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Abstract

Sampling the Minimum Energy Path (MEP) between two minima of a system is

often hindered by the presence of an energy barrier separating the two metastable

states. As a consequence, direct sampling based on Molecular Dynamics or Markov

Chain Monte Carlo methods becomes inefficient, the crossing of the energy barrier being

associated to a rare event. Augmented sampling methods based on the definition of

collective variables or reaction coordinates allow to circumvent this limitation at the

price of an arbitrary choice of the dimensionality reduction algorithm. We couple the

statistical sampling techniques, namely Metadynamics and Invertible Neural Networks,

with autoencoders so as to gradually learn the MEP and the collective variable at the

same time. Learning is achieved through a succession of two steps: statistical sampling

of the most probable path between the two minima and re-definition of the collective

variable from the updated data points. The prototypical Mueller potential with nearly

orthogonal minima is employed to demonstrate the ability of such coupling to unravel

a complex MEP.
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Introduction

The properties of materials are driven by the underlying atomistic free energy landscape. Di-

rect Monte Carlo integration of the free energy variation ∆F between an initial state Xi and

a final state Xf , where X ∈ R3N is a given atomic configuration, is numerically challenging.

This is due to the high dimensionality of the phase space that give rise to a prohibitively

large sampling variance. The introduction of reaction coordinates and collective variables

so as to characterise the phase space pathways reduces the dimension of the input space,

rendering direct sampling tractable1–4 when a good reaction coordinate can be found5 . Of-

ten, minimum energy path (MEP) methods6–8 can yield highly effective reaction coordinates

with minimal domain knowledge, but the general case requires a good understanding of the

problem at hand. With a good set of reaction coordinates, popular free energy calculation

methods can be applied, including adaptive biasing potential approaches1,2,9,10 where the

potential energy landscape is continuously modified to accelerate sampling of the canoni-

cal measure, and closely related adaptive biasing force approaches, which instead directly

modify the forces8,11–14 to facilitate thermodynamic integration in reaction coordinate space.

Recently, deep neural networks have been successfully used to learn mappings between the

real systems and simple quadratic models to allow direct sampling of complex canonical

distributions.15,16

The objective of this paper is to propose strategies to sample the MEP between metastable

states using autoencoders. As a prototype, we use the Mueller potential, for which the path

between the two low energy minima is almost perpendicular to the axis of main variance

in the minima, thus limiting the efficiency of automatic dimensionality reduction methods

like Principal Component Analysis. The first method we use is based on the Metadynamics,

which is detailed in Section II. The collective variable used in this Metadynamics is computed

using an autoencoder involving an augmented loss favouring low energy configurations, lead-

ing to the accurate determination of the MEP between states. The second method, described

in Section III, involves Invertible Neural Networks (INN), following the seminal work of F.
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Noé.16 The INN is interfaced with an autoencoder to provide a robust way of computing the

MEP without the need of sampling the dynamics.

Metadynamics and Autoencoder

Mueller potential

In this work, we are interested in sampling the transition path between two metastable states

for a 2-dimensional dynamics (Xt)t≥0 defined by

dXt = −∇V (Xt)dt+
√

2kBTdBt, (1)

where (Bt)t≥0 is the Brownian motion, kBT = 2 (energy units) and the potential V is the

Mueller-potential

V (x1, x2) =
4∑

i=1

Kie
ai(x1−βi)

2+bi(x1−βi)(x2−γi)+ci(x2−γi)
2

whereK, a, b, c, β, γ are vectors defined byK = [−200,−100,−170, 15], a = [−1,−1,−6.5, 0.7],

b = [0, 0, 11, 15], c = [−10,−10,−6.5, 0.7], β = [1, 0,−0.5,−1], γ = [0, 0.5, 1.5, 1] with units

K (energy units); a, b, c (distance units−2); β, γ (distance units).

