non-human primates, and in human

neurons (Bieri et al., 2019; Gribaudo et al., 2019; Paumier et al.,

2015; Prusiner et al., 2015; Recasens et al., 2014; Shimozawa

et al., 2017). These results point to a-syn trans-neuronal

spreading playing a significant role in neurodegeneration in PD.

A picture emerges in which a small amount of a-syn fibrillar

seeds (either formed spontaneously in the human brain or by

direct injection into the mouse brain) can template the conver-

sion of endogenous a-syn to an aggregated state and set in mo-

tion a flywheel that drives the nervous system inexorably toward

disease. The big challenge now is to define how these aggre-

gates spread from one brain region to the next. Are some regions

selectively vulnerable? Are others resilient? These questions will

need to be answered across space and time. Several recent

studies have applied computational network diffusion models

to predict the early stages of a-syn spreading patterns (Hender-

son et al., 2019a; Pandya et al., 2019), providing evidence that

anatomical connectivity can accurately predict these patterns.

Such spatiotemporal models will be crucial for further under-

standing and ultimately treating a progressive disease like PD

at variable points of its progression. Recent studies have also

used transgenic animal models and cell-specific labeling tech-

niques to explore the genetic determinants behind a-syn

spreading (Henderson et al., 2020; Henrich et al., 2020), indi-

cating that levels of gene expression, such as endogenous

a-syn or GBA1, are additionally important factors. However, pre-

vious studies did not quantify full three-dimensional whole-brain

pathology and did not report spreading patterns beyond

6 months post-injection (MPI). We hypothesized that both a full

spatial representation and tracking the later stages of spreading

would be crucial in characterizing changes in pathology and

degeneration that are known to occur in such progressive neuro-

degenerative diseases.

Here, we used tissue clearing and light-sheet fluorescencemi-

croscopy to three-dimensionally image a-syn pathology in the
2 Cell Reports 41, 111631, November 8, 2022
whole mouse brain, as well as a computational pipeline for

anatomically mapping each aggregate to the Allen Reference

Atlas (ARA). Merging the data into the ARA coordinate system al-

lowed comparisons with previous studies that mapped meso-

scale axonal projections between neuroanatomical regions (Oh

et al., 2014) and spatial transcriptomics across many genes

(Lein et al., 2007). Statistical comparisons of brain maps at

various stages of disease progression revealed a biphasic

spreading and decay curve with differential timing by region.

Furthermore, tracking the size of each a-syn aggregate longitu-

dinally across regions uncovered a pattern of steady increase

and rapid decline of mean aggregate size per region, implying

both prion-like aggregation and subsequent neurodegeneration.

To capture these simultaneous effects, we developed a compu-

tational model that incorporates spreading, aggregation, decay,

and spatial gene expression of pathology across thewhole brain.

The development and validation of this model provides a founda-

tion for tracking both the origin and progression of this highly

complex disease.

RESULTS

Whole-brain quantification of a-syn pathology using
tissue clearing and light-sheet microscopy
The direct injection of a-syn pre-formed fibrils (PFF) triggers

whole-brain pathology and neurodegeneration, serving as a

robust model of PD (Henderson et al., 2019b; Luk et al.,

2012a). To track pathology throughout disease progression,

we ipsilaterally injected mice aged 8–10 weeks with a-syn

PFFs in the striatum, or caudoputamen, and processed mouse

brains for immunohistochemistry at various time points up to

18 MPI. (Figure 1A). Building off of recent advancements in

three-dimensional whole-brain immunolabeling and imaging,

we optimized the iDISCO+ protocol to immunolabel a-syn ag-

gregates (using an antibody to specifically detect aggregated

endogenous a-syn phosphorylated on serine 129) (Renier

et al., 2014, 2016) and imaged samples using a light-sheet mi-

croscope (Figures 1B and S1). We validated virtual sections

from these three-dimensional datasets against traditional serial

histology (Figure S2) and found them to be consistent with pre-

vious studies that used the same injection site (Bieri et al.,

2019; Henderson et al., 2019a; Luk et al., 2012a), with pathology

developing in both the ipsilateral striatum, intermediate layers of

the cortex, and substantia nigra at both 2 and 6MPI (Figure S2A).

After imaging, we used a quantification pipeline building on

several open source software tools, such as Ilastik (Berg et al.,

2019) (machine learning library) and ClearMap (Renier et al.,

2016) (registration library), to detect each a-syn aggregate and

assign it to a voxel or anatomical region from the ARA

(Figures 1C, 1D, S3, and S4) (Oh et al., 2014). Since we were

able to capture each a-syn aggregate’s three-dimensional vol-

ume (Figure 1D), we could visualize the distribution of aggre-

gates and aggregate size across time points (Figure 1E). Plotting

the total a-syn aggregate count in the whole brain against time

points of MPI revealed a biphasic curve (Figure 1F), starting

with pathological spreading (between 0 and 6 MPI) followed by

decay (between 8 and 18 MPI). We observed a relatively larger

spike of smaller aggregates at the earliest time point post
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Figure 1. Tissue clearing and light-sheet fluorescence microscopy capture changes in whole-brain pathology at various time points post-

seeding

(A) a-syn PFFs were unilaterally injected into the striatum of mice, and cohorts of mice were perfused at various time points ranging from 2 weeks to 18 months

post-injection (MPI). Each extracted mouse brain was processed for fluorescent immunolabeling of a-syn pathology and whole-brain clearing using the iDISCO+

protocol. Brains were three-dimensionally imaged by light-sheet fluorescent microscopy to visualize both the antibody fluorescence and tissue autofluorescence

for anatomical mapping.

(B) Axial projections of autofluorescence from an imaged mouse brain (left) and a-syn pSer129 immunolabeled pathology (right).

