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Abstract—This paper introduces a formal workflow for mod-
eling software/hardware systems in order to explore the ef-
fects of fault injections and evaluate the robustness to fault
injection attacks. We illustrate this workflow on four versions
of a PIN authentication code, embedding different software
countermeasures. The code is symbolically evaluated on two
implementations of the RISC-V CV32E40P core: the original
implementation from the OpenHW group and an implementation
that integrates protection of the pipeline control signals. On the
original, unprotected core, our formal workflow exposes various
vulnerabilities, including previously unknown ones, whereas, on
the protected core, it confirms the effectiveness of the proposed
countermeasures.

Keywords-Secure Embedded Systems; Fault Attack; Microar-
chitecture; Formal Verification

I. INTRODUCTION

Fault Injection (FI) attack is a powerful threat against
embedded systems [1]. Many fault injection techniques, such
as clock or voltage glitches [2], [3], electromagnetic radi-
ations [4], or laser pulses [5], can be used to physically
disturb the circuit and induce incorrect values in the hardware.
The fault then propagates at the microarchitecture level and
emerges at the software level when incorrect instructions are
executed or wrong data is manipulated. These faults can be
exploited, for example, to retrieve sensitive data or to bypass
security mechanisms.

For more than ten years, a lot of work has been addressing
the characterization of fault effects given specific equipment
and a given target processor [3], [4], [6]–[9]. Such charac-
terization is conducted following a black-box or grey-box
approach as proper documentation is not publicly available.
Moreover, only limited information can be retrieved after a
fault injection, typically the content of the general purpose
registers and memory. Some specifically designed codes are
attacked to help the analysis of fault effects. These effects are
eventually expressed at the Instruction Set Architecture (ISA)
level and thus known as ISA-level fault models. These com-
prise instruction or operand corruption [4], [6], [8], instruction
skip [3], [4], [9], test inversion, instruction replay [3], [10], etc.

The ISA-level fault model is convenient for designing
software protections or performing vulnerability analyses be-
cause it effectively abstracts the target hardware and still
encompasses a broad set of faulty behaviors. Many fault
effects can often be observed for a given processor target
by varying the test code. However, some other effects escape

this ISA-level modeling and thus remain unexplained. As an
example, Proy et al. [11] classified as magic edges some
effects observed on a real use case but undetected in their
fault characterization based on specific test codes. Some faults
inside the microarchitecture can not be explained at the ISA
level, as shown by Laurent et al. [12]. For example, corrupting
the write signal of the register file prevents the result of a
calculation from being written back. This may result in an
instruction skip but also in a more complex effect, as the
correct computed value is available and forwarded to the
following dependent instructions in the pipeline. This illus-
trates that fault effects depend on the program and cannot be
explained without the knowledge of the microarchitecture im-
plementation, e.g., forwarding mechanisms vary with pipeline
depth and implementation choices. For security evaluation
purposes, there is thus a need for vulnerability analyses that
consider both software and hardware (i.e., microarchitecture)
in order to analyze the fault effects. Processor source code is
now available through open hardware initiatives making such
white-box vulnerability analyses possible.

Vulnerability analyses can be performed using simulation
tools. Nevertheless, due to the extensive domain of the data
input and possible faults, simulation requires techniques for
pruning the search space to eventually find a vulnerability.
Formal verification (e.g., model checking) is advantageous
because it allows abstracting the input data or the fault value by
using symbolic evaluation to cover a wider range of analyses.
Besides, the verification process is guided towards identify-
ing counterexamples (i.e., vulnerabilities), whereas simulation
requires an exhaustive search through all possibilities. Thus,
we argue that formal verification provides a strong foundation
to systematically explore hardware/software systems in order
to comprehensively characterize faults. While some formal ap-
proaches at binary code or ISA level have been proposed [13]–
[15], to the best of our knowledge, there exists no formal
approach for studying the fault injection effects considering
both software and hardware.

This paper presents a formal verification-based workflow
that combines software and hardware models to explore fault
effects and evaluate the system’s robustness to FIs. Our work-
flow starts from a binary program (an .ELF file), a Register
Transfer Level (RTL) implementation of a processor core and
memory, and configuration files to specify the fault injection
settings and the security property of interest. Whenever a fault



vulnerability is identified, the workflow generates a counterex-
ample as a Value Change Dump (VCD) file, presenting the
processor signals and the corresponding hardware-level trace.
We also propose a comprehensive illustration of this workflow,
using protected and unprotected software and hardware imple-
mentations. On the software side, we consider several versions
of a PIN authentication code [16] augmented with different
software countermeasures. On the hardware side, we consider
two versions of the CV32E40P RISC-V processor from the
OpenHW group, the original CV32E40P [17] and a protected
variant [18]. First, we study the robustness of the different PIN
code versions running on the original CV32E40P. We analyze
their vulnerabilities and report new fault effects to the best of
our knowledge. We also verify that the protected CV32E40P
core, i.e., hardened against microarchitectural faults, protects
the system effectively.

