N

N

Work-in-Progress: Smart data reduction in SLAM
methods for embedded systems
Quentin Picard, Stephane Chevobbe, Mehdi Darouich, Zoe Mandelli, Mathieu

Carrier, Jean-Yves Didier

» To cite this version:

Quentin Picard, Stephane Chevobbe, Mehdi Darouich, Zoe Mandelli, Mathieu Carrier, et al.. Work-in-
Progress: Smart data reduction in SLAM methods for embedded systems. CASES 2022 - International
Conferenceon Compilers, Architectures, and Synthesis for Embedded Systems, Oct 2022, Shanghai
(virtual event), China. IEEE, pp.23-24, 2022, 2022 International Conference on Compilers, Archi-
tecture, and Synthesis for Embedded Systems (CASES). 10.1109/CASES55004.2022.00018 . cea-
03858796

HAL Id: cea-03858796
https://cea.hal.science/cea-03858796

Submitted on 17 Nov 2022

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.


https://cea.hal.science/cea-03858796
https://hal.archives-ouvertes.fr

Work-in-Progress: Smart data reduction in SLAM
methods for embedded systems

Quentin Picard
Université Paris-Saclay, CEA, List
F-91120, Palaiseau, France
quentin.picard @cea.fr

Zoe Mandelli
Université Paris-Saclay, CEA, List
F-91120, Palaiseau, France
zoe.mandelli @cea.fr

Abstract—Visual-inertial simultaneous localization and map-
ping methods (SLAM) process and store large amounts of data
based on image sequences to estimate accurate and robust real-
time trajectories. Real-time performances, memory management
and low power consumption are critical for embedded SLAM
with restrictive hardware resources. We aim at reducing the
amount of injected input data in SLAM algorithms and, thereby,
the memory footprint while providing improved real-time perfor-
mances. Two decimation approaches are used, constant filtering
and adaptive filtering. The first one decimates input images to
reduce frame rate (from 20 to 10, 7, 5 and 2 fps). The latter
one uses inertial measurements to reduce the frame rate when
no significant motion is detected. Applied to SLAM methods, it
produces more accurate trajectories than the constant filtering
approach, while further reducing the amount of injected data up
to 85%. It also impacts the resource utilization by reducing up
to an average of 91% the peak of memory consumption.

Index Terms—SLAM, localization, embedded systems, real-
time, data reduction, memory management.

I. INTRODUCTION

Autonomous and mobile systems such as service robots,
micro air vehicle and augmented/virtual reality devices re-
quire real-time performances, memory management and low
power consumption for embedded systems. A large number
of embedded platforms with restrictive resources [1] are
available to implement advanced perception functions with
simultaneous localization and mapping/visual-inertial odom-
etry (SLAM/VIO) methods. Several embedded SLAM are
implemented and aim to reduce the number of performed
operations to minimize resource consumption while maintain-
ing real-time processing. The implementation on resource-
constrained systems includes trade-offs between resources
usage and localization accuracy characterized by reducing the
number of features per frame and the size of the optimization
sliding window [2]. In [3], the co-design (between software
and hardware) process of a VIO system on FPGA based
on algorithmic, implementation and parameters choices is
presented.

Our work aims to reduce the resource utilization of real-
time localization methods based on input images and inertial

Stephane Chevobbe
Université Paris-Saclay, CEA, List
F-91120, Palaiseau, France
stephane.chevobbe @cea.fr

Mathieu Carrier
Université Paris-Saclay, CEA, List
F-91120, Palaiseau, France
mathieu.carrier @cea.fr

Mehdi Darouich
Université Paris-Saclay, CEA, List
F-91120, Palaiseau, France
mehdi.darouich@cea.fr

Jean-Yves Didier
IBISC, Univ Evry, Université Paris-Saclay
91025, Evry, France
jeanyves.didier @univ-evry.fr

___________________________

. Adaptive filtering '
%image stream > stream i
: (N fps) reduction | ‘'
camera | frame rate
5 T ; SLAM
: . system , algorithm
MU | meas.,| motion | a0 |
100Hz | estimation J :

Fig. 1. Functional pipeline for the adaptive filtering approach

measurements. Our main contribution is a smart data reduction
relying on an adaptive filtering approach, based on embedded
system motion estimation, to decrease the input frame rate.
The goal is to show that 1/ the accuracy of SLAM methods is
similar to the baseline with constant 20 fps and 2/ the memory
consumption is drastically reduced.