(C and D) A quantitative pipeline registers the autofluorescence to an anatomical atlas, and a trained classifier (D) segments a-syn pathology.

(E) Both whole-brain spreading and subsequent decline of pathology are observed in glass-brain reconstructions of representative samples at each time point,

with each aggregate color-coded by Allen Reference Atlas region.

(F) Total a-syn aggregate count versus time post-injection quantifies this trend of spreading followed by decay. Data are represented as mean ± SD.

(G) Normalized density distributions of mean aggregate size at each voxel across the various time points depict the general increase in aggregate volume during

initial apparent prion-like spread, followed by a decrease as large aggregates diminish. Data are represented as mean ± SD. Isoctx, isocortex; TH, thalamus; HY,

hypothalamus; MB, midbrain; HB, hindbrain; CB, cerebellum. See also Figures S1, S3, and S4.
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Figure 2. Statistical analysis at both regional and voxel level demonstrates biphasic spreading and decay interleaved between cortical and

subcortical areas

(A) The computational pipeline used for processing each brain sample consists of registration to a reference atlas, segmentation of three-dimensional aggregate

volume, and using these two to map each aggregate to a neuroanatomical region or voxel in a shared coordinate space in the Allen Reference Atlas (ARA). This

allows for statistical comparisons between longitudinal groups, at both the regional and brain-voxel level.

(B) Voxel-level statistics using heatmaps from pairs of time points facilitates the discovery of voxel clusters with a statistically significant (p < 0.05) vulnerability to

initial pathological spread, and separately accumulation of mean aggregate volume.

(C) Grouping into ARA regions before statistical testing yields similar results (p < 0.05). Isoctx, isocortex; OLF, olfactory areas; HPF, hippocampal formation; CTX

sp, cortical subplate; CNU, caudate nucleus; TH, thalamus; HY, hypothalamus; MB, midbrain; HB, hindbrain; CB, cerebellum. See also Figure S5 and Table S1.
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injection, whereas at 4 and 8 MPI the distribution of volumes

shifted to double themean aggregate-volume per voxel. Surpris-

ingly, at the latest 18-month time point, this distribution shifted

back to lower aggregate burden, which was not accompanied

with the presence or reappearance of smaller size aggregates

(Figure 1G).

Statistical analysis across longitudinal groups reveals
region-dependent spreading, accumulation, and decay
To define the spatiotemporal patterns of a-syn pathology, we ran

statistical comparisons at the voxel and regional levels between

cohorts at various times sacrificed post-injection. Because of

variability in spreading patterns across adjacent time points,

we instead used time points spaced at least 3 months apart for

these comparisons. Our quantitative pipeline captured both total

aggregate count and mean aggregate volume for each voxel
4 Cell Reports 41, 111631, November 8, 2022
(Figure 2A). Therefore, we performed statistical comparisons

for each of these two metrics between each selected pair of

time points. Comparing total aggregate count at the voxel level

(Figure 2B), we observed statistically significant clusters with

widely varying rates of both spread and decay for different brain

subregions. For example, when widespread pathology in the

cortex has already aggregated and begins decaying by 4 MPI,

aggregates begin to appear for the first time in various subcor-

tical clusters, includingwithin the thalamus and contralateral hip-

pocampus. Statistics comparing the mean aggregate size at the

voxel level demonstrate a similar initial increase both cortically

and subcortically from 0.5 to 4 MPI, followed by a whole-brain

decrease from 4 to 8 MPI (Figure 2B). The clusters of significant

increase or decrease from the voxel-level analysis generally

obeyed the boundaries of anatomical brain regions; we

observed similar biphasic trends when computing both the
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Figure 3. Computational model describes spreading, aggregation, and decay

(A) To model the interactions between aggregates of various sizes, each aggregate’s volume is discretized into one of several size bins that are tracked as

separate model variables in each region. Discrete-sized particles within each region can accumulate, with volumes combining additively.

(legend continued on next page)
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a-syn aggregate count and mean-size metrics across regions

from the Allen Brain Atlas (Figure 2C). Thus, different brain re-

gions exhibit different spatiotemporal patterns/dynamics of

a-syn spreading, accumulation, and decay.

Computational model of spreading
Despite being able to explain much of the initial regional variation

in spreading, previous applications of computational models

(Henderson et al., 2019a) only accounted for the spreading of

a-syn. Thus, they are unable to generalize to later time points

throughout the disease, notably even at 4 MPI where decay in

pathology starts to occur (Figure 2B). Tomore accurately predict

the progression of a-syn pathology, we developed a computa-

tional model by incorporating mechanistic insights regarding

a-syn pathogenesis and trafficking from recent in vivo and

in vitro studies. The key steps in this model consist of a-syn up-

take into neurons, intracellular processing and interactions, and

finally release of pathological a-syn. A set of differential equa-

tions model a discretized distribution of a-syn aggregate counts

in each neuroanatomical region (Figure 3A). The model initially

assumes quick uptake of injected a-syn fibrils into neurons

within the target region. This has been confirmed by studies

showing that extracellular a-syn fibrils are integrated into neu-

rons through endocytosis (Brahic et al., 2016; Desplats et al.,

2009; Henderson et al., 2019b; Konno et al., 2012). These in-

jected fibrils are considered the smallest discrete pathological

unit that can exist in the brain. However, as misfolded a-syn is

processed through endo-lysosomal and cytoplasmic compart-

ments, it can both recruit endogenous a-syn into a pathogenic

fibrillar state, as well as merge with existing fibrils to form aggre-

gates of larger size. Building off previous studies (Bieri et al.,

2019), we assume retrograde spreading of any a-syn aggregate

through the brain connectome, which the model incorporates as

diffusion through a directed weighted graph (Figures 3B and

S6A). We derived this anatomical connectivity from the Allen

Connectivity Atlas (Oh et al., 2014), which includes 424 regions

across the whole brain (Figures S6A and S6B; Table S1). Our

model does not incorporate fragmentation of a-syn aggregates

inside of the cytoplasm because previous studies have shown

the fragmentation rate to be undetectably low (Gaspar et al.,

2017).