The Mueller potential is represented in Figure 1 and is composed of two main wells,

denoted by A for the lowest minimum (-14 energy units) and B for the other minimum (-10

energy units). Starting from a point close to the minimum of well A, we sample 1 000 points

using standard Euler scheme for molecular dynamics (skyblue dots) and similarly for well

B (thistle dots). These sampled points are added to Figure 1 and are used as database

points throughout this work. Notice that, given the metastable nature of the dynamics, if

we sample the dynamics starting from a point inside the well A or the well B using standard

molecular dynamics, the trajectory is likely to remain trapped inside the well for a very long
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time. The escape rates follow a Poisson distribution3 and in trial dynamics that extend the

previous trajectory up to 100 000 iterations in A (deepskyblue dots) or B (orchid dots) in

Figure 1, we have noted that the trajectory remains trapped in its initial state.

Figure 1: Energy level map of present Mueller potential and the starting database sampled
from molecular dynamics around A and B energetic wells. We have used short trajectories
from which we have extracted 1 000 points near A (sky blue dots), and B (thistle dots)
together with extended trajectory from we have extracted 100 000 points around A (deep
sky blue dots), and B (orchid dots).

Metadynamics and collective variable

Several methods have been designed to accelerate the sampling of transition pathways be-

tween metastable states, such as the Metadynamics.2 The idea of Metadynamics is to penalize

the region of phase space already visited by the dynamics in order to force an exit event from

the metastable state. The usual analogy is the one of the sand bag added on each portion

of the trajectory until the sand bags completely flatten the energy landscape.

The Metadynamics requires the definition of a collective variable, i.e. a function s :

(x1, x2) ∈ R2 7→ R such that s takes different values in the different basins of the potential

and transition states, thus capturing, in lower dimension, the multimodal (bimodal - in

present particular case) metastability of the process.

The Metadynamics then corresponds to the addition of a perturbation Ft at the iteration

t to the potential V such that the projection of the dynamics in the latent space, s(Xt), is
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uniform. The iterative perturbations added at each iteration t take the form of a Gaussian

X ∈ R2 7→ we−(s(X)−st)/2σ2

,

where w, σ are small fixed parameters and st = s(Xt) is the latent projection of the dynamics

at time t. The application of successive perturbations will penalize the system dynamics for

reaching the neighbourhood of points y ∈ R2 having similar latent projection with visited

points, i.e. such that s(y) ≈ st. As a result, the perturbed potential at iteration t becomes

Vt : X ∈ R2 7→ V (X) +
t∑

i=1

we−(s(X)−si)/2σ
2

.

In order to find a suitable collective variable, we use a particular neural network achitecture

called Autoencoder (AE).17,18 AEs are neural networks with specific design that can be

trained to perform nonlinear dimensionality reduction, called encoding, and then reconstruct

the input data from the low-dimensional space, called decoding. The encoder, corresponding

to the projection of the input data in the latent space, can then be used as a low-dimensional

collective variable.19–21

Figure 2: Autoencoder architecture of the 2D input vector [x1, x2] reconstructed into output
vector [y1, y2] through 1D inner layer.

The architecture of the AE used in this work is displayed in Figure 2. Namely, we
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consider a symmetric architecture with respect to the encoder and decoder parts, which are

composed of one hidden layer with 5 neurons involving a Sigmoid activation function. In

addition, we consider a one-dimensional latent variable s corresponding to the bottleneck of

the autoencoder involving a Tanh activation function. Finally, the loss function for the AE

is the mean-square norm between the input vector [x1, x2] and the output vector [y1, y2].

Sampling the transition path using Metadynamics

We are interested in sampling the most probable transition path between A and B corre-

sponding to the minimum energy path (MEP).

Collective variable defined by the autoencoder. In order to obtain a suitable col-

lective variable, we train the AE on the database from Figure 1. We then complete 50 000

iterations of Metadynamics using this collective variable starting from A and starting from

B; the two trajectories are displayed in Figure 3. As hyperparameters for the Metadynamics

we use w = 0.01 and σ = 0.1.