II. ADAPTIVE FILTERING APPROACH

The adaptive filtering (AF) approach is a decimation strategy
to control the input frame rate for SLAM/VIO algorithms
as shown in Figure 1. Motion is estimated in a fast and
simple way from data provided by the inertial measurement
unit (IMU) to modulate input image stream through the
stream reduction: the lower the measured speed, the lower the
input image bandwidth. The more movements there are, the
more images are forwarded. When no motion is detected, a
minimum frame rate is applied to capture other scene changes
such as variations in luminosity. Here, we will apply a constant
threshold for motion estimation.

III. EXPERIMENT AND RESULTS

To measure the impact of our approach on the accuracy
of the trajectory estimation and memory consumption, we
identified and selected four SLAM methods, KimeraVIO [4],



TABLE I
PERFORMANCES OF AF ON EUROC* AND TUMVI! SEQUENCES.

Baseline (input 20 fps) Adaptive filtering (AF)

Methods ATE (m) _ (MB) ATE (m) (MB)
KimeraVIO _ *[0.053.49]  *1700 *10.05-0.49] *507.19
*[0.01-0.10]  *730.12 *10.01-0.10] *724.25
ORBSLAM3 10.01-0.14]  1827.74 [0.01-0.05] 7829.19
- #0.12-054] __*1330 *10.09-0.33] *117.98
VINSFusion 4 )6 087]  1989.55 1[0.06-1.96] 1228.69
7[0.05-022] 4518  *[0.05->100.00]  *46.93
OpenVINS 10.06-0.83] tN/A 1[0.06-0.76] tN/A
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Fig. 2. Localization error of SLAM methods with input data reduction.

ORBSLAM3 [5], VINSFusion [6] and OpenVINS [7] for their
localization accuracy, their computational complexities and
their local and/or global optimization of 3D poses. To evaluate
the performances of AF, we compare it to the constant filtering
(CF) approach. It decimates the input data at a constant rate,
regardless of the camera movement. For our comparisons, we
reduced the input 20 fps baseline frame rate to 10, 7, 5 and 2
fps. The accuracy is defined by the absolute translation error
(ATE) with the SE(3) Umeyama alignment. We used the
heaptrack heap memory profiler tool to evaluate the impact
on memory consumption. Two datasets are used to assess
the performances of the localization methods with the input
data reduction: Euroc for drone sequences [8] and TUMVI for
handheld sequences [9]. Each one has been pre-processed with
CF and AF, and then injected to each SLAM/VIO methods. To
overcome the variability due to the non-deterministic nature of
SLAM methods, we use the median of the estimated trajectory
(F) accuracy over 5 runs.

Figure 2 plots the localization error of E with respect to the
reduction of the input data for all tested SLAM algorithms and
sequences. The first important conclusion is drawn from the
results with CF: the data reduction by constant rate decimation
at the input of the SLAM methods obtains a relatively good
accuracy compared to the reference (0% reduction). On the
Euroc dataset, for CF, the best accuracy is achieved with

data down to 5-7 fps, which corresponds to a 65-75% data
reduction. The results obtained on AF show that it is possible
to drastically reduce the amount of injected images and,
therefore, data (between 75% and 90%) while providing low
localisation errors for most of the SLAM methods. Moreover,
the graph shows that despite the higher difficulty of the
TUMVI datasets, AF still reduces the amount of injected data
while keeping the accuracy comparable to the reference, even
if it is less important than the one obtained on the Euroc
dataset (reduction of about 50% instead of 75% for Euroc).

Table I provides performances for baseline (input 20 fps)
and AF in terms of localization error (ATE) and memory
consumption (MB). The range of localization error is provided
for both datasets, which highlights the impact of AF used
with SLAM/VIO methods. The average memory consumption
is given for Euroc and TUMVI. It shows a significant gain
for KimeraVIO and VINSFusion that are using input frame
buffers contrary to OpenVINS that do not have one. Therefore,
the main impact of AF for this algorithm is the significant
reduction of the number of operations due to the decimation
of processed images.

IV. CONCLUSION

This work proposes to evaluate the robustness and the per-
formances of SLAM/VIO algorithms in terms of localization
error and memory consumption when applying our smart
input data reduction. We proposed to modulate the input
data stream using a simple motion estimation from inertial
measurements. We show that the amount of injected data is
drastically reduced down to 85% while the accuracy remains
similar to the baseline input at 20 fps. Significant reduction of
memory consumption is achieved with a decrease up to 91%.
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