Although we set most model parameters a priori, we fit the

model’s parameters controlling the rate of spread and decay

to data from a-syn PFF injection into the striatum, ranging from

0.5 to 18 MPI. Despite only being fit to maximize the model’s

output in predicting the whole-brain a-syn aggregate count

(Figures 3C and 3D), the resultant model additionally captures

the regional variation in pathology with a high Pearson correla-
(B) The computational model describes the spreading of aggregates throughout th

from the Allen Connectivity Atlas. Each node represents an atlas region, with ea

regions. Thicker lines represent higher anatomical connections.

(C) The fitted model accurately simulates both the longitudinal whole-brain counts

for each size.

(D) The raw time-series output from the computational model demonstrates the m

lines represent the model prediction of total aggregates of a given size, and gray

(E) Jacobian calculation between adjacent time points quantifies the model’s sen

each pair of time points are displayed. Isoctx, isocortex; TH, thalamus; HY, hypo
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tion coefficient of 0.72 (Figure 3C), providing evidence for the

theory of a primarily retrograde neuronal spreading mechanism.

We tested additional networks based on either anterograde

connectivity or Euclidean distance between regions but neither

could capture both whole-brain and regional variability (Fig-

ure S6C). Calculating model sensitivity through the Jacobian

matrix allows for weighting of brain pathways that account for

the most significant a-syn spread. This analysis highlights

many retrograde pathways in the cortico-basal-ganglia-tha-

lamo-cortical loop. Several examples with the highest Jacobian

weight are early spreading from ipsilateral striatum to many

cortical areas, such as the infralimbic area, main olfactory

bulb, and gustatory area. This is followed by spreading from

the cortex to thalamus and other subcortical areas at later time

points (Figure 3E).

Prediction of spreading patterns for different injection
sites
After finding that our model based primarily on anatomical con-

nectivity was able to accurately predict pathology resulting

from a-syn PFFs injected into the striatum, we next tested the

generalizability of this model to different seed locations (i.e., in-

jection sites). We performed additional injections of a-syn PFFs

throughout various regions of the brain and compared our

model’s predictions with actual quantified pathological states.

Since one of the prevailing theories behind a-synucleinopathies

is that a single seeding event can result in spread throughout

the nervous system, we chose a variety of distinct seed locations

with relevance for PD and other synucleinopathies: substantia

nigra pars compacta, main olfactory bulb, and dentate gyrus

(Figure 4A). Using our iDISCO immunolabeling, imaging, and

computational processing pipeline, we quantified voxel-level

and regional aggregate density and mean-size for brains at 0.5,

2, and 4 MPI for each seed location. These seed locations

induced remarkably consistent distributions of aggregate size

(Figure 4B), with the earliest 0.5 MPI maps displaying spikes of

small aggregates, and this distribution tending toward larger ag-

gregatesover time.However, statistical tests from0.5 to 4MPI, at

both the voxel and neuroanatomical level, yielded distinct spatial

patterns of spreading and aggregation depending on the seed

location (Figures 4C and S8B).

We then applied our computational model to predict the

regional pathological density for each discretized size bin across

time. This involvedmodifying the initial condition of the simulated

model and integrating forward in time, while keeping all param-

eters and hyperparameter values fixed. After iterating through

each region in silico and generating the full time series of disease

progression, we selected the region that best predicts the
e nodes of a directed graph, which relies on anatomical connectivity estimates

ch edge representing the anatomical neuronal connectivity between the two

of each discretized aggregate size (R = 0.98) and the regional counts (R = 0.72)

odel’s ability to capture the dynamics of each discretized aggregate size. Black

lines represent the actual observed count.

sitivity to specific anatomical connections. The top 10% Jacobian elements for

thalamus; MB, midbrain; HB, hindbrain; CB, cerebellum. See also Figure S6.
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Figure 4. Seeding of a-syn fibrils in different brain regions results in consistent volumetric distributions of aggregate formation yet distinct

spreading patterns by region, both of which are predicted by the computational model fitted to the striatal dataset

(A) a-syn PFFs are injected into new seed locations, with independent cohorts for the main olfactory bulb (MOB), substantia nigra (SN), and dentate gyrus (DG).

Mice are perfused at 0.5, 2, and 4 MPI.

(B) Distributions of aggregate sizes for the various seed locations demonstrate consistencies across various time points; 0.5 MPI samples consistently

contained a higher number of small aggregates, while this distribution shifts toward larger aggregates for later time points. Data are represented as mean ±

SD. However, (C) voxel-level statistics from 0.5 to 4 MPI demonstrate that different seed locations result in distinct downstream spreading patterns (p < 0.05).

(legend continued on next page)
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pathological state for a given dataset (Figure 4E). This method

consistently predicted the correct ipsilateral hemisphere and

neuroanatomical region of the initial seed from among all other

seed locations (Figure 4E). Since all additional seed locations

demonstrated consistent distributions of aggregate volume

across the whole brain (Figure 4B), we hypothesized that we

could also predict the duration of time since injection through

inversion of this model, which we indeed found to be the case

(Figure 4F).