This paper is organized as follows. Section II first briefly in-
troduces formal verification at RTL level and associated tools,
then describes related work analyzing software and hardware
parts of systems jointly. Section III introduces our formal
verification-based workflow. Section IV presents some case
studies, and Section V reports experimental results, focusing
on new fault effects and on the evaluation of the system’s
robustness. The conclusions are in Section VI.

II. BACKGROUND AND RELATED WORK

Formal verification of hardware and software systems cov-
ers both deductive (e.g., theorem proving) and algorithmic
approaches (e.g., model checking). The verification process
is driven by logical inferences in the former case, and by
checking patterns specified by logic formulas in finite state
graphs in the latter case. Without being exhaustive, we focus
next on hardware verification techniques and applications.
Deductive hardware verification addresses a wide range of
issues: formalization of HDLs like Bluespec [19], functional
verification of micro-architectures like pipelines [20] or full-
fledged verification frameworks like Kami [21]. Model check-
ing for hardware systems, powered by SAT or SMT solving,
also targets similar applications, supported by a number of
model checkers: ABC [22] for bit-level verification, CoSA [23]
to assist in hardware design or AVR [24] for word-level
reasoning.

Several tools, e.g., Cadence SMV [25] and EBMC [26]
automatically generate a formal model from a description of
a hardware circuit. Cadence SMV relies on compositional
verification techniques (path splitting, symmetry reduction,
refinement etc.) to verify large RTL designs. EBMC is also
applied to hardware design verification as it supports a frag-
ment of the assertion language of SystemVerilog to specify
properties and Bounded Model Checking (BMC) to verify
these properties. The open-source synthesis tool Yosys [27]
also produces an abstract representation of a hardware design
to generate a formal model in SMT or NuSMV [28] formats.
Through Yosys, the model checkers CoSA and AVR can also
handle RTL-level designs, providing access to complementary
techniques to BMC (e.g., interpolation, data abstraction etc.).

Some works [29], [30] propose formal frameworks to verify
the effect of faults on a hardware circuit, but these are re-
stricted to cryptographic circuits. To the best of our knowledge,
there is no formal verification approach to address faults and
their effects by considering the processor and the program
running on it. Meanwhile, other works have analyzed the effect
of faults at a higher level by abstracting from the hardware
implementation. They address the ISA level [14], [31] or the
LLVM-IR level [32]. No work brings together both software
and hardware in the same formal analysis.

However, recent work has raised the need to consider
microarchitecture details when exploring the effect of fault
injections. Yuce et al. [33] illustrate that strictly software
analysis and countermeasure are sometimes inadequate and
do not consider the diversity of hardware implementations,
such as pipeline size. Laurent et al. [12] also reported the
importance of considering both the software and the hard-
ware in the analysis. They reported new vulnerabilities in
the microarchitecture [34] and went further by proposing a
methodology to bridge the gap between hardware and software
considerations [35]. However, it highlighted the need for a
methodology to automate the analysis of the effect of faults
on joint SW and HW systems. Some works have addressed
this question. Zhang et al. [36] identify bugs in processors’
hardware implementations and reconstruct the instruction se-
quence that leads to bugs using a backward symbolic execution
but have not directly addressed the problem of transient fault
injection in hardware and their effects on software security.

Even if there is a great diversity of techniques to study
software or hardware systems, to our knowledge, no work has
yet considered exploring and analyzing fault injection effects
with formal techniques on processors comprising both the
software and the hardware.

III. WORKFLOW

We combine software and hardware descriptions into a
single verification process to study the effects of FIs on the mi-
croarchitecture of processors and the security issues involved.
Our workflow extends hardware models, generated from an
RTL design of processors and memories, with microarchi-
tectural fault models. On the software side, a vulnerability
property is expressed over a software representation of binary
programs. Finally, we apply a BMC verification process over
the resulting software/hardware model. Figure 1 illustrates this
workflow and is detailed in the remainder of this section.

A. Hardware Modeling

Our workflow requires a hardware description at the RTL
level of both a processor and a memory, denoted respectively
CPU and RAM in Figure 1. Since our analysis currently
focuses on the processor microarchitecture, we exploit a
simplified memory model. The memory allows the proper
operation of the processor and is not analyzed against fault
injection attacks. We rely on Yosys to automatically translate
both the CPU and the RAM, described in the Verilog language
(IEEE 1364-2005), to a formal model in the Satisfiability
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Fig. 1: Illustration of the proposed workflow. Bounded Model Checking (BMC) checks a vulnerability property on a model
composed of hardware, software, and fault models.

Modulo Theory Language [37] (SMT-LIB). The SMT backend
of Yosys comes with the SMTC language, derived from SMT-
LIB, which we use to express properties at each step of the
BMC.

