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Abstract—Spiking Neural Networks (SNNs) hold the promise
of lower energy consumption in embedded hardware due to
their spike-based computations compared to traditional Artificial
Neural Networks (ANNs). The relative energy efficiency of this
emerging technology compared to traditional digital hardware
has not been fully explored. Many studies do not consider
memory accesses, which account for an important fraction of the
energy consumption, use naı̈ve ANN hardware implementations,
or lack generality. In this paper, we compare the relative energy
efficiency of classical digital implementations of ANNs with
novel event-based SNN implementations based on variants of
the Integrate and Fire (IF) model. We provide a theoretical
upper bound on the relative energy efficiency of ANNs, by
computing the maximum possible benefit from ANN data reuse
and sparsity. We also use the Eyeriss ANN accelerator as a case
study. We show that the simpler IF model is more energy-efficient
than the Leaky IF and temporal continuous synapse models.
Moreover, SNNs with the IF model can compete with efficient
ANN implementations when there is a very high spike sparsity,
i.e. between 0.15 and 1.38 spikes per synapse per inference,
depending on the ANN implementation. Our analysis shows
that hybrid ANN-SNN architectures, leveraging a SNN event-
based approach in layers with high sparsity and ANN parallel
processing for the others, are a promising new path for further
energy savings.

Index Terms—Spiking neural networks, neuromorphic hard-
ware, deep neural network accelerators, energy efficiency.

I. INTRODUCTION

Artificial Neural Networks (ANNs) can solve difficult tasks
and Deep Neural Networks (DNNs) are now widely used
in a variety of applications such as image recognition [1],
speech recognition [2] or medical diagnosis [3]. However
their hardware implementation in general-purpose processors
(CPUs or GPUs) is inefficient in terms of energy consump-
tion. Therefore, researchers are focusing on designing energy-
efficient specialized hardware with spatial architectures. An
entirely different approach is to use bio-inspired Spiking
Neural Networks (SNNs) instead of ANNs. SNNs closely
mimick the communication and computation in the brain. They
communicate information via temporal events (spikes), and the
computation in a neuron consists in accumulating the spikes,
weighted by synaptic connections, into a membrane potential
and firing an output spike when the potential reaches a thresh-
old. Therefore, they require only accumulate (AC) operations.
They have temporal dynamics, meaning the inference phase
is performed over a certain period of time in which neurons
can fire several spikes, this latency depending on the required

network accuracy. ANNs, on the other hand, perform multiply-
and-accumulate (MAC) operations between input activations
(iacts) and weights on a layer-by-layer basis. SNN communi-
cation and event-based computation (i.e. only when there is
an input spike) can be leveraged in dedicated neuromorphic
hardware, such as the large-scale architectures Truenorth [4],
Loihi [5], DYNAPs [6] and FPGA implementations [7], [8].

While SNN event-based implementations naturally bene-
fit from spike sparsity, ANN implementations present other
advantages. Indeed, an efficient dataflow (i.e. scheduling of
ANN computations and mapping across Processing Elements
(PEs) [9]), can optimize the data reuse (locally reusing data
in several MACs) such that memory accesses are minimized,
reducing the energy consumption. SNN event-based imple-
mentations can not leverage data reuse due to the non-flexible
and non-predictable order of computations driven by spikes.
Moreover, ANNs can also leverage the sparsity of iacts via
data compression and logic to skip unnecessary MAC opera-
tions [10].

Brain-inspired SNN implementations hold the promise of
massive power savings. However, our analysis shows these
energy savings are contingent on a high level of spike sparsity
of the SNN. Most algorithmic papers, such as in [11]–[13],
take into account only the number of MAC and AC operations
to estimate the energy efficiency. Therefore, SNN algorithms
are often considered more energy-efficient than their ANN
counterparts due to the replacement of MACs by lighter
AC operations. However, most of the energy consumption of
neural networks in specialized architectures does not come
from the arithmetic operations but from the associated memory
accesses [14]. Recent studies compare ANNs and SNNs im-
plementation in specialized accelerators [15]–[17]. However,
ref. [15], [17] take the MNIST task as reference to compare
both implementations, which is not representative of the char-
acteristics such as sparsity, data reuse opportunity, accuracy
and network topologies of more difficult tasks. Moreover,
ref. [17] bases its comparison on a single ANN accelerator,
and the conclusions may not be valid for other accelerators.
Ref. [16] compares memory accesses and computations in
ANNs and SNNs to determine the sparsity level required in
a SNN to be more energy-efficient than an ANN. However,
neither ref. [16] nor ref. [15] consider the opportunities to
exploit sparsity and data reuse in ANNs. Moreover, ref. [15]–
[17] do not consider the different variants of the IF model
frequently used in state-of-the-art SNN algorithms, although
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the SNN model impacts the energy consumption. Therefore,
we currently lack a fair comparison between ANN and SNN
hardware implementations.

In this paper, we propose a high fidelity model for com-
paring the energy efficiency of ANNs and SNNs on digital
hardware, considering how data reuse and sparsity play a
role. Guidelines for improving the energy efficiency of SNNs
are also provided. The main contributions of this paper are
summarized as follows:

• We propose a model of ANN and SNN dynamic energy
consumption based on the synaptic operations, consider-
ing different variants of the IF model for SNNs, which
we use to evaluate the energy efficiency of state-of-the-art
SNN algorithms (in Section II).