Encoding spatial transcriptomics into the regional
model
Consistent with current models (Henderson et al., 2019a),

anatomical connectivity seems to be the primary driver of the

patterns of a-syn spread; our computational model with edges

simply weighted by anatomical retrograde connectivity was

able to predict the regional spreading patternswith a high degree

of correlation. But PD is associated with a diverse set of genetic

susceptibility factors. Do these converge on and impact a-syn

spreading? The gene encoding a-syn itself, Snca, directly im-

pacts spreading, because knockout of a-syn expression in the

mouse is sufficient to prevent widespread pathology following

injections of a-syn PFFs, almost certainly because there is no

endogenous a-syn to convert into aggregated form (Luk et al.,

2012a; Luna et al., 2018; Taguchi et al., 2014). Other PD genes

have also been connected to a-syn spreading. Transgenic

mice engineered to express a PD-causing mutation in the Lrrk2

gene (LRRK2:G2019S) showed increased a-syn aggregation

upon PFF injection (Bieri et al., 2019; Henderson et al., 2019a),

as did human iPS neurons (Bieri et al., 2019).

We hypothesized that encoding regional genetic data into the

computational model would allow us to rank a gene’s effects on

the separate spreading and decaying steps of the model and

potentially improve the model’s predictive power, as measured

by the Pearson correlation coefficient of actual versus predicted

regional variation. We encoded 19,893 regional gene density

maps from the Allen in situ hybridization database (Lein et al.,

2007) into our previously fit computational model, using the

same 424 regions spanning the whole brain (Figure 5A). Re-

simulating a-syn progression with each encoded gene density

map yielded a distribution of improvements they provide to

each of our two model fitting parameters corresponding to

spreading and decay. (Figure 5B). Interestingly, the Lrrk2 gene

improved the model’s regional predictions when incorporated

into the spreading parameter, and in that case ranked very highly

(94th percentile) among all genes. This is consistent with the hy-

pothesis that Lrrk2 is important in vesicular trafficking pathways

(Henderson et al., 2019b), and the recent evidence that reducing

levels of Lrrk2 decreases a-syn aggregation (Bieri et al., 2019).

The Gba gene improved the model’s regional predictions when

incorporated into the decay parameter and was also ranked

highly (90th percentile). Gba, which encodes the lysosomal lipid
(D) The correlation of each in vivo seed location with the model output from in silico

for MOB, SN, and DG are labeled. In all cases, the model can accurately differen

(E) For each additional seeding site, side-by-side comparisons of the actual and si

actual and simulated states, demonstrate that the model can use the histogram

seeding. See also Figures S7 and S8.

8 Cell Reports 41, 111631, November 8, 2022
hydrolase glucocerebrosidase, is one of the most common

genetic causes of PD and has been shown to be involved in

modulating the susceptibility of neurons to a-syn pathology

(Henderson et al., 2020).

After associating each gene with its most likely cell type using

the Allen Cell Types RNA-Seq Database (Tasic et al., 2018), we

explored the relationship between a gene’s cell type and its

ranking. Since our model assumes a neuronal mechanism of

transport, we hypothesized that genes from neuronal cell types

would dominate the model’s spreading term, which is indeed

the case (Figure 5C). However, for the decaying term in the

model, we unexpectedly found a cluster of genes primarily ex-

pressed in oligodendrocytes, withMyelin basic protein (Mbp) be-

ing the highest ranked gene (Figure 5C). This finding is consistent

with new data integrating genome-wide association studies with

cell type atlases to show that oligodendrocytes play a key role in

PD (Bryois et al., 2020). Furthermore, accruing evidence sug-

gests that another synucleinopathy, multiple system atrophy,

an aggressive degenerative disease characterized by oligoden-

droglial cytoplasmic a-syn inclusions, behaves like a prion and

that a-syn may indeed be the prion (Prusiner et al., 2015). More-

over, recent research suggests that the cytoplasmic milieu of

oligodendrocytes promotes the formation of particularly potent

a-syn seeds, which can spread to neurons (Peng et al., 2018).

The enrichment of oligodendrocyte genes in our model (Fig-

ure 5C) lends further support for a role of oligodendrocytes in

a-syn spreading.

Finally, we found that using other seed locations to re-simulate

the model and evaluate gene importance generated remarkably

consistent rankings independent of injection site-based dataset

(Figure 5D). Applying the average of the top percentile of ranked

genes improved this correlation value for all injection sites, while,

conversely, the average of the lowest percentile of genes drasti-

cally reduced the predictive power of the model (Figure 5E).

Future studies will be required to define the functional impact

of these top-ranked genes on a-syn spreading but this list

provides a resource for testing hypotheses.

DISCUSSION

Here, we demonstrate the ability of a mesoscale computational

model to predict both the origin and progression of a neurode-

generative disease by using this computational model along-

side quantitative high-resolution, whole-brain imaging. As lon-

gitudinal statistics across neuroanatomical regions and at the

voxel level demonstrated, the spreading and decay of pathol-

ogy following seeding of a-syn PFFs is highly dynamic in na-

ture, with many regions containing overlapping phases of

spreading and decline. Nonetheless, our computational model

is based on known mechanisms of a-syn PFF pathogenesis

and accurately reconstructs the longitudinal counts of a-syn

aggregates of various sizes across 424 brain regions.
seeding of all 424 regions in the ARA. Both ipsilateral and contralateral results

tiate between unseen datasets with various distinct a-syn PFF seed locations.

mulated histograms of aggregate volume, and confusionmatrices between the

of discretized aggregate sizes to predict the progression (MPI) since initial
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Figure 5. Integrating spatial transcriptomics data into a computational model reveals genes associated with spreading across seed loca-

tions

(A) Encoding region-specific gene densities from the Allen in situ hybridization (ISH) database into the model allows for comparisons of each gene’s association

with the spreading and decay parameters in improving predictive power.

(B) Joint heatmap of the spreading and decay gene rankings depict clustering of genes that are relevant for either spreading or decay. Genes implicated in

Parkinson’s disease and synucleinopathies are additionally labeled.