(a) (b)

Figure 3: Metadynamics trajectories for 50 000 iterations starting from A (blue dots) and B
(purple dots) that are (a) superimposed to the level sets of the Mueller potential, and (b)
superimposed to the level sets of the collective variable given by the autoencoder.

In this case, the Metadynamics does not accelerate the sampling of the transition event

A → B or B → A compared to standard molecular dynamics. This can be explained by the

fact that the collective variable obtained after training on the database is almost constant
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in A and B (see Figure 3). In addition, if the variations of the collective variable s are

negligible compared to σ then the perturbed potential becomes

Vt : X ∈ R2 7→ V (X) +
t∑

i=1

we−(s(X)−st)/2σ2 ≈ V (X) + constant,

which would explain why the above Metadynamics does not bring much improvement com-

pared to standard molecular dynamics.

Collective variable defined by linear interpolation in real space. In order to avoid

the strong non-linear variations of the autoencoder, we can use as a collective variable the

orthogonal projection on the line linking the positions of the two minima A and B. When

the positions of well centers are not known in advance, they can be obtained, for instance,

using a clustering algorithm, e.g., kMeans.22 The results of the Metadynamics using this

projection are displayed in Figure 4.

(a) (b)

Figure 4: Metadynamics trajectories for 25 000 iterations starting (a) from A and (b) from
B superimposed to the level sets of the Mueller potential.

The trajectory starting from B (path B → A) corresponds indeed to the MEP we wish

to sample. However, the obtained path A → B goes through sharp energetic barriers before

landing to the intermediate well between A and B, and does not correspond to the MEP.

This comes from the fact that the collective variable, defined as the linear interpolation

between A and B, is not well suited for finding the optimal path A → B in this case.
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Adaptative Metadynamics

In order to circumvent the issues arising from poor initial collective variable (Fig. 3) or mis-

directed collective variable (Fig. 4), we further perform a so-called iterative training of the

AE based on adaptive Metadynamics. The utilty of such a strategy was previously demon-

strated in the literature.19,20,23 In this approach, the training of the AE is done adaptatively,

during the metadynamics, based on the previous trajectory. Therefore, if the direction is

not suited or poorly calibrated, it can be fixed at a later iteration.

Here, we train the AE after every batch of 1 000 Metadynamics iterations on the trajec-

tory thus far and this provides a new collective variable for the next 1 000 Metadynamics

iterations. The AE is trained on a subset of around 1 000 samples taken uniformly across

the trajectory in order to avoid overfitting of the autoencoder inside the wells. With this

strategy, the cost of AE training remains almost the same at every batch of Metadynamics

iterations. The trajectories starting from A and B are displayed in Figure 5 and Figure 6,

respectively.

(a) (b)

Figure 5: Adaptative Metadynamics trajectories for 40 000 iterations starting from A (blue
dots) that are (a) superimposed to the level sets of the Mueller potential, and (b) superim-
posed to the level sets of the collective variable given by the autoencoder.

When exploring the trajectory along the path B → A, the adaptative training of the

AE allows to well sample the MEP from B to A. However, this is not the case for the

path A → B, as the MEP is directed orthogonaly to the local variations of the dynamics on

which the AE is trained. Based on these results, we conclude that application of adaptive
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(a) (b)

Figure 6: Adaptative Metadynamics trajectories for 30 000 iterations starting from B (purple
dots) that are (a) superimposed to the level sets of the Mueller potential, and (b) superim-
posed to the level sets of the collective variable given by the autoencoder.

Metadynamics for MEP sampling does not provide a general solution and some modifications,

e.g., in the loss of AE, are needed to improve its performance.

Adaptative Metadynamics with modified autoencoder loss

In this section we aim to explore how modifications in the loss function of AE impact the

sampling of the trajectory between the wells A and B. Below we consider modifications on

the loss to ensure that the sampled path visits both A and B.