• We provide an upper bound on ANN energy efficiency
relative to the SNNs, independent of the hardware archi-
tecture, by computing the maximum benefit of data reuse
and exploitation of sparsity (in Section III-A).

• We compare this theoretical bound with the state-of-the
art ANN accelerators Eyeriss v1 and v2 [10], [18] (in
Section III-B).

• We discuss the effectiveness of hybrid ANN-SNN imple-
mentations (in Section IV).

II. MODELS FOR THE ENERGY CONSUMPTION OF ANN
AND SNN SYNAPSES

A. Scope of the study

In this study, we focus on image recognition applications
as these are frequently used for benchmarking DNNs. We
consider on-chip inference (and not learning). We take into
account only convolutional and fully connected layers, which
represents the main energy consumption of ANNs and SNNs.
Activation functions, typically Rectified Linear Unit (ReLU)
for ANNs and comparison with a constant threshold for SNNs,
pooling and normalization layers consume relatively little
energy.

A neural network hardware architecture can be spatially
expanded (each neuron is physically represented) or spatially
folded (time-multiplexed) [15], as depicted in Fig. 1. In a
spatially expanded architecture, all the memory is on-chip in
buffers (such as SRAMs) close to the PEs. In a spatially-folded
architecture, which is typically used in ANNs (for example in
Eyeriss [18]), the chip is smaller, with only one buffer on-chip,
and there is an off-chip memory (such as DRAM). This type of
architecture saves area but increases the energy consumption
due to the off-chip memory accesses. In the case of SNNs, the
choice of hardware architectures depends on the processing
mode, whether it is an event-based execution, where all layers
are computed in parallel, or ANN-like execution, where layers
are computed one at a time. In event-based execution (such
as [4]–[6]), spikes are encoded in a packet containing the
address of the source neuron (whose size depends on the
network topology) that is sent to the destination neuron in
real time using the Address Event Representation (AER)
protocol [19]. Event-based processing allows leveraging the
spike sparsity of SNNs, as spikes are not stored and processed
immediately, but requires a spatially expanded architecture.

In ANN-like execution, spikes must be stored, but it offers
more opportunities for data reuse and allows spatially folded
architectures as in ANNs. For instance, ref. [20] proposes an
output stationary dataflow where neurons are mapped to PEs
to minimize the energy consumption of reading and writing
the neurons state. This comes at the cost of storing the spikes
in a FIFO during the computation of a layer, which must be
further sorted to respect the computation order constraints. In
[21], [22], input spikes are stored as ANN activations with only
0 and 1 values, but with an additional temporal dimension
(representing SNN temporal dynamics). Therefore, they can
process all spikes of a layer in parallel and use a weight
stationary or output stationary dataflow. However, they must
also store spikes in tensors whose size depends on the temporal
resolution.

These approaches provide scalability, but it is unclear
whether they provide an energy benefit. Indeed, they lose the
advantages of SNNs, i.e. not storing activations and naturally
leveraging their sparsity, and still cannot exploit as much data
reuse as in an ANN due to the computation order constraints.
Therefore, in this study, we focus on the event-based approach.
Instead of taking an existing neuromorphic accelerator, we will
consider a more general event-based architecture, and therefore
spatially expanded, which is not specific to a SNN model and
focus only on inference. In spatially expanded architectures,
the supported network topologies are limited by the size of the
chip. In case of a large network topology, only a fraction of
the topology could be processed in a SNN event-based mode.
This is not a problem as we assert that SNN event-based
processing is only beneficial for the portion of the network
with high spike sparsity, as will be seen later. Therefore, to
fairly compare ANNs and SNNs, we consider that both use
a spatially expanded architecture in order to use the same
memory energy values.

We study the dynamic energy consumption associated with
the synaptic operations of ANNs and SNNs (computation
and memory accesses), which is evaluated considering the
sparsity and data reuse. The static energy consumption and
energy consumption associated with communication are other
factors impacting the overall energy consumption of a sys-
tem. However, dynamic energy consumption associated with
synaptic operations being one of the main motivation for the
use of SNNs (due to the assumed benefits of spike sparsity
and replacement of MACs by ACs), we decided to focus
our study on this point. Thus, static energy consumption and
energy consumption associated with communication are out
of the scope of this paper. For the same reason, we focus on
energy consumption rather than area, latency and throughput,
although they are also important factors to consider when
designing an accelerator.

This study focuses on digital accelerators, although SNNs
could also benefit from low-power analog implementations. In
particular, neural networks accelerators based on processing-
in-memory are a promising alternative to reduce data move-
ment [23]. However, device variability and non-ideality of
analog circuits impose constraints on the network architecture
and can reduce the accuracy, and thus are not the focus of
this paper. Moreover, although we focused on convolutional
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and fully connected topologies for image processing, the
conclusions of this study also apply to recurrent topologies.
Indeed, while this adds some constraints for the SNN event-
based implementation (output spikes of the recurrent layer
must be buffered before being fed to the same layer at the next
timestep), they do not affect the dynamic energy consumption
of synaptic operations considered in this study.

Fig. 1. (a) Spatially folded architecture (such as the Eyeriss v1 chip [18]).
(b) Spatially expanded architecture. Data types specific to ANN and SNN are
highlighted and in italic, respectively.