(C) Histograms of gene rankings for each parameter are grouped by cell type with highest transcription levels of that gene, taken from the Allen Atlas. Histograms

were compared with the two-sample Kolmogorov-Smirnov test (*p < 0.05). (D) Simulation results from all genes in the Allen ISH database tested separately for the

various PFF seed locations. The regional correlation between each gene’s simulated output and the entire time series for the seed location is reported, with the

shared gene ordering on the x axis determined by the striatum’s ranked genes in ascending order.

(E) Encoding the highly ranked genes from the striatum dataset consistently improved the predictive power of the model for other seed regions, as measured by

the correlation coefficient, while the bottom percentile genes consistently decreased the predictive power. Data are represented as mean ± SD.
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Retrograde anatomical connectivity can explain much of the

regional variability in spread, but separately encoding 19,893

genes from a spatial transcriptomics database into the model

additionally allowed us to uncover the relative involvement of

genes in the model’s spreading and decaying terms. Although

the incorporation of regional gene information into the models

only uncovers correlative relationships between genes and

the spreading and decaying of a-syn pathology, we provide ev-

idence that the top-ranked genes in this analysis generalize to

other PFF seed locations as well. With this list of genes in hand,

future studies will aim to test their functional impact on a-syn

spread and some may even represent therapeutic targets to

slow down or stop spread.
This work confirmed many findings from previous studies that

modeled the mechanisms behind a-syn spreading (Henderson

et al., 2019a; Pandya et al., 2019), but also included many tech-

nological advances and novel results. A significant technological

advancement included capturing a whole-brain representation

of a-syn pathology. We discovered that, in some cases, tradi-

tional two-dimensional histological techniques used in previous

studies may not adequately capture the relative a-syn aggregate

counts across brain regions. Three-dimensional whole-brain im-

aging provided a full spatial representation of a-syn pathology

and allowed for the accurate quantification of aggregate

morphology. This uncovered remarkably consistent distributions

of aggregate volume along the longitudinal progression of
Cell Reports 41, 111631, November 8, 2022 9
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disease. In addition, exploring pathology patterns beyond 6 MPI

and up to 18 MPI, which have not been extensively explored in

previous studies, we were able to capture and model variable

decay rates of pathology throughout the brain. While these

earlier studies explored encoding genes and evaluating their ef-

fects on model fitting, our study included an unbiased explora-

tion across a massive dataset of 19,893 genes. This exploration

agreed with the known mechanisms of several genes implicated

in a-syn pathology, but more importantly it provided novel hy-

potheses regarding the roles of all genes in the spreading and

decay of pathology. Altogether, these technological advance-

ments allowed for the novel development of a computational

model that parameterized spreading, aggregation, and decay

mechanisms underlying a-syn pathology changes. This model

was used to predict both future and past pathological states

for various seeding sites, and it can form comprehensive hypoth-

eses around the roles of genes in each underlying parameterized

mechanism.

Idiopathic PD, which represents most cases, can be seeded

from various parts of both the nervous system and peripheral or-

gans (Challis et al., 2020; Kim et al., 2019; Peelaerts et al., 2015;

Sacino et al., 2014). The comparisons between in silico simula-

tion of a-syn pathogenesis and data from various injection sites

provide a testbed for this model and demonstrate its generaliz-

ability in predicting the origins and future patterns for arbitrary

seeding datasets. In a broader sense, this model holds promise

for analyzing human brain imaging data (such as once accurate

a-syn PET ligands are developed) to wind the clock back and

predict how and where a-syn pathology originated. The clock

can also be wound forward to predict the future trajectory and

tailor therapeutic interventions accordingly. We propose this

clinical application of such a model as relevant to PD or any pro-

gressive protein-spreading neurodegenerative disorder, such as

Alzheimer’s disease, amyotrophic lateral sclerosis, or frontotem-

poral dementia (Goedert et al., 2010; Guo and Lee, 2014; Jucker

andWalker, 2013). Because our model provides a metric for pre-

dicting the in vivo seed location when given an unseen set of

pathological states, being able to predict the seed location and

progression given a pathological state would have high utility

in clinical diagnostic and therapeutic applications for many of

these neurodegenerative diseases.

We found that incorporating regional gene transcription levels

into our model parameters significantly impacted how well the

model fit the data. This potentially points to a gene transcription

level’s role in the spreading and decay processes. Our compre-

hensive modeling approach allowed gene encoding into each

model parameter and enabled the ranking of these genes in

terms of their involvement in spreading and decay. As this aspect

of our study is a proof of concept that provides rankings of genes

and potential mechanisms of their contribution to spreading and

decay, follow-up experimental studies manipulating these gene

expressions will be needed. These rankings will also allow us

to identify genes as novel targets for therapeutic intervention.

We also highlight the significant finding in this study that this pro-

cess produced similar rankings of genes across datasets from

different PFF seeding locations (Figures 5D and 5E), even with

these seeding locations producing vastly distinct spreading pat-

terns of pathology (Figure 4C). This consistency supports the
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unique information that this approach provides, and we believe

will enable future studies to explore the roles of these genes

further.

Future extensions to this model could include considering

additional mechanisms, such as vascular, ventricular, or glial

densities. Many studies have also shown spreading of seeds

from both the gut and peripheral nervous system. However,

owing to the current lack of quantitative atlases that connect

the peripheral-to-brain or gut-brain axes, and the technological

difficulty in imaging a cleared whole mouse body using light-

sheet microscopy, we only focused on the dynamics of pathol-

ogy across the central nervous system. However, our model

could integrate these datasets when they become available.

Furthermore, although the encoding of genes from a spatial tran-

scriptomics database revealed potential implications of these

genes in either the spreading or decay of pathology, this analysis

does not take into consideration protein expression levels, or any

effects caused by genetic mutation. This computational model

could help form hypotheses for further studies looking into these

effects.