Augmented loss for path boundary conditions Since the training of the AE only

captures the local dynamics, here we impose some supplementary conditions on the path

through the loss of the AE such as the path is forced to visit the wells A and B. We

introduce the following terms in the loss function:

Loss :=
1

N

N∑
i=1

∥f(Xi)−Xi∥2 (2)

+
1

2
(∥f(XA)−XA∥2 + ∥f(XB)−XB∥2),
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where f is the AE, (Xi)1≤i≤N is the training dataset and XA, XB are the centers of mass of

the wells A and B.

After each batch of 1000 Metadynamics iterations, the AE is now trained on the loss

above. The Metadynamics trajectory obtained, starting from the well A, is displayed in

Figure 7. The trajectory starting from B is available in Figure 1 of Supplementary Material

(SM).

Employing the decoding part of the AE as generative model allows to verify the pertinence

of the reaction coordinate in the direct space. We denote by D the decoding function of the

autoencoder that maps the latent space into R2. The system pathway depicted in orange

in Figure 7 and Figure 1 of SM corresponds to the system positions generated from the

intermediate states between the latent projections of the minima A and B. Here, we chose the

discretized points along the segment between the latent projections of A and B, sA := s(XA)

and sB := s(XB). We sample m = 100 points along the trajectory A → B by defining the

intermediate points si as

∀0 ≤ i ≤ m, si = sA +
i

m
(sB − sA). (3)

The sequence of reconstructed points D(s0 = sA), . . ., D(si), . . ., D(sm = sB) generates the

orange pathway presented in Figure 7. The generated trajectory can be interpreted as the

most-liked pathway between A and B encoded by the collective variable.

With the augmented loss function, we obtain a better sampling of the transition path

A → B and the path B → A remains close to the MEP. However, we notice that the

collective variable for A → B in Figure 7a favours a path (orange line) which does not

optimize completely the visit of low energy configurations. However, this is not disqualifying

since dynamic trajectories at finite temperature are not bound to the lowest part of the

underlying potential: there is always an interplay between the value of the energy along the

pathway and the local curvature of the energy landscape.
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(a) (b)

Figure 7: Adaptative Metadynamics trajectories for 38 000 iterations starting from A (blue
dots) that are (a) superimposed to the level sets of the Mueller potential, and (b) superim-
posed to the level sets of the collective variable given by the autoencoder. The orange curve
in (a) represents the path followed by the collective variable.

Augmented loss for Minimum Energy Path. In order to favour low energy configura-

tions for the collective variable, we add an additional term on the AE loss accounting for the

”energy-length” of the path. This additional term represents a trade off between the length

of the pathway and the magnitude of the energy along pathways. The idea is to favour the

sampling of pathways between mimima that i) are as short as possible and ii) which explore

the lowest part of the energy landscape i.e. where the minima and first order saddle points

are located.

For this purpose we plug into the loss of AE an additional term Epath accounting for

the ”energy-length” of the path that has the dimension of an energy × distance. We will

employ again the generative function D(s) of AE and the same latent discretization given

previously in Eq (3). Using the decoder D and projecting from latent to configuration space,

the pathway energy-length is then defined as follows:

Epath =
m−1∑
i=1

∥D(si+1)−D(si)∥(V (D(si)) + C),

where the constant C = −mini V (D(si))+α with α = 0.1 is added to ensure that V (D(si))+

C remains positive for all i.
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The new loss obtained is the following:

Loss =
1

N

N∑
i=1

∥f(Xi)−Xi∥2 (4)

+ (∥f(XA)−XA∥2 + ∥f(XB)−XB∥2)/2

+ Epath.

Figure 2 in Supplementary Material (SM) illustrates the trajectory starting from well

A, which was obtained by integrating the new loss into the AE during the Adaptative

Metadynamics. The trajectory starting from well B is provided in Figure 3 of Supplementary

Material (SM). We notice that in this case the path following the collective variable visits

low energy configurations and approximates very well the MEP.

However, regarding the sampling of the trajectory between A and B we do not observe

significant differences between the dynamics with the AE loss given by Eqs (2) and (4). Most

likely this is due to the topology of the potential close to the bottleneck, which makes it not

affected by changes of the collective variable in this zone.