The generated SMT model (HW Model in Figure 1) rep-
resents both the combinatorial and sequential logics of the
CPU and RAM at the RTL level. The SMT model is later
manipulated as a transition system during model checking
(BMC driver in Figure 1), where each synchronized transition
(i.e., a depth in the BMC) corresponds to the update of
the sequential logic in the hardware design. To describe the
SMT model, Yosys uses the QF_AUFBV theory which stands
for quantifier-free formulas with data structures adapted to
numerical systems such as arrays, uninterpreted functions, and
bitvectors. Moreover, Yosys preserves the complete correspon-
dence between the RTL signal naming and the SMT variables.
In the remainder of this paper, we thus refer to SMT variables
related to the hardware model by their corresponding RTL
signal names.

B. Fault Modeling

The workflow modifies the SMT model generated by Yosys
to model fault injection effects in the processor. This modeling
is a two steps process. First, the SMT model of the CPU
is instrumented with fault controllers on any variable (corre-
sponding to RTL signals) specified in the fault model configu-
ration file (Fault2SMT box and Fault Model input in Figure 1).
Second, the verification process (BMC Driver) drives the fault
controllers according to the constraints expressed in the SMTC
language.

The workflow relies on a fault configuration file (Fault

Listing 1: Example of SMTC syntax for bit-random fault
injections on the RTL signal fw_mux.
1 state 10:90
2 assume (= [fw_mux_fault] bit-random)
3 assume (= [fw_mux_cnt] 1)

Model input in Figure 1) that implements fault models ac-
cording to four characteristics:

i) the timing constraints of fault injections, expressed as
clock cycles;

ii) the hardware elements (SMT variables referring to RTL
signals) targeted by fault injection;

iii) the effect of fault injections (e.g., bit-set, bit-reset, bit-
flip, or random);

iv) the number of fault injections allowed during a verifica-
tion.

As an example, Listing 1 describes a bit-random fault model
applied on the RTL signal fw_mux. From cycle 10 to cycle
90 (line 1), the bits of the fw_mux_fault signal can take
any value (line 2). The constraint at line 3 specifies that at
most one fault injection is allowed during this time interval
using a dedicated counter named fw_mux_cnt.

Figure 2 represents a logical view of a fault controller.
It targets the signal sig, e.g., fw_mux in Listing 1. The
signal sig_sel indicates if a faulty value is outputted instead
of the golden value. Signals sig_fault and sig_cnt
respectively control the faulty value and the number of injected
faults for this fault controller. Signal sig_fault can be left
symbolic to explore all the possible faulty values and all the
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Fig. 2: Logical representation of a fault controller for signal
sig added in the SMT model of the CPU.

Listing 2: Example of SMTC constraints automatically gener-
ated from an ELF file to describe the analyzed input program.
1 state 0
2 assume (= (select [ram] #x00) #x97)
3 assume (= (select [ram] #x01) #x11)
4 assume (= (select [ram] #x02) #x00)
5 assume (= (select [ram] #x03) #xB2)
6 ...

resulting execution paths simultaneously. Besides, when the
signal sig_sel is not constrained, it is possible to inject
a fault at any cycle. This makes possible the exploration of
multiple fault injections wrt. to the maximum number of faults
allowed (expressed with a constraint on sig_cnt). It is also
possible to set a maximum number of fault injections during
each cycle or the whole execution, whatever their spatial
or temporal locations, using constraints on the sum of all
sig_cnt.

C. Software Modeling

The workflow adds a representation of the input program
into the part related to the RAM in the SMT models generated
by Yosys. The input program is provided as a binary program
(i.e., ELF) compiled for the target architecture. The binary
instructions and their associated data are extracted (ELF2SMT
in Figure 1) and translated into constraints on the SMT
model of the RAM using the SMTC language. Typically, the
generated SMT model of the RAM is a single array sized to
the input program (both instructions and data).

Listing 2 illustrates an SMTC file automatically generated
from an example input program. In this file, the constraints
apply to the initial state of the SMT model of RAM (line 1).
Lines 2 and following describe the binary encodings of the
program instructions and data with assume SMT statements.
When not constrained in the initial state, the variables in
the software part of the formal model are symbolic. These
variables can then take any possible value allowed by their
data type, which allows the verification to cover all possible
execution paths.

Finally, a specific program execution context can also be
restored by constraining the initial state of the processor’s reg-
ister file, the PC value, and the data memory. Such execution
contexts can be retrieved from simulation, for instance. This
possibility is useful to focus the verification only on a specific
sequence of instructions within a program.

Listing 3: Example of a vulnerability property ϕ expressed in
SMTC. The SMT solver will check ¬ϕ from step 20 to 45.
1 state 20:45
2 assert (not (and
3 (= [error] True) (= [data_valid] True)))

D. Vulnerability Property and Verification Process

The vulnerability property ϕ given to the workflow directly
drives the BMC verification process. Our workflow currently
supports what is called a safety property in model checking,
i.e., expressed as an invariant on a set of states without any
temporal operators over the variables of the formal model.