As our labeling approach with iDISCO utilizes polyclonal sec-

ondary antibodies, we expect that multiple polyclonal secondary

antibodies bind to each primary antibody, thus providing fluores-

cent signal amplification. An inherent limitation in this approach

is that an a-syn aggregate’s size, as measured by the three-

dimensional morphology in the fluorescence channel, is not

directly indicative of the actual aggregate size (nonlinear but

monotonic). However, we expect this multiple binding to affect

all samples equally. Given that we are performing large-scale

and stringent statistics across many cohorts of mice, we expect

that our statistical tests can still uncover regions of interest that

show significant increase or decrease in aggregate size.

The clinical detection of pathological a-syn and other protein-

aceous seeds for neurodegenerative diseases is currently per-

formed primarily through postmortem analysis. However, many

advancements in nuclear medicine, similar to PET and SPECT

radiotracers that detect amyloid depositions in vivo, will likely

allow for quantitative evaluation of a patient’s pathological state.

Current tracers work well for amyloid-beta and tau but are still in

development for a-syn. Given the various etiologies that have

been observed clinically, it will undoubtedly be essential to be

able to differentiate between synucleinopathies with different or-

igins and trajectories. The generalizability and interpretability of

the computational model we present here offers unique advan-

tages because it can both infer the progression of a-syn

spreading patterns when given the current pathological state,

or inversely produce the likely seed locations, and time since

seeding, that led to this state. All these applications will help

empower more accurate disease classification and prediction

of clinical phenotypes for a wide array neurodegenerative

disease.

Limitations of the study
The methods presented in this study have demonstrated

that whole-brain imaging and computational modeling can accu-

rately describe and predict the longitudinal dynamics of pathol-

ogy in neurodegenerative disease. While this model can accu-

rately reconstruct the observed dynamics of whole-brain
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pathology change over time across 424 neuroanatomical re-

gions, it made several important assumptions based on recent

discoveries in the literature. Specifically, these include neuronal

uptake of injected a-syn fibrils (Brahic et al., 2016; Desplats et al.,

2009; Henderson et al., 2019b; Konno et al., 2012), synaptic

spreading of a-syn pathology (Bieri et al., 2019), prion-like aggre-

gation of pathology into larger units, and eventual decay of this

pathology (Luk et al., 2012a). Future work could extend the

model to incorporate parameters that were not actively consid-

ered and test the sensitivity of the model’s predictions to these

assumptions. For example, it is possible that grouping aggregate

counts into the 424 neuroanatomical regions does not fully cap-

ture the complex pathology dynamicswe observed. Althoughwe

tested multiple sets of neuroanatomical regions across the atlas

hierarchy of regions (Figure S6D), this number was ultimately

constrained by the Allen Connectivity Atlas (Oh et al., 2014).

Future studies could take full advantage of the high-resolution

images obtained in our study to create more detailed models

that take pathology dynamics across cortical layers or more

granular anatomical regions into account.
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request.
EXPERIMENTAL MODEL AND SUBJECT DETAILS

Animals
Mouse husbandry and procedures were performed in accordance with institutional guidelines and approved by the Stanford Admin-

istrative Panel on Animal Care (APLAC). 10–12-week-old male C57Bl6J mice (The Jackson Laboratory, cat# 000664) were used for

stereotaxic injections. Mice were housed under specific pathogen-free conditions under a 12 h light-dark cycle, ad libitum diet and

free access to water.

METHOD DETAILS

PFF preparation
The expression and purification of mouse wild-type a-syn was performed as previously described (Ghee et al., 2005). a-syn fibril for-

mation was induced by incubation in 50mM Tris–HCl, pH 7.5, 150mM KCl buffer at 37�C under continuous shaking in an Eppendorf

Thermomixer at 600rpm. a-syn fibrils were centrifuged twice at 15,000g for 10min and resuspended in PBS. All fibrils were frag-

mented prior to in vivo use by sonication for 20 min in 2-mL Eppendorf tubes in a Vial Tweeter powered by an ultrasonic processor
e1 Cell Reports 41, 111631, November 8, 2022
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UIS250v (250W, 2.4 kHz; Hielscher Ultrasonic, Teltow, Germany). 5ug of fibrils/mouse were used for in vivomouse experiments. The

fibrils were endotoxin free, as assessed using the Pierce LAL Chromogenic Endotoxin Quantification Kit.

Fibril injections
Stereotaxic injections were performed on 10–12-week-old adult mice. Animals were placed in a stereotaxic frame and anesthetized

with 2% isoflurane (2L/min oxygen flow rate) delivered through an anesthesia nose cone. Ophthalmic eye ointment was applied to

prevent desiccation of the cornea during surgery. The area around the incision was trimmed, cleaned, and disinfected. A small hole

was drilled above the injection site. PFF or vehicle solutionswere injected unilaterally into the dorsal striatum, hippocampus, olfactory

or substantia nigra using the following coordinates (from bregma): Striatum – anterior (AP) = +0.4mm, lateral (ML) = +/�1.85mm from

midline, depth (DV) =�2.7mm (fromdura). Olfactory bulb: AP, +4.50mm;ML�0.75mm; DV�1mm. Dentate gyrus: AP�2mm,ML =

1.5 mm, DV =�2.1 mm. Substantia nigra pars compacta: AP -3.1 mm, ML 1.2 mm, DV -3.75 mm. Mice were injected with sonicated

PFFs (5mg/mouse) or PBS vehicle control. PFFs were sonicated prior to injection. 1mL volume was injected at a rate of 100nL/min

using a 5mL Hamilton syringe with a 32G needle. To limit reflux along the injection track, the needle was maintained in situ for five

minutes, before being slowly retrieved. The skin was closed with silk suture. Each mouse was injected subcutaneously with analge-

sics and monitored during recovery. Animals were sacrificed 2 weeks to 18 months post injection.