B. ANN model

In ANNs, the output of a neuron is defined as:

yi = φ(
∑
j

xjwij + bi) (1)

yi is the output activation (oact) of neuron i, bi its bias, xj

is the iact from presynaptic neuron j, and wij is the synaptic
weight between neurons i and j. φ is an activation function,
such as ReLU. Therefore, the ANN atomic operation is the
synaptic operation, which corresponds to a MAC operation.
Note that the number of synapses (Nsyn) is different from the
number of weights (especially in convolutional architectures
where weights are reused in multiple synapses). We start by
considering a naı̈ve ANN implementation : for each MAC,
we must read the iact, weight and current partial sum (psum),
and write back the updated psum [9]. Therefore, ERx (respec-
tively EWx) being the energy of the read (respectively write)
operation on the x data, the total energy for the ANN is:

EANN = Nsyn × (ERiact + ERweight + ERpsum

+EWpsum + EMAC)
(2)

C. SNN models

For SNNs, we evaluate frequently used variants of the
Integrate and Fire model [24]. Neurons can be simple Integrate
and Fire (IF), or with an additional leak (LIF), meaning that
the membrane potential decays over time. Synapses can be
instantaneous or continuous, whether the spike is integrated
immediately to the membrane potential or is accumulated first
in another state variable which also has a dynamic behavior.
Note that only the IF neuron and instantaneous synapse do
not have temporal dynamics, while the other models require
a temporal discretization to perform the associated updates
at each timestep. The different combinations of neurons and
synapses are described in the following subsections.

1) IF neuron and instantaneous synapse (IF+inst): The
dynamics of this model is described by the following equation
(setting aside the reset):

dVi

dt
(t) =

∑
j

∑
r

wijδ(t− trj) (3)

Vi(t) is the membrane potential of neuron i at time t, wij

is the synaptic weight between neuron i and neuron j, trj
is the time of the rth spike from neuron j and δ is the
Dirac delta function. For each incoming spike from neuron
j, we must read the associated weight wij and the membrane
potential (state) of the neuron. We do not need to read the input
value as it is a spike and thus it communicates directly the
addresses of the corresponding weight and neuron state. Then
the weight is simply added to the state with an AC operation.
We assume that, in the event the spikes must be buffered, this
energy is included in the communication, which is ignored
here. In SNNs, a synapse can receive several spikes. Hence, the
energy associated to a SNN synapse must be multiplied by the
average number of spikes received per synapse (Nspikes/syn).
We obtain the total energy:

EIF+inst = Nsyn ×Nspikes/syn × (ERweight

+ERstate + EWstate + EAC)
(4)

2) LIF neuron and instantaneous synapse (LIF+inst): Its
dynamics (without the reset) is described as:

τm
dVi

dt
(t) = −Vi(t) +

∑
j

∑
r

wijδ(t− trj) (5)

This corresponds to an exponentially decaying membrane po-
tential with time constant τm. The evolution of the membrane
potential with time can be also described in an iterative
formulation:

V t
i = V t−1

i × exp(− 1

τm
) +

∑
j

wijϵ
t
j (6)

In this model, the states of neurons are updated at each
timestep. Therefore, in equation (4) we must add the energy
for updating the state for all neurons (Nneur) and all timesteps
(T is the number of timesteps in one inference), corresponding
to: reading the state, multiplying it with a constant, and writing
back the result. We obtain the total energy by combining the
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operations performed at each incoming spike, from (4), and at
each timestep:

ELIF+inst = Nsyn ×Nspikes/syn × (ERweight

+ERstate + EWstate + EAC)

+Nneur × T × (ERstate + EWstate + EMAC)

(7)

Another strategy is to update the states only when neces-
sary, i.e. when there is an incoming spike to the neuron
(using an additional variable to record the last spike time),
as proposed in [25]. However we found that in recent SNN
algorithms, the update at each timestep is more efficient, as
Nsyn ×Nspikes/syn is large compared to Nneur × T , as will
be seen in Section II-E. Moreover, the energy of updating the
states when there is an incoming spike is higher than updating
at a timestep (as in addition we must compute the total decay
from the last to the current input spike).

3) IF neuron and continuous synapse (IF+cont): SNNs
with temporal coding, for instance Time-to-First-Spike (TTFS)
coding, require continuous synapses to track the spike tim-
ings [7]. The equations of the IF+cont model (without the
reset) are:

dVi

dt
(t) = Ii(t)

τs
dIi
dt

(t) = −Ii(t) +
∑
j

∑
r

wijδ(t− trj)
(8)

Ii(t) is the input current state variable of neuron i at time t.
This corresponds to an exponentially decaying synapse current
with time constant τs. The neuron is IF because the membrane
potential only integrates the input current and does not decay
over time. We use the discretized formulation in [7]:

V t
i = V t−1

i + Iti × λ

Iti = It−1
i +

∑
j

wijϵ
t
j − It−1

i × λ (9)

Note that the equation of the input current I is similar to the
one of the membrane potential V for the LIF+inst model, using
the constant λ ≈ 1

τs
to represent the temporal resolution. To

update I at each timestep, we must read I, multiply it by a
constant, and write back I. To update V at each timestep, we
must read V, multiply the previously obtained value of I by
a constant and add it to V, and write back V. The update at
each spike (instead of each timestep) is not efficient for this
model due to the continuous synapse. Indeed, an input spike
can generate an output spike even after the input spike time,
as the membrane potential keeps integrating the continuous
postsynaptic potential. Therefore, keeping track of the spike
times is highly complex. We obtain the total energy:

EIF+cont = Nsyn ×Nspikes/syn × (ERweight + ERI

+EWI + EAC) +Nneur × T × (ERI

+EWI + ERstate + EWstate + 2× EMAC)

(10)

Finally, compared to the IF+cont model, the LIF neurons
with continuous synapses combination (LIF+cont) adds only
a MAC operation at each timestep (corresponding to the mul-
tiplication of the membrane potential with the decay factor).