Listing 3 illustrates such a vulnerability property expressed
using Yosys SMTC assertions. Lines 2 and 3 describe, with the
keyword assert, the property ¬ϕ that prohibits to have in a
hardware state error and data_valid equal to True at
the same time. Line 1 specified at which steps of the BMC the
property ¬ϕ must be checked. For instance, state 20:45
means all steps between 20 and 45, but it is also possible to
specify all steps with always or a set of specific steps.

The Yosys-SMTBMC script (within the BMC driver box in
Figure 1) implements BMC techniques to verify the vulnera-
bility property over the SMT model combining the hardware
(i.e., CPU, RAM, and fault controllers) and the software (i.e.,
constraints over the RAM). The generated SMT model is thus
unrolled depth times to update the sequential logic of the
hardware design modeled in the transition system. After each
synchronized transition on the model, the Yosys-SMTBMC
script interacts with the SMT model checker to perform a new
verification step. Furthermore, it allows inserting or removing
any SMTC-based constraints at each verification step. This is
how we change RTL signals subjected to FIs to their targeted
values at the specified hardware clock cycles according to
the fault configuration file, described in section III-B. The
SMT model checker generates a counterexample whenever
the vulnerability property ϕ turns to be satisfiable. Otherwise,
the verification ends by indicating UNSAT. The depth of the
BMC, i.e., depth, is derived from the length of the instruction
sequence we verify. The SMT solver we use is Yices 2 [38]
as it provides the best performance on the BitVector logic
employed1. Note that the first five steps of the BMC are used
to ensure that a hardware reset sufficiently propagates into the
model of the processor.

The Yosys-SMTBMC script interprets the output of the
SMT solver. It produces a VCD trace containing information
about the injected fault and the successive states of the
processor when a vulnerability is identified. The so-produced
counterexample has two purposes. First, it accurately identifies
the fault injection that satisfies the vulnerability property ϕ
among all the fault models explored by the formal analysis.
Similarly, it allows to single out the data input of the pro-
gram if they are symbolic. Second, since the correspondence

1https://smt-comp.github.io/2020/results/qf-aufbv-incremental



between the SMT variables of a model and the RTL signals
is preserved by Yosys, the VCD trace permits to accurately
investigate how the fault propagates in the microarchitecture
from injection to manifestation. However, understanding the
fault effect and its propagation in the microarchitecture must
be done manually. To facilitate this, we perform the differ-
ence between the reference VCD trace without fault and the
counterexample. The following sections detail some of these
vulnerability analyses.

IV. EXPERIMENTAL SETUP

This section illustrates the use of our workflow on two case
studies based on a software authentication procedure called
VerifyPIN and on the CV32E40P processor. We first introduce
the four different versions of VerifyPIN used. These versions
are hardened with software protections inserted at the source
code level, but such protections fail to catch all the possible
sources of vulnerabilities leveraged by faults in the microarchi-
tecture. Then, we present the baseline implementation of the
processor, then a hardened version that ensures the integrity
of control signals. Finally, we present the verification strategy.
Experimental results are discussed in Section V.

A. VerifyPIN

A critical piece of software that needs to be robust to fault
injections is the memcmp-like mechanism used in authentica-
tion or signature verification, e.g., in a secure boot process.
As practical examples, we consider VerifyPIN programs from
the FISSC benchmark suite [16], which provides ten imple-
mentations in C, thereafter named VerifyPIN vN , embedding
several software countermeasures of various kinds. VerifyPIN
programs compare two PIN codes stored in memory: a user
and a secret (card) code, allowing user authentication when
the codes are identical.

We selected the versions VerifyPIN v3 and VerifyPIN v7
(Listing 4). VerifyPIN v3 implements the first four counter-
measures detailed below, while VerifyPIN v7 implements all
of them.

1) Booleans are hardened by using non-trivial True and
False values whose Hamming distance is maximal.

2) The comparison loop has a fixed number of iteration
(lines 18-20 in Listing 4).

3) The loop counter is checked at the loop exit against the
expected number of iterations (in Listing 4 at line 22).

4) The call to the PIN code comparison function is inlined
to protect against faults leveraging call skips (otherwise,
the main comparison loop at lines 18-20 in Listing 4 is
in this function).

5) Critical tests are duplicated to prevent instruction skip
or conditional branch inversion (line 25 in Listing 4).