Tissue processing
Mice were anesthetized with isoflurane and transcardially perfused with 0.9% saline followed by 25mL of 4% PFA. Brains were

dissected and post-fixed in 4% paraformaldehyde (PFA) pH 7.4, at 4�C for 48 h. Brains for histology stored in 30% sucrose in 1x

PBS at 4�C. PFA-fixed brains were sectioned at 35um (coronal sections) with a cryo-microtome (Leica) and stored in cryoprotective

medium (30%glycerol, 30% ethylene glycol) at�20�C. Brains for iDISCO tissue clearing and labeling were stored in PBSwith 0.05%

sodium azide.

Tissue clearing
Each sample was fully immunolabeled and cleared using the previously described iDISCO protocol (Renier et al., 2014), which de-

scribes the sample pretreatment, blocking, immunolabeling, and clearing steps in more detail. The methanol pretreatment step was

performed for all samples. For primary immunolabeling, an anti-phospho-synuclein (pSer129) Rabbit polyclonal antibodywas used at

1:1000 dilution for 7 days, while a Donkey anti-Rabbit IgG (H + L) Alexa Fluor 647nm antibody was used for secondary immunolab-

eling at 1:1000 dilution for 7 days. All other clearing parameters were used as previously reported (Renier et al., 2014).

Immunohistochemistry
Tissue processing and immunohistochemistry was performed on free-floating sections according to standard published techniques.

1:6 to 1:12 series of all coronal sections were used for all histological experiments. Sections were rinsed 3 times in TBST, pre-treated

with 0.6%H2O2 and 0.1% Triton X-100 and blocked in 5% goat serum in TBST. Free-floating coronal sections were incubated over-

night with mouse-a-syn pSer129 antibodies (81A; 1:5000, Covance/BioLegend cat# MMS-5091). After overnight incubation at 4�C,
sections were rinsed 3 times in TBST. The primary antibody staining was revealed using fluorescently-labeled secondary antibodies

(Thermo Fisher Scientific cat# A-21137). Sections were counter-stained with DAPI, mounted on Superfrost Plus slides (Fisher

Scientific) and coverslipped using ProlongDiamond antifade mountant (Thermo Fisher Scientific cat# P36961). Images of pSer129

aggregates were acquired using a Leica DMI6000B inverted fluorescence microscope by an investigator blinded to the treatment

group.

Microscopy
Each sample was imaged using an LaVision Biotec Ultramicroscope II within two days of finishing iDISCO clearing. Microscope

settings of a full sheet width, numerical aperture of 0.103, mechanical step-size of 3.5 um, and light-sheet thickness of 7 um were

used for all acquisitions. A 488 nm excitation laser and 460/40 nm emission filter (center wavelength/FWHM) were used for each

autofluorescence acquisition. A 639 nm excitation laser and 620/60 nm emission filter were used for detecting fluorescent a-syn

pathology. The left and right hemispheres of each brain sample were imaged separately. Each acquisition was in the sagittal plane.

Each acquired slice had an in-plane resolution of 4.0625 x 4.0625 um, with a slice resolution of 3.5 um.

QUANTIFICATION AND STATISTICAL ANALYSIS

Registration, segmentation, and quantification
Upon voxel-wise binarization of the raw iDISCO a-syn fluorescence channel using a machine learning model into foreground (pathol-

ogy) and background (autofluorescence), binary morphological operations are used to find the connected components. Each

connected component is considered a separate a-syn aggregate, and the position (x,y,z), peak intensity (in the corresponding

raw data), and volume (number of voxels) of each aggregate is saved.

The non-linear transformation resulting from the registration process is used to transform each aggregate to the Allen Reference

Atlas (ARA) coordinate space. Each voxel in this coordinate space is a 100-umwidth cube centered at that coordinate. Since the atlas
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is at a lower spatial resolution (100 um) than the raw data (4.0625 um), multiple aggregates may map to a single voxel in the ARA

space. For a given ARA voxel, we define the density as the total number of aggregates with centers within that voxel. We also define

the total-size for a voxel as the total size of all the aggregates with centers within that voxel. We compute themean-aggregate-size for

each voxel as its total-size divided by the density. A similar calculation is performed for the total and mean intensities at each voxel.

The density, mean-aggregate-size, and mean-aggregate-intensity are considered separate metrics.

To account for variations in registration quality between samples, a multidimensional Gaussian filter (s = 15 voxels) is applied to

the density, mean-aggregate-size, andmean-aggregate-intensity spatial maps to smooth the values across neighboring voxels. This

filter size was empirically determined based on the registration results. Mean smoothed spatial maps for various timepoints are

presented in Figures S5 and S7.

Sections from immunohistochemistry were also segmented for pathology and registered to the ARA using a similar computational

pipeline, which was applied in two dimensions instead of three. For each brain section, the corresponding coronal ARA slice was first

manually selected. The DAPI channel for each section was then registered to this atlas slice. Aggregates from the pSer129 channel

were also detected using a machine learning model. For a given brain sample, the total aggregate count for each neuroanatomical

region across all imaged histological sections was calculated. Since the histological sections only capture a sparse representation of

the brain volume, each region’s aggregate count was extrapolated by dividing by the total observed volume for that region, then

multiplying by the total volume of that region in the ARA.