TABLE I
NORMALIZED ENERGY COST RELATIVE TO A MAC OPERATION.

CMOS Techno. (data precision) EAC EMAC ER/W ER/W reg

45nm (8 bit) [14] (Section II) 0.13x 1x 5.4x /
65nm (16 bit) [26] (Section III) 0.06x 1x 6x 1x

D. Comparison of SNN models

We now compare the energy efficiency of the different SNN
models described in the previous subsection. We choose 8 bit
Fixed Point data format as it is commonly used for inference
in DNN accelerators [10]. We consider a spatially expanded
architecture for both ANNs and SNNs using SRAMs as on-
chip memory, with energy ratios for compute and memory
in CMOS 45nm from [14] (see Table I). For LIF+inst and
IF+cont models, for which there is an energy associated with
both neuron and synapse, we assume Nspikes/syn = 1, we
consider T = 10 and T = 500, and we use the VGG16
topology to compute Nsyn and Nneur.

The relative energy consumption of the memory and com-
pute associated with synapse operations (at each spike) and
neuron operations (at each timestep) of the different SNN
models is presented in Fig. 2. We observe that, in all models,
the energy cost of compute is very small compared to the one
of memory. In SNN IF+inst compared to ANN, the energy
associated with computation is smaller due to the replacement
of the MAC by the AC operation. For the LIF+inst and
IF+cont models, the overhead associated with the updates
of neurons at each timestep is negligible if the number of
timesteps is small (T = 10) but becomes important if the
number of timesteps grows (T = 500). In the latter, the energy
of updating neurons reaches 15.17% (respectively 26.34%) of
the total energy consumption of the LIF+inst (respectively
IF+cont) model.

Fig. 2. Relative energy consumption of the memory and compute associated
with synapse operations (at each spike) and neuron operations (at each
timestep) of the ANN and the different SNN models.
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Fig. 3. SNN energy efficiency relative to ANN (=EANN/ESNN ) as a function of the number of timesteps (T), depending on the SNN model and
Nspikes/syn (in parenthesis). The AlexNet, VGG16 and MobileNet topologies have Nsyn/Nneur = 2.9x103, 1.7x103, 9.4x102, respectively.

TABLE II
SOA SNN ENERGY EFFICIENCY RELATIVE TO ANN (= EANN/ESNN ) USING MODELS AND ENERGY RATIO IN TABLE I FROM SECTION II.

NO DATA REUSE AND SPARSITY BENEFITS ARE CONSIDERED FOR ANN.

Task Paper (Topology) SNN model Acc. (%) T Nspikes/syn Energy efficiency

CIFAR-10 [13] (VGG8*) IF+inst 90.98 - 0.30 4.6x
[27] (VGG16) IF+inst 90.35 - 1.30 1.1x
[28] (VGG16) IF+inst 92.79 - 0.51 2.7x
[11] (ResNet11) LIF+inst 90.95 100 3.60 0.4x
[29] (VGG9) LIF+inst 90.50 25 0.80 1.7x
[12] (VGG16*) LIF+inst 92.70 5 0.39 3.6x
[30] (VGG16) IF+cont 92.68 680** 0.62 1.3x

ImageNet [27] (VGG16) IF+inst 68.93 - 5.00 0.3x
[28] (VGG16) IF+inst 72.59 - 1.00 1.4x
[12] (VGG16*) LIF+inst 69.00 5 0.41 3.4x

* with encoding layer. ** assumed number of timesteps.

In addition, the relative energy efficiency of SNN models
with updates at each timestep compared to ANNs also depends
on the ratio Nsyn/Nneur. This ratio depends on the network
topology. For instance, in the more recent MobileNet topology,
this ratio is 3x lower than in the AlexNet topology. The energy
efficiency of the different SNN models compared to ANNs
(= EANN/ESNN ) depending on the number of timesteps is
shown in Fig. 3, for a given Nspikes/syn. The results are shown
for the AlexNet, VGG16 and MobileNet topologies, having
Nsyn/Nneur = 2.9x103, 1.7x103, 9.4x102, respectively. We
see that, in topologies with a low ratio Nsyn/Nneur (such as
MobileNet), the energy efficiency of the LIF+inst and IF+cont
models decreases more rapidly with the number of timesteps
compared to topolgies with a higher ratio (such as VGG16 or
AlexNet).