To produce the binary code provided to our workflow, we
compiled the selected VerifyPIN versions for the RV32IM
ISA using gcc with two different optimization levels. The
compilation flag Og produces a machine code with a limited
number of optimization passes so that the binary code is
close to the C code, while the Os optimization level uses

Listing 4: C implementation of VerifyPIN v7. VerifyPIN v3
does not include lines 25 and 29.
1 signed char ptc;
2 Bool authenticated;
3 Bool countermeasure;
4 unsigned char userPin[PIN_SIZE];
5 unsigned char cardPin[PIN_SIZE];
6
7 void countermeasure() { countermeasure = 1; }
8
9 void verifyPIN_v7() {

10 int i;
11 Bool diff;
12 authenticated = False;
13
14 if(ptc >= 0) {
15 ptc--;
16 diff = False;
17
18 for(i = 0; i < PIN_SIZE; i++)
19 if(userPin[i] != cardPin[i])
20 diff = True;
21
22 if(i != PIN_SIZE) countermeasure();
23
24 if (diff == False)
25 if(False == diff) { // Not in v3
26 ptc = 3;
27 authenticated = True;
28 return; }
29 else countermeasure(); // Not in v3
30 else return;
31 }
32 return;
33 }

more aggressive optimizations and focuses on code size reduc-
tion. We use these two optimization levels for each selected
VerifyPIN version to produce binary programs with different
structures and instruction mixes. This allows us to analyze
more patterns from a single input program and highlight
the impact of the binary code on the presence of subtle
vulnerabilities. Both selected optimization levels can remove
or alter the implemented countermeasures. We manually added
them to the final assembly file when necessary to force their
presence at the binary level. In the remainder, we denote the
four resulting binaries as follows: v3_Og, v3_Os, v7_Og,
v7_Os.

In all the experiments, we consider that the userPIN and the
cardPIN are different in each of their digits (1). In other words,
changing only one of the digits does not allow authentication.

∀i ∈ [[0,PIN SIZE− 1]],userPIN[i] 6= cardPIN[i] (1)

Besides, both userPIN and cardPIN are represented as
symbolic variables in the SMT model. The oracle that iden-
tifies a successful attack is encoded in the property φ0 (2):
authentication without triggering the countermeasure function
is possible.



φ0 := (authenticated = True)
∧ (countermeasure 6= 1)

(2)

We therefore check the satisfiability of ϕ := φ0 (2) under fault
injections until the VerifyPIN function terminates, i.e., until the
calling function context is restored. When satisfiable, we seek
to understand the fault effects of the found vulnerability.

B. Baseline CV32E40P

The CV32E40P is a small and efficient, 32-bit, in-order
RISC-V core from the OpenHW group designed for light-
embedded use. It implements the RV32IMC ISA with a 4-
stage pipeline (IF, ID, EX, WB) (Figure 3). The CV32E40P
is implemented in SystemVerilog, and the sources are available
in [17]. Hence, we use the tool sv2v [39] to convert its
implementation to Verilog so that our workflow can process
it. The baseline implementation of the CV32E40P does not
include protections against faults.

In the following, we introduce three implementation fea-
tures of the CV32E40P processor, which, as detailed later in
Section V, are vectors of vulnerability during FI attacks.

1) Forwarding: Forwarding is a microarchitectural opti-
mization designed to avoid processor stalls due to data hazards.
Forwarding bypasses writing the result of an operation to
the register file to provide it to the previous pipeline stages
as soon as it is available. The implementation is subject to
many factors, such as pipeline depth and location of the
bypasses that retrieve the available data. In the CV32E40P,
the forwarding mechanism shortcuts data dependencies in the
ID stage (Figure 3, dashed lines). Any result from functional
units (e.g., ALU or MULT) or the LSU can then be used in
the ID stage without passing through the register file.

2) Multiplier (MULT): The MULT unit in the EX stage,
visible in Figures 3 and 4, performs the multiplication between
two 32-bit integers and stores the result in the register file.
This module contains two memory elements: a 3-bit value
corresponding to its finite state machine (FSM) and a single-
bit carry. The duration of the computation depends on the
requested operation. Only one cycle is sufficient to produce
the 32 least significant bits of the results, whereas five cycles
are needed to produce the 32 most significant bits. In this latter
case, two signals indicate to the rest of the processor that a
multi-cycle multiplication is in progress.

1) The signal multicycle is sent to the ID stage to
determine if the intermediate result, computed over
iterations, needs to be returned to the MULT via the
signal OpC. As a result, the ID stage stops decoding
new instructions.

2) The signal mulh_ready indicates if a multicycle mul-
tiplication is in progress or not. As a result, the EX stage
is tagged as busy, and this information is then propagated
to the IF stage to stop fetching new instructions.

The result of the multiplication is finally written back in the
register file.
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Fig. 3: CV32E40P RTL block diagram.
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Fig. 4: Multiplier input/output signals and their use to stall the
preceding pipeline stages in case of multicycle multiplication.

3) Prefetch Buffer: The CV32E40P processor has a
PreFetch Buffer (PFB) in the IF stage, which performs word-
aligned 32-bit prefetches and stores the fetched words in a
FIFO with a queue of two instruction words. At the microar-
chitectural level, two independent program counters (PCs)
exist. The first one, the PCIF, specifies the last instruction
that passed the IF stage. It is used in the following stages, in
particular, to compute the target address of direct branches.
The second one, the PCPFB, indicates the memory address
of the next instruction to fetch. Because of the speculative
nature of the PFB, the PCPFB is incremented ahead of time
and independently from PCIF. Both PCs are resynchronized
when a branch is taken.