Therefore, in order to emphasize the qualitative differences between the trajectories sam-

pled employing the losses Eq (2) and Eq (4), we will use a modified version of the Mueller

potential. The modified potential Ṽ is obtained by perturbing the Mueller potential V as

follows:

Ṽ (X) = V (X) +
(
−100 + ∥X − η∥2

)
e−2∥X−η∥2 , (5)

with η = [−1.7, 0.2].

In Figure 8, we provide the sampled trajectories A → B using AE losses provided by

Eq (2) and Eq (4). We notice that the collective variable trained without considering the

term Epath in the loss (Fig. 8a) goes through regions with sharp increasing gradient potential,

whereas the other loss favours (Fig. 8b) low energy configurations, thus managing to sample

a path A → B close to the MEP. This result highlights the need of considering Epath in the
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(a) (b)

Figure 8: Adaptative Metadynamics trajectories for 100 000 (resp. 45 000) iterations starting
from A (blue dots) trained with (a) the AE loss of Eq (2) and (b) the AE loss of Eq. (4),
superimposed to the level sets of the Mueller potential. The orange curve represents the
path followed by the collective variable.

AE loss.

To conclude this section, training the AE using the augmented loss Eq (4) enables to

sample paths close to the MEP, even in the worst scenario where the axis of principal

variance of the two minima are orthogonal.

Autoencoder and invertible neural network

Invertible neural network

Figure 9: General idea of an INN building block with input X ∈ Rn and output Z ∈ Rn.
The input X is divided in two parts : X1 and X2. A linear transformation is applied on
X2 at the coefficient level (⊙ being the Hadamard product), while X1 is conserved. These
coefficients are functions applied on X1 (denoted here by s and t). They can be as complex
as needed as their inverse is not required to inverse the block. The symmetric operation
(replacing X1 by X2) would be computed next to obtain a complete building block
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An Invertible Neural Network (INN) is a neural network built as a bijective function

between two spaces : the input space (also called latent space) and the output space (that

will be referred to as the configuration space). Most classical deep neural networks present

too complex architectures to be easily invertible. However, the idea behind INNs is to

use an ingenious basic building block depicted in Figure 9. The structure of this block

makes it an easily invertible function. In practice, an INN will be composed of a series of

these basic building blocks (also adding some other simple layers such as normalization or

permutation), making the whole network invertible. On top of their invertibility, the INNs

are often designed as flow neural networks,24 that allow for a tractable computation of the

density of the sampled distribution through the INN. This property is particularly interesting

to design loss functions built to push the sampling towards a known distribution (such as

the Gibbs measure).

In this work, the INN considered is composed of 5 building blocks in series. Again, we

are interested in the sampling of a transition path between the wells A and B. The method

used in this section will resort to the INN architecture described above following a method

described in.16

Figure 10: General set-up of the Invertible Neural Network

As described in Figure 10, we train the INN such that starting from the 2-dimensional

normal distribution the output samples follow the Gibbs measure, associated to the Mueller

potential, which density is proportional to e−V (X)/kBT . Likewise, its inverse should return
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(a) (b)

(c)

Figure 11: (a): INN sampling after full training (1 000 points) superimposed to the energy
level sets of the Mueller potential. (b): Paths obtained by linear interpolation in latent
space projected in real space. (c): Sampled points by molecular dynamics projected in latent
space, together with linear interpolations in latent space (colored lines), superimposed to the
energy level sets of the Mueller potential. The colors of lines with linear interpolations in
(c) correspond to the color of paths in (b).

Gaussian samples when the input are distributed according to the Gibbs measure. In other

words, if FZX is the INN output function and FXZ its inverse, we train the INN such that:

• if Z ∼ N (0, I2), then FZX(Z) ∼ e−V (X)/kBT ,

• if X ∼ e−V (X)/kBT , then FXZ(X) ∼ N (0, I2).