E. Application to SNN algorithms

We apply the models previously described to investigate the
energy efficiency of state-of-the-art SNN algorithms compared
to an ANN (see Table I for the energy ratios used). Nspikes/syn

in a given layer is the average number of spikes fired by a
neuron in the previous layer. To obtain an average on the entire
network, we need to weight it by the number of synapses
in each layer, which is the number of neurons in this layer
multiplied by its fan-in (number of input connections). In
practice, if the average number of spikes per neuron of each

layer is not available, we assume that over the entire network
Nspikes/syn ≈ Nspikes/neur (removing the contribution of the
fan-in). Note that some SNN papers use an encoding layer
(the first layer receives real pixel values instead of spikes and
therefore does MAC operations as in an ANN) to decrease the
number of spikes per inference [12], [13]. In that case, only the
energy of spiking layers is considered. For the paper [30] using
a temporal coding, no temporal resolution is given. Hence, it
is assumed based on the paper [31] using a similar SNN model
with temporal coding, achieving comparable accuracy with the
same network topology and dataset.

For the IF+inst model, Nspikes/syn must be lower than 1.38
for ESNN to be lower than EANN regardless of the network
topology. To compare the other SNN models, which requires
an update at each timestep, we must take into account the
network topology and the temporal resolution. The energy
efficiency of SNN relative to ANN (= EANN/ESNN ) for
state-of-the art SNN papers is shown in Table II (using
the naı̈ve ANN implementation described in this section for
comparison and the energy ratios from Table I).

We observe that all SNN algorithms have a higher energy ef-
ficiency than the corresponding ANN (up to 4.6x more energy-
efficient), except in [11], [27] (where Nspikes/syn is higher).
As in most cases Nsyn × Nspikes/syn is large compared to
Nneur × T , the energy of updates at each timestep becomes
negligible compared to the energy of synaptic operations. In
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that case, all SNN models have a similar energy consump-
tion (similar to the one of IF+inst) and only Nspikes/syn

determines the energy efficiency compared to the ANN. This
will not be the case if the number of timesteps increases, or
with a different network topology where the ratio between
synapses and neurons is smaller, as shown previously in Fig.
2 and 3. Note that even if in these examples, all SNN models
have a similar energy consumption, SNN models with an
update at each timestep require a time discretization of the
inference and the computations are not fully event-based.
Moreover, the continuous synapse introduces another state
variable for each neuron to store the input current, increasing
the memory requirements. In addition, we did not observe a
higher accuracy or a higher spike sparsity in the models with
leaky neurons or continuous synapses, which could justify
their use. For all these reasons, the IF+inst model seems a
better choice for a digital SNN implementation.

In an event-based SNN implementation, no data reuse is
possible (due to the non-flexible and non-predictable compu-
tations) and spike sparsity is leveraged naturally (due to the
event-driven computations). In comparison, we considered a
naı̈ve ANN implementation (worst case ANN) which does not
leverage sparsity and data reuse. Therefore, in the next section,
we will consider more favorable ANN models. In the next
section, only the IF+inst model is considered, as it is the
more general, and the target SNN sparsity can be computed
independently of the network topology.

III. ANN MODELS CONSIDERING DATA REUSE AND
EXPLOITATION OF SPARSITY

In the previous section, we ignored the opportunities to ex-
ploit data reuse and sparsity in ANNs, although they improve
the energy efficiency. Data reuse (for all kind of data types:
weight, iact and psum) is the number of times a data that has
been read once from a distant memory can be reused locally
for a MAC operation. The ideal (theoretical limit) data reuse
is that each data is only read once from a distant memory and
then reused locally in the PEs. In practice, due to hardware
constraints, the reuse is never ideal but is optimized with
the dataflow. On the other hand, sparsity can be exploited in
iact and weights, by gating or skipping unnecessary MAC
operations (i.e. with a zero operand), and compressing data.
In SNNs, iacts are already compressed (only non-zero iacts,
i.e. spikes, are transmitted) and thus the read of weights and
AC are only performed when there is a spike. In ANNs, it
requires more logic to process compressed iact. Exploitation
of sparsity in the weights is not taken into account in this
study, as we assume that ANNs and SNNs can process sparse
weights and obtain the same benefits. Note that it may be even
easier for SNNs to process sparse weights than for ANNs to
process both sparse weights and iacts. Indeed, the logic would
only consist in checking if one operand is zero (skipping of
zero spikes is natural), while in an ANN, it has to find the
match between two non-zero operands [9]. In this section, we
use the energy ratios for memory and compute for CMOS
65nm and the 16 bit Fixed Point data format from the Eyeriss
paper [26] (see Table I).

A. Best case ANN: ideal exploitation of data reuse and input
activation sparsity

We first investigate the best case for the ANN, correspond-
ing to an optimal data reuse and exploitation of sparsity in
the iacts. This model gives an upper bound on the ANN
energy efficiency relative to the SNN IF+inst model, which is
independent of the hardware architecture.

Theoretical data reuse, or Reuse Factor (RF), is computed
for each layer of a topology given its shape and size. In a
fully connected layer, the RF on iacts is the number of output
neurons, the RF on psums is the number of input neurons and
there is no reuse of weights (RF=1). In a convolutional layer,
the RFs depends on the number of input and output channels,
kernel size, image size and stride, details of the formula are
given in [32]. The RF of each data types for each layer of
AlexNet, VGG16 and MobileNet are shown in Fig 4. We
observe that theoretical RFs are very high, on the order of 102

to 103 on average. In recent architectures, such as MobileNet
(using depth-wise convolution), there is fewer reuse for every
data type.