Figure 5 shows the FIFO used in the PFB to store fetched
instruction words. The signal status_cnt corresponds to
the number of instructions contained in the FIFO. The signals
full and empty indicate its status, i.e., whether it is full or
empty, respectively. The pointers read and write indicate
the buffer location where the next value should be read or
written. These pointers are incremented modulo the queue
size since the buffer is circular. The FIFO ports for receiv-
ing and transmitting instructions are data_i and data_o,
respectively. The behavior of the FIFO is controlled through
the push, pop and flush signals. A push occurs when
the next pipeline stage cannot process an instruction fetched
from memory as it is not ready yet. In this case, the data on
data_i is written to the buffer location pointed to by the
write pointer, which is then incremented. A pop occurs as
soon as the FIFO has at least one instruction and if the ID
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Fig. 5: FIFO of the CV32E40P prefetch buffer.

stage is ready to receive it. The appropriate data is produced
on the output data_o and the read pointer is incremented.
Otherwise, when the ID is ready to execute the instruction
just fetched from memory, and if the FIFO is empty, the
PFB is not used. A flush occurs at each taken branch as the
content of the FIFO sequentially and speculatively fetched
from memory is not relevant anymore. Pointers read and
write are then reset to the same buffer location (location
0b0) and the status_cnt is also set to 0. The flush does
not erase the content of the FIFO, however.

C. Hardened CV32E40P

SCI-FI is a countermeasure designed against fault injec-
tion attacks that ensures code, control-flow, and execution
integrity [18]. Execution integrity refers to the integrity of
control signals emitted by the ID stage in the processor
microarchitecture. The pipeline state built from these control
signals is the cornerstone of the countermeasure. It is designed
to capture any alteration of (i) the binary encoding of program
instructions, or (ii) the control signals in the IF and ID stages
At each cycle, an integrity signature is calculated from the cur-
rent pipeline state value and the previous integrity signature.
Hence, any modification of the pipeline state should result in
an alteration of the integrity signature. The integrity signature
is then checked against reference values placed at specific
locations in the binary program (e.g., control-flow transfers).
This ensures code and control-flow integrity until the end of
the ID stage. A redundancy mechanism protects the control
signals issued by the ID stage (i.e., downstream of the pipeline
state calculation) to complete the integrity protection coverage
throughout the processor microarchitecture. An alarm signal is
emitted when an integrity violation is detected.

A complete security assessment of an implementation of
SCI-FI wrt. FI attacks needs to consider the following security
properties:
φ1 Faults applied upstream from the pipeline state lead

to an alteration of the pipeline state.
φ2 Faults applied downstream from the pipeline state are

detected by the redundancy mechanism, i.e., raise the
alarm signal.

φ3 Pipeline state alterations or faults in the integrity
signature calculation do not produce valid signature
values (signature collisions). Faults applied to veri-
fying the integrity signature to the propagation of the
alarm signal do not leverage vulnerabilities.

In this paper, we study SCI-FI implementation integrated
to the baseline implementation of the CV32E40P core [18].

TABLE I: Signal distribution in the SMT CV32E40P model
that FIs can target according to their width (in bits).

1 bit 2 bits 3 bits 4 bits 5 bits 6 bits 7-31 bits 32 bits 32+ bits Total
249 57 16 8 26 25 19 144 5 549
45.3 % 10.4% 2.9% 1.5% 4.7% 4.6% 3.5% 26.2% 0.9% 100%

The pipeline state integrates 13 control signals and has a
size of 46 bits. Our study focuses on verifying properties
φ1 and φ2 as introduced above. The verification of φ3 is
related to the security analysis of the integrity signature wrt.
an attacker model, which depends on the function signature
implemented. This was already carried out in the original
work [18]. The security assessment of VerifyPIN programs run
on SCI-FI consists in verifying that the vulnerability property
ϕ is satisfiable under fault injections (3).

ϕ := φ0 ∧ ¬φ1 ∧ ¬φ2 (3)

D. Verification Strategy

The vulnerability analysis we propose is motivated by the
need to consider microarchitectural details when evaluating
and explaining the effects of faults. However, at the mi-
croarchitectural level, analyzing the effects of a single fault
targeting the data is not relevant as their consequences can
be modeled at a higher level, e.g., corrupting an operand
value or a general-purpose register just before its use. On the
opposite, the control signals that drive the instruction fetching,
decoding, and the data path are interesting targets to be faulted
since such a fault can lead to effects that cannot be modeled
at ISA level [12]. Note that when considering multiple fault
injections, faults on both data and control signals must be
considered as an exploit can be achieved by a combination
of such faults. In this work, we only consider single faults.
Consequently, we arbitrarily filter out large signals as they
correspond to data signals. We only consider those smaller
than 6 bits. Table I illustrates the width distribution of the
target signals in the SMT model. Our analyses focus on the
signals of width less or equal to 6 bits, i.e., 381 of the 549
available signals.