Statistical analysis
The smoothed maps from the image processing pipeline are used for two-sided T-tests at each voxel between samples at different

timepoints. Due to the variability in the spreading patterns between adjacent time points, statistical tests were only run between time

points with adequate spacing: 0.5 MPI vs 4 MPI, 4MPI vs 8 MPI, and 8 MPI vs 18 MPI. Thus, the 2, 6, and 12 MPI time points were

omitted. In order to account for the large number of voxels at a 25um resolution, multiple comparison corrections were performed

using the Benjamini-Hochberg method (Benjamini and Hochberg, 1995). The corrected p values were thresholded at 0.05 for

determining significance. Similar analysis was performed for counts when grouped into ARA anatomical regions.

Computational modeling
This Smoluchowski networkmodel has been described extensively in previous studies (Fornari et al., 2020;Wattis, 2006), and is gov-

erned by the following set of differential equations.

dc1;j

dt
= � a

XV
k = 1

Ljkc1;k � m1;jc1;j � 2c2
1;j

 
kj + x

XN
k = 2

kc2;k

!
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XN
k = 2

ck;j
dc2;j

dt
= � 2�ha

XV
k = 1

Ljkc2;k � 2lm2;jc2;j + c2
1;j

 
kj + x

XN
k = 2

kc2;k

!
� c1;jc2;j
dci;j

dt
= � i�ha

XV
k = 1

Ljkci;k � ilmi;jci;j + c1;jðci� 1;j � ci; jÞ
dcN;j

dt
= � NlmN;jcN;j + c1;jcN� 1;j

ci;j represents the total count of aggregates in the discretized size-bin indexed by I, in the brain region indexed by j. The L matrix

represents the Laplacian matrix of the weighted directed graph connecting the various neuroanatomical regions of the brain, taken

from the Allen Connectivity Atlas (Oh et al., 2014). As this system of differential equations has no closed form solution, numerical inte-

gration with the software package SciPy was used to solve for the state dynamics given the initial conditions. h was chosen as a

hyperparameter that slows the spread of large aggregates as the inverse power of the size, while lwas chosen as a hyperparameter

that accelerates the decay of aggregates proportionally to the power of their size. The initial values for a and m, which control the rate

of spreading between nodes and decay at a given node, respectively, were fit by sweeping through a 2D-grid (0.001–1000) and se-

lecting the values that resulted in the lowest mean-squared error between the predicted and actual counts (a = 0:037, m = 0:139).

In the case of m = 0, k = 0, x = 0, and a one-dimensional size vector c, the above system of differential equations simplifies to the

standard network diffusion model used in earlier studies (Henderson et al., 2019a; Pandya et al., 2019).
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In order to quantify the model’s sensitivity to specific neuroanatomical pathways in the brain, the Jacobian matrix was calculated

by taking the partial derivative of the model’s output with respect to the weight of the anatomical connection strength between two

regions encoded into the model. An element of this matrix represents the relative importance of that anatomical connection in the

spreading of aggregates to a specific region.

This model can be used to produce a ranking of the candidate seed locations for a given pathological state c at t = T MPI. To

generate this ranking, each of the 424 neuroanatomical regions are used as separate seed locations at t = 0 within the model and

simulated forward in time to t = T MPI. Each of the 424 simulation results are then compared with the observed state c using a pair-

wise similarity metric. In this case, the similarity metric was the correlation coefficient between total regional aggregate counts across

the observed and simulated states. The similaritymetric values can then be used to sort the 424 seed locations as likely sites that lead

to the observed pathological state c.

Similarly, the model can be used to predict the time since seeding t = T MPI for a given pathological state c. A property of this

computational model is that the distribution of simulated aggregate sizes across the whole brain is invariant to which neuroanatom-

ical region is used as the seed location at t = 0. Therefore, the whole-brain distribution of aggregate sizes for state c can be

compared with simulated distributions at various t using a pairwise similarity metric without taking the seed location into account.

Themean squared error was calculated between the stimulated and observed distributions.When deciding among several candidate

t values (0.5 MPI, 2 MPI, 4 MPI), the mean squared errors are inverted and normalized to sum to 1, providing a prediction probability

for each t being the correct estimate of T for the given pathological state c.

In order to also encode regional genetic differences and evaluate their differential effect on model performance, we reconsider the

a (spreading) and m (decay) parameters as regionally dependent. The spreading from a specific region is made proportional to the

gene density in that region. All genes are normalized to the same range so that we are only comparing the regional distribution of

gene expression relative to that gene’s total whole-brain expression. Since a is now considered a vector, the product of it with

the Laplacian connectivity matrix L has the effect of modifying the regional connectivity encoded into the model. In order to preserve

the model’s previous fit to capturing the whole-brain longitudinal spread, we normalize each gene vector to have mean 1 and a stan-

dard deviation S, which is empirically set to preserve the correlation between predicted and observed whole-brain count. The

normalization was chosen so that this product has the effect of maintaining the trace of the original matrix L. A derivation of this

normalization preserving the trace of the Laplacianmatrix is as follows: we assume the vector s is sampled from amultivariate normal

distribution with mean - value 1 and standard deviation S.

s � Nð1;SÞ
By using the definition of the matrix trace and representing s as a diagonal square matrix S, the trace of the product of S and the

Laplacian matrix L results in the following, where l represents the diagonal of L.

TrðSLÞ = Tr

0
@
2
4 s1 / 0
« 1 «
0 / sV

3
5L
1
A =

XV
i = 1

siLii = s,diagðLÞ = s,l

Thus, the trace is equivalent to the dot product of s and l, which has an expectation value equivalent to the sum of the entries of l,

which recovers the definition of the trace of L.

s,l � Nð1 , l; l S l Þ
E½s , l� = TrðLÞ
After each gene is encoded into the model, its net effect on the regional correlation between the simulated and actual data is

compared to the baseline correlation with no genes. This provides an ordered list of genes, ranked by the relevance of their spatial

expression map in improving the regional predictions the model.
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