Compared to the previously used ANN energy equation (2),
we weight the access to a distant memory by the corresponding
RF. To reuse data locally, data must be stored in a local storage
(such as register files) in the PEs, whose access energy is
reduced compared to the distant memory. Then, a data can be
accessed from a PE (in the PE or in a neighbor PE from the
PEs array) each time it is reused for a MAC. We add this local
storage access (ERreg, EW reg) in the ANN energy:

EANN(reuse) = Nsyn × (
ERiact

RFiact
+

ERweight

RFweight

+
ERpsum + EWpsum

RFpsum
+ ERreg

iact

+ERreg
psum + ERreg

weight + EW reg
psum + EMAC)

(11)

This equation gives the energy efficiency of the ANN exploit-
ing the maximum data reuse but not sparsity, if we must store
and access each data in a local storage in the PEs. In that case,
the SNN target sparsity to obtain the same energy efficiency as
the corresponding ANN is Nspikes/syn = 0.28. This is much
lower than the target sparsity obtained with the naı̈ve ANN
implementation previously described (1.38).

We now consider the ideal exploitation of sparsity in the
iacts. When there is a zero iact, the MAC, the weight read
and psum read and write in the local memory are saved:

EANN(reuse+sparsity) = Nsyn × (
ERiact

RFiact
+

ERweight

RFweight

+
ERpsum + EWpsum

RFpsum
+ ERreg

iact + (1− γ)× (EMAC

+ERreg
psum + ERreg

weight + EW reg
psum))

(12)

γ is the average rate of zero in iacts, which is 58% in
convolutional layers of AlexNet and VGG16 [18]. We did
not consider data compression, which can further reduce the
energy consumption by reducing the energy of distant memory
accesses, as the distant memory accesses are already negligible
due to the ideal RFs. Using this equation, the SNN target
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Fig. 4. Ideal data reuse (Reuse Factor) of the three data types (left: psum, middle: iact, right: weight) for AlexNet, VGG16 and MobileNet topologies (inspired
by [10]). Each point represents a layer of the DNN.

sparsity becomes Nspikes/syn = 0.15. This target sparsity is
very low and not achieved in current SNN algorithms as shown
in Table II-D. The target sparsity for the SNN IF+inst model
to be at least as efficient as the ANN, as a function of the
average RF (of all data types) in the ANN (assuming 58% zero
iacts) is shown in Fig. 5. We observe that the target sparsity
decreases rapidly with the ANN RF and becomes very small
(lower than 0.3) from RF = 10.

Fig. 5. Target Nspikes/syn for the SNN IF+inst model to be at least as
efficient as an ANN with ideal data reuse and iact exploitation of sparsity, as
a function of the average data Reuse Factor in the ANN.

In practice, such RFs are not achieved due to hardware
constraints and exploitation of sparsity requires additional
logic consuming energy. Therefore, in the following subsec-
tion, we will consider the case of the Eyeriss v1 and v2
accelerators [10], [18].

B. Real case study: the Eyeriss accelerator

Eyeriss is representative of state-of-the-art DNN accelera-
tors with high energy efficiency leveraging both data reuse and
sparsity. This allows us to compare the SNN energy efficiency
with a realistic ANN hardware implementation.

1) Eyeriss v1: Eyeriss [18] use a Row Stationary dataflow
to increase the data reuse. We use the number of memory
accesses given in [18] to compute the actual RFs. Iacts, oacts
and weights are transferred between the DRAM and PEs
through the Global Buffer (GLB), while psums are only stored

in the GLB. The weights are stored in SRAM in the PEs,
which means that they are probably read once in the DRAM
and then once in the GLB, to be stored in the PEs. Therefore,
we can consider only the number of GLB accesses (as there
is no off-chip memory in the spatially expanded architecture).
We remove the weights accesses to compute the RFs of iacts
and psums. For this purpose, we compare the number of
GLB accesses with the number of accesses required without
reuse, as in the naı̈ve implementation described in the previous
section (each MAC operations requires 4 memory accesses).

We compute the RFs for the AlexNet and VGG16 topologies
implemented in [18] for the ImageNet dataset. For the convo-
lutional layers of VGG16 with batch size of 3, 46.04G MACs
are performed in total. This would require 276GB psums and
iacts accesses without reuse (data are encoded in 2B). Instead
they perform 11006MB GLB accesses. Therefore the effective
average RF for iacts and psums is 25. Similarly for Alexnet
convolutional layers, we obtain an average RF for iacts and
psums of 80. They consider only convolutional layers, which
consumes more energy compared to fully connected layers
in DNNs. They use a batch size superior to 1 to increase
the weight reuse, and we consider a batch size of 1, but our
computation remains the same (as this does not impact the
psums and iacts reuse). In addition to iacts and psums accesses
in a distant memory, we must consider local data accesses, due
to reuse, from local register files which can be either in the PE
(x1 energy cost compared to a MAC) or in neighbor PEs in
the PE array (x2). To simplify, we assume they are accessed
in the PE.