Our workflow is designed either for exploring the effects
of faults (Section V-A), or for demonstrating the robustness
of an HW/SW system to a given fault model (Sections V-B
and V-C). However, when the vulnerability property is sat-
isfiable, our workflow outputs a single counterexample. This
only shows a single fault injection that leads to a vulnerability,
even if others may exist. To overcome this limitation when
exploring the effects of faults, we create several SMT problem
instances checking the vulnerability property. More precisely,
for each signal a fault can target, we generate as many SMT
problem instances as the number of execution steps where a
fault may occur as described in the corresponding fault model.
In all the SMT problem instances, the fault value is symbolic.
Thus, all different execution paths resulting from the possible
fault values are explored in each single verification run. This
solution enables us to identify which signals are vulnerable at
which clock cycle.



In all the following workflow uses, we add a constraint that
restricts the fault model to one fault injection. Without loss
of generality of the method, this limits the results obtained
to simpler and easier to explain effects. Consequently, only
one fault injection is allowed to bypass secure authentication
successfully. Finally, the input data (i.e., userPIN and card-
PIN) are symbolic variables in both uses of our workflow
(i.e., exploration the effects of faults in Section V-A and
demonstrating robutness of systems in Sections V-B and V-C).
Thus, one verification encompasses all the possible input
data configurations under the initial constraint expressing that
userPIN and cardPIN differ (1).

V. EXPERIMENTAL RESULTS

This section presents the analysis results wrt. the experi-
mental setup presented in Section IV. This section illustrates
in particular the adaptability of our workflow.

A. Exploration of Fault Effects in the Microarchitecture

The analyses performed on v3_Og and v3_Os reported, in
total, 59 vulnerabilities in v3_Og and 189 in v3_Os. Table II
summarizes these results since several vulnerabilities identified
are strictly equivalent or produce the same effect due to signal
renaming in the hardware description2, i.e., the same wire can
have multiple names. As a consequence, the same signal can
be targeted by fault injections at different spatial locations.
In Table II, each successful fault injection is given according
to its Verilog module (leftmost column, corresponding to the
block diagram in Figure 3), one of the target signal names
(i.e., spatial location), and the processor cycle at runtime (i.e.,
temporal location). Each fault injection lasts one processor
cycle. The categories (column category) refer to the hardware
feature that the fault injection corrupts. In the remainder of
this section, we illustrate the effects corresponding to each
category on selected examples of successful fault injection.
The injected faulty value is not mentioned in this table but
is given when relevant for the illustrative examples developed
below.

1) Forwarding: By faulting the forwarding, an attacker can
retrieve a value previously computed by a functional unit
or read from memory into one of the operands of the EX
stage. Laurent et al. have already shown similar results on
the Rocket Processor [34]. The vulnerabilities reported in
Table II in the category FWD exploit this mechanism. Both
v3_Og and v3_Os are vulnerable to such faults. The fault
injection inverts the conditional branch corresponding to the
if statement at line 24 in Listing 4. As a consequence, the
malicious authentication succeeds. Because of the difference
between the two binary programs, the fault must be injected
at cycle 57 in v3_Og and at cycle 47 in v3_Os.

2) Multiplier: The MULT category in Table II corresponds
to faults impacting the FSM of the Multiplier module even
if no multiplication is performed in the VerifyPIN program.
As explained in Section IV, when the MULT enters an active

2Implementation available at https://github.com/openhwgroup/cv32e40p

TABLE II: Results of the FI analysis on v3_Og and v3_Os:
each fault model (designated by the signal name and the FI
cycle) permits satisfying the vulnerability property ϕ := φ0.

Module Targeted RTL Signal Category Cycle of Fault Injection
v3_Og v3_Os

fifo empty PFB 46
status cnt n PFB 18, 21-26 26, 27, 45

prefetch ctrl flush cnt q PFB 18, 45, 46

aligner

instr valid other 18 18, 19, 46
branch i ALGNR 47
update state ALGNR 47
state other 18, 19

id stage

alu bmask b mux sel other 39
alu vec mode ex other 58 48
bmask b mux other 46 19, 20, 39
branch taken ex other 58 48
id valid other 19 19, 20, 47
imm b mux sel other 19, 20
reg d alu is reg a id FWD 57 20, 47
regfile alu waddr mux sel other 19 19, 20

controller

ctrl fsm cs other 19, 20, 47, 48
deassert we other 19 19, 20, 47
halt id other 19 19, 20, 47
is decoding other 19 19, 20, 47
jump in dec other 57
operand a fw mux sel FWD 56, 57 19, 20, 46, 47
operand b fw mux sel FWD 57 47
pc set other 48