The space function of the Gaussian samples Z can be seen as a latent space. However,

the nature of this latent space is different from the latent space of the AE. Here the samples

Z are in a space with same dimension as the input (2) while the encoder of the AE projected

in a latent space with lower dimension (1). Therefore, we use a different notation Z for the

latent variables of the INN here instead of s used for the latent variables of the autoencoder.
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The loss function is computed similarly to 16 using the Kullback-Leibler (KL) divergence

between the above distributions. The KL divergence between the law of FZX(Z) for Z ∼

N (0, I2) and the Gibbs measure yields the following term

JML = E
[
∥FXZ(X)∥2 − log(RXZ)

]
,

where RXZ is the jacobian of FXZ and can be easily computed for flow neural networks

composed of building blocks as in Figure 9 (see for instance25). The KL divergence between

the law of FXZ(X) for X ∼ e−V (X)/kBT and the 2-dimensional normal distribution leads to

the following loss:

JKL = E [V (FZX(Z))− log(RZX)] ,

where RZX is the jacobian of FZX .

This training ensures that the sampled distributions match the expectations : a normal

distribution in the latent space and a distribution that is energetically coherent in the con-

figuration space. However, since we are here mostly interested in a transition path between

two states, we favour the sampling in the transition direction. We thus add a third loss to

the two previous ones. This loss will promote oversampling in the transition path direction

between two bounds. More precisely, given a collective variable function s, and an estimation

of the probability p1 we consider the following loss defined by

JRC = E [log(p(s(Fzx(Z))))] .

Thus, as in,16 the overall loss is defined by

J = wMLJML + wKLJKL + wRCJRC ,

where wML, wKL, wRC are given weights.

1computed as a kernel density estimate between the predefined bounds on a batch of data16
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The training of the INN is done as follows:

• during 150 epochs, we train the INN to minimize only the JML loss (batch size is 100)

• during 150 additional epochs, we train the INN to minimize the total loss with equal

weights (same batch size)

As in the previous section, the collective variable s used in the loss JRC can be obtained by

training an AE on a database composed of sampled data in A and B, or by using a clustering

algorithm, like KMeans,22 and consider the orthogonal projection on the line linking both

wells.

Once the training is complete, the transition path between the wells A and B can be

sampled following the procedure exposed in16 and summarized below: (i) take random points

yA, yB belonging to the A and B minima; (ii) compute their images zA, zB ∈ R2 in the latent

space, i.e. zA = FXZ(yA) and zB = FXZ(yB); (iii) perform a linear interpolation in the latent

space wi = zA + i(zB − zA)/m (0 ≤ i ≤ m) between the points zA, zB; (iv) finally, project

this segment back onto the Cartesian (or configuration) space.

The resulting sequence of points Xi = FZX(wi) provides a transition path between A

and B in the configuration space, which could be associated to the MEP if the INN is well

trained.

Sampling transition path using an INN

Collective variable obtained by linear interpolation in the configuration space

The training of the INN is first performed using a collective variable given by the orthogonal

projection on the line linking both wells A and B (in the cartesian space). The INN is

trained on the same database of Figure 1, as was done in the previous section. Using

kMeans, we obtain the coordinates of the centers of mass on our database [−0.57, 1.43] for

A and [0.62, 0.03] for B.
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(a) (b)

(c)

Figure 12: Direct training with the autoencoder. (a) INN sampling after full training (10 000
points). (b) Linear interpolation in latent space projected in configuration space. (c) Sam-
pled points by molecular dynamics projected in latent space together with linear interpo-
lations in latent space (colored lines). The colors of lines with linear interpolations in (c)
correspond to the color of paths in (b).

The INN is trained on the ML loss and then the complete loss J with all the weights w

equal to 1. We then sample in the Cartesian space by inputting 1000 Gaussian samples to the

INN and passing them through the network. We also use the previous linear interpolation

technique to plot 8 transition paths between A and B. The sampling and paths are displayed

in Figure 11.

This procedure leads to a better sampling between states than standard MD methods,

at a reduced CPU cost. However, the projected transition path in real space is still far from

the optimal MEP.