Eyeriss leverages iact sparsity with data gating logic in the
PEs (MAC and weight read are gated when iact is zero), which
can save 45% of the PEs power consumption. We interpret
this as the following: when there is a zero iact, the power
consumption of PEs is only 55% of the power consumption
when the iact is non-zero, where the power consumption of
the PE corresponds to the associated MAC operation and
memory accesses. The operation is gated but hardware cycles
are still spent semi idle. Thus, the obtained energy for a gated
operation is only affected by the power as time is constant.
This saving includes static energy consumption, which was
not considered in our model. As we do not know the relative
consumption of static and dynamic factors in Eyeriss PEs, we
assume the 45% energy savings corresponds to the savings in
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the dynamic energy considered here. We obtain the energy of
the ANN Eyeriss model:

EANN(Eyeriss) = Nsyn × ((1− γ) + 0.55× γ)

×(ERweight +
ERiact + ERpsum + EWpsum

RFavg

+EMAC + ERreg
iact + ERreg

psum + EW reg
psum)

(13)

γ = 0.58 is the average rate of zero iact in AlexNet and
VGG16. RFavg is the average RF computed for iacts and
psums, which is 25 (resp. 80) for VGG16 (resp. Alexnet).
Note that the cost to read weights once from the buffer before
storing them in the PEs does not appear in the equation.
Indeed, we assume that the associated energy is negligible
as it corresponds to the maximum reuse of weights. However,
weights are stored in SRAM in the PEs, thus the energy cost to
read them is the same as the cost to read a data in the buffer.
Comparing the total energy of the ANN Eyeriss and SNN
IF+inst models, we get that Nspikes/syn in the SNN must
be lower than 0.44 (resp. 0.42) for VGG16 (resp. AlexNet)
topology, for the SNN to be more energy-efficient than the
ANN. This target spike sparsity is much lower than the one
corresponding to the naive ANN implementation (1.38), but
higher than the one corresponding to the ideal best case ANN
(0.15).

2) Eyeriss v2: Eyeriss v2 [10] is more energy-efficient than
the v1 due to a flexible hierarchichal mesh on-chip network
(NoC) and better sparsity exploitation in PEs. Both iacts and
weights are compressed and processed by the PEs directly in
the compressed form. Therefore, MACs with zero weight or
iact are skipped (and not gated as in v1). Pruned networks are
used to increase the sparsity in weights, improving the energy
benefits. Compared to v1, the Eyeriss v2 achieves x3.0 (resp.
x1.9) higher energy efficiency with AlexNet (resp. MobileNet
v1). The benefits are higher when using a pruned version of
the networks (x11.3 and x2.5, respectively).

However, the paper lacks some important metrics for us to
compute the corresponding energy equation, for instance GLB
accesses are not specified. Therefore, we use the comparison
between the two versions, given in the Eyeriss v2 paper,
to translate it into the comparison between SNN and ANN
with Eyeriss v2 model. We assume that SNNs can exploit
the sparsity in weights of pruned network topologies with the
same energy benefits, as explained at the beginning of the
Section III. Thus, it is fair to compare the previous results on
SNNs with the Eyeriss v2 without using pruned networks.
Moreover, we did not consider the NoC efficiency in this
study. Therefore, if we consider only the benefits due to
sparse PEs with non-pruned networks, the energy efficiency is
only improved by x1.15 (x1.06) for the AlexNet (MobileNet)
topology from the v1 to the v2. Indeed, the iacts sparsity
alone compensate slightly the overhead of the sparse PEs
logic and the compression of non-sparse data. Therefore, we
consider that the target sparsity in the SNN must be x1.15
(for the AlexNet topology) lower compared to the one obtained
considering Eyeriss v1, and thus becomes Nspikes/syn = 0.37.

C. Summary of the results

The relative energy consumption of the local memory, MAC
and distant memory in the baseline, ideal reuse + iact sparsity
and Eyeriss v1 ANN models is depicted in Fig. 6. We observe
that in the baseline model (worst case), all the memory
consumption comes from a distant memory (96% of the total
energy consumption), while in the ideal reuse + iact sparsity
model (best case), it comes from a local memory (84.06% of
the total energy consumption, against 0.32% from memory
accesses in a distant memory). Eyeriss v1 is closer to the
best case than the worst case, with only 2.2% of the energy
consumption due to a distant memory access and 88.02% to
a local memory, showing the effectiveness of the dataflow to
optimize data reuse.

Fig. 6. Relative energy consumption of the local memory, MAC and distant
memory in the three ANN models (described in equations (2), (12) and (13),
from left to right). AlexNet topology is used in Eyeriss v1 case.

The main results of this paper for evaluating the energy
efficiency of SNN IF+inst model compared to the previously
described ANN models are summarized in Fig. 7 and Table
III. Fig. 7 shows the SNN IF+inst energy efficiency relative
to the ANN (=EANN/ESNN ) as a function of Nspikes/syn

for each ANN model (using AlexNet topology for Eyeriss
v1 and v2). Table III gives the target sparsity for the SNN
IF+inst model to have the same energy efficiency as the ANN.
This corresponds in Fig. 7 to the value Nspikes/syn in the x-
axis of the intersection between the y-axis at SNN energy
efficiency = 1 and the curves. We see that above 0.5 spikes
per synapse per inference, SNNs can not compete with ANNs
in the realistic (Eyeriss) and ideal cases. However, the SNN
energy efficiency grows rapidly as Nspikes/syn decreases. For
instance, with a spike sparsity of 0.1, the SNN is 3.6x (resp.
1.5x) more energy-efficient than the ANN implementation of
the Eyeriss v2 model (resp. the ideal model), and 7.3x (resp.
3.0x) if the spike sparsity is 0.05.