The procedure has been reiterated several times, the final results depending on the effi-

ciency of the INN training and on the resulting structure of the latent space.
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(a) (b)

(c)

Figure 13: Adaptative sampling after 57 cycles. (a): INN sampling after full training (10 000
of points). (b): Linear interpolation in latent space projected in configuration space. (c):
Sampled points by molecular dynamics projected in latent space together with linear inter-
polations in latent space (colored lines).

Collective variable obtained by an autoencoder

Instead of using an arbitrary definition, the collective variable (used in the JRC loss) is

now obtained by training an autoencoder. We keep the same architecture (Figure 2) and

database. The subsequent CV is the same as the one used initially in the Metadynamics

part and displayed in Figure 3b). The sampling and path obtained are shown in Figure 12.

The sampling is less efficient than in the previous case due to the non-linearity of the

AE, particularly showing flat regions surrounding the minima and concentrating its gradient

in the middle of the MEP. As a result, the proposed MEP (projection in the real space of

the linear interpolation in the latent space) is not optimal.
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(a) (b)

(c)

Figure 14: (a): INN sampling after full training (10 000 of points). (b): Linear interpolation
in latent space projected in configuration space. (c): Sampled points by molecular dynamics
projected in latent space together with linear interpolations in latent space (colored lines).

Sampling transition path adaptatively

In order to improve the accuracy of the predicted transition path we propose to retrain the

autoencoder with the data previously obtained by the INN. The following cycle is proposed:

• Sample 10 000 Gaussians points (Zi)1≤i≤10000 with the INN.

• Train an autoencoder on this new database of samples (FZX(Zi))1≤i≤10000 during 50

epochs.

• Train an INN on the same samples ((FZX(Zi))1≤i≤10000) using the collective variable

provided by the autoencoder.

One cycle then corresponds to the training of the autoencoder followed by the training

of the INN. This cycle is repeated with the hope of converging towards the best collective
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variable and an accurate MEP. In this case, 57 cycles proves to be sufficient to converge

to an accurate MEP. Results are shown in Figure 13. The orange points correspond to the

encoding then decoding by the AE of the points sampled by the INN.

We also test the cycle training of the INN on the modified potential Ṽ Eq. (5) used in

the previous section. After 102 iterations we obtain a path close to the MEP in this case as

well. The results for this potential are displayed in Figure 14.

In summary, on the two-dimensional case of the Mueller potential, the iterative training

of the INN and the autoencoder is able to significantly improve the definition of the collective

variable and sampling of the MEP.

Conclusions and perspectives

We have developed two methods to improve the sampling of a transition path between

metastable sates. The first one relies on an extension of the Metadynamics used in con-

junction with an autoencoder for the definition of the collective variable. We showed that

a modification of the autoencoder loss function is required to ensure a precise definition of

the collective variable, in particular in the case of the Mueller potential where the axis of

principal variance associated to the two minima are orthogonal. The second method is based

on the coupling between an Invertible Neural Network and an autoencoder. In both cases,

an accurate sampling of the transition path is achieved through an iterative procedure of

training the autoencoder and sampling the transition path. This procedure allows to learn

adaptatively the collective variable together with the transition path.

Both methods are able to provide a path between the states close to the MEP. Moreover,

since these methods mostly rely on the use of neural networks,they can be scaled to larger

dimensional real systems. In addition, the augmented loss in the autoencoder could be

applied to provide a reaction coordinate for other biasing methods like Adaptative Biasing

Force, for instance.
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Finally, these two methods perform at a significantly reduced CPU cost compared to

traditional sampling methods. The additional cost required for the computation of the

augmented loss in the first method remains negligible compared to the cost of Metadynamics.

The second method with the INN provides faster results but the number of cycles needed to

converge to the MEP is a priori unknown and a convergence criterion for the MEP indeed

remains to be defined.

In perspective, the application of these methods to higher dimensional systems can help

finding transition paths for complex systems at finite temperature.
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