IV. HYBRID ANN-SNN IMPLEMENTATIONS

The results show that SNNs energy efficiency compared to
ANNs mainly depends on the SNN spike sparsity. However,
we considered the average SNN spike sparsity at the network
level, although spike activity is very different from one layer to
another. The SNN layer-wise spike activity depends on various
factors such as the training methodology, DNN topology and
dataset, as shown in Fig. 8. A frequent pattern observed
is that spike activity decreases with the depth of the layer.
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Fig. 7. SNN IF+inst energy efficiency relative to ANN (=EANN/ESNN )
as a function of Nspikes/syn for the different ANN models considered, using
AlexNet topology in Eyeriss v1 and v2 models.

TABLE III
TARGET SPARSITY FOR THE SNN IF+inst MODEL TO BE AT LEAST AS

EFFICIENT AS THE ANN

ANN accelerator model (Section) Nspikes/syn

Worst case ANN: Baseline (II) 1.38
Ideal reuse (III-A) 0.28
Best case ANN: Ideal reuse + iact sparsity (III-A) 0.15
Eyeriss v1: reuse + iact sparsity (III-B1) 0.42
Eyeriss v2: reuse + iact sparsity + data compression (III-B2) 0.37

AlexNet topology (non-pruned) is used in Eyeriss v1 and v2 cases.

Therefore, hybrid ANN-SNN implementations, i.e. a network
with ANN and SNN layers, become of interest. A conversion
from analog values to spikes is required bewteen the output
of an ANN layer and the input of an SNN layer, and vice
versa. Therefore, using ANN layers at the beginning of the
network, where the spike activity is typically higher, and
SNN layers at the end, seems a simple solution to avoid
multiple energy consuming conversions. This requires to find
the optimal separation between the ANN and the SNN using
the SNN spike activity at each layer.

Taking as example the SNN ResNet34 from [33], using
its layer-wise spike activity shown in Fig. 8b (but non-
normalized), we can compute the potential efficiency of such
hybrid ANN-SNN architecture. Note that the spike activity
numbers are approximate and therefore the following results
are only indicative. With Nspikes/syn = 2.4 over the entire
ResNet34 network, the ANN implementation is more energy-
efficient than the SNN implementation (6.3x for the Eyeriss
v2 model). However, in the last 10 layers of the SNN, the
sparsity is much higher (Nspikes/syn = 0.18). These layers
implemented in SNN are 2.1x more energy-efficient than the
corresponding layers in an ANN Eyeriss v2 implementation.
Therefore, implementing the first 22 layers in an ANN and the

Fig. 8. Normalized layer-wise spike activity of different DNNs with different
training methods and datasets. (a) VGG16 from conversion pre-training with
spiking backpropagation fine-tuning [12] on ImageNet. (b) ResNet34 from
conversion [33] on ImageNet. (c) VGG16 from conversion pre-training with
spiking backpropagation fine-tuning [12] on CIFAR10. (d) VGG9 with spiking
backpropagation training [11] on CIFAR10.

last 12 in a SNN would result in a hybrid ANN-SNN imple-
mentation 1.2x more energy-efficient than the ANN Eyeriss
v2 implementation. Note that we used the ANN reuse factors
and iact sparsity in Eyeriss for VGG16, as the ResNet34
topology was not implemented. The efficiency of hybrid ANN-
SNN architectures increases with SNN algorithms having a
lower spike activity. For instance, the SNN implementation
of the VGG16 proposed in [12] (shown in Fig. 8a), using an
encoding layer, is 1.1x more energy-efficient than the ANN
Eyeriss v2 implementation. However, when implementing the
first 6 layers in an ANN, the hybrid ANN-SNN implemen-
tation would be 1.3x more energy-efficient than the ANN
Eyeriss v2 implementation. Indeed, the last 10 layers in SNN
implementation are 2.2x more energy-efficient compared to
their ANN implementation due to their high spike sparsity
(Nspikes/syn = 0.21).

However, sparsity and data RFs in ANNs also vary in the
layers. Therefore, we must take into account these layer-
wise factors to evaluate the efficiency of a hybrid ANN-
SNN architecture. In addition, the energy associated with the
conversion process must also be considered.

V. CONCLUSION

This study demonstrates that, contrary to previous thinking,
the main advantage of new SNNs accelerators compared to
ANNs on digital hardware comes primarly from exploiting the
sparsity of spikes and not from the replacement of MAC by AC
operations. Moreover, the IF neuron and instantaneous synapse
model seems a better choice for digital implementation than
models with LIF neurons or continuous synapses. Indeed, it
requires the lowest memory accesses and does not depend on
a time discretization, while having a similar spike sparsity
and accuracy. For the first time, a lower and upper bound
for the relative energy-efficiency of SNN models compared to
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ANN models is provided. These bounds are based on a naı̈ve
worst case ANN implementation and a theoretical best case
assuming perfect data reuse and exploitation of sparsity. The
SNN energy efficiency compared to ANN implementations
in Eyeriss v1 and v2 accelerators was also investigated. The
results showed that current SNN algorithms do not reach a
sufficient spike sparsity at the network level to compete with
efficient ANN accelerators such as Eyeriss. Hybrid ANN-SNN
architectures with the first layers of the network processed in
ANN mode and the last layers in SNN mode, appear to be
a promising solution to leverage the best of both worlds. In
addition, SNN implementations of compact DNNs, such as
MobileNet, which offer fewer opportunities of data reuse, may
be particularly relevant.
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