decoder

alu en other 19, 20, 47
alu op a mux sel other 57 19, 20, 47
alu op b mux sel FWD 57 19, 20, 39, 47
ctrl transfer insn other 57 47
regfile alu we other 19 19, 20
regfile mem we other 46, 51 19, 20, 39

ex stage

alu cmp result other 58 48
mult en MULT 19, 20
mult multicycle other 19 19, 20, 47
regfile alu we fw FWD 20 20, 21
regfile we wb other 21, 22

alu cmp result other 48
shift left other 20, 21

mult multicycle MULT 19
mulh CS MULT 46

lsu data be other 17

state, it stalls the ID stage via the multicycle signal for up
to 4 cycles. The security concern only arises when the ALU
calculates a branch address at the instant of fault injection.
In such a situation, the EX stage notifies the IF stage that it
remains ready(ex_ready signal as shown in Figure 4) since
a branch could be taken. Finally, the IF stage is not interrupted
and continues to fetch instructions from memory while the ID
and EX stages are busy performing multiplication. Fetched
instructions are therefore ignored. Otherwise, if no branch is
computed in the ALU, the injected fault does not affect the
program’s behavior since the multiplication result is ignored
anyway. Depending on the state injected in the multiplication
module, up to three instructions following a non-taken branch
can be skipped. As previously explained in the forwarding
vulnerability, this also corresponds to skip the if instruction
at line 24 in Listing 4. This vulnerability does not exist on
v3_Og since the instructions are differently ordered.

3) Aligner: The attacks targeting the Aligner module be-
havior are grouped in Table II under the category ALGNR.
Injecting a fault into the Aligner module prevents the PCIF
from being updated, which desynchronizes it from the PCPFB.
Until the next taken direct branch, the program keeps running
normally since the instructions continue to be correctly read
from memory and sent to the next stage. When a direct branch



is taken, the PCIF is used as a reference to calculate the target
address. As the PCIF does not correspond to the address of
the currently executed instruction because of the attack, the
program jumps to an incorrect address. The instruction flow
then differs from the expected one.

4) Prefetch Buffer: Faults categorized with the PFB label
in Table II consist in modifying signals that control the FIFO.
For instance, the signal status_cnt indicates the number
of instructions currently in the queue. The different possible
effects of an attack injecting a non-null value in the signal
status_cnt when the FIFO is empty are described below
and illustrated in Figure 6.

1) Execute the content of the FIFO: A fault injection
at cycle 22 sets the signal status_cnt to 1. As a
consequence, the FIFO is no longer considered empty:
the instruction IA†, which is a witness of a previ-
ous execution, is executed (pop signal). Moreover, the
fetched instruction I1? is written in the FIFO (push
signal). The status_cnt is then still equal to one,
but the read ( r ) and write ( w ) pointers have been
incremented. As a result, at cycle 23, instruction IB,
which is also a witness of a previous execution, is sent to
the ID stage (pop signal at cycle 23) and executed. The
FIFO is now empty (cycle 24), and the read pointer
points to I1, which has not been executed yet.

2) Desynchronize the read and write pointers: When
reading instructions IA and IB in the FIFO due to
the fault injection, the read pointer is incremented.
Consequently, when the FIFO is empty again (cycle 24),
the two pointers which should point to the same address
are now misaligned. This has no effect during cycles 24-
27 because the instructions are directly transmitted to the
ID stage without going into the PFB since the FIFO is
empty. However, when a stall occurs at cycle 27, the
instruction I5? is stored and should be executed at the
next cycle. Instead, the instruction I1† from the location
pointed by the read pointer is sent to the pipeline at
cycle 28. Only a taken branch permits resynchronizing
the two pointers together by flushing the FIFO. The
effects of the fault, i.e., executing a previously stored
instruction instead of the correct one after each stall,
disappear.

3) Branching to an incorrect address: As explained
before, the PFB has its own PC (PCPFB) to perform
read requests in the instruction memory. However, since
the contents of the FIFO have been replayed without
notifying the rest of the processor, the PCIF has shifted
by one instruction (the value injected to the initially null
status_cnt signal). Consequently, the next branch
will be made one instruction too far (I10 instead of I9
at cycle 32).

As a result, a single fault injection in the PFB can lead to
various effects with immediate and potentially longer-term
consequences. In particular, the faulty value set to the 2-bit
signal status_cnt can further desynchronize the read and

Fig. 6: Effects of fault injection on the PFB. Upper part
named gold represents the non-faulty execution while lower
part named fault illustrates the faulty execution where the
signal status_cnt is subject to fault injection. Symbols
r and w indicate the position of the read and write pointers in

the prefetch buffer (buff ). Ix? denotes instructions that should
have been executed but were not because of the fault. Ix†

identifies instructions badly fetched from the prefetch buffer
due to the fault. Colored signals indicate a divergence wrt. to
the gold execution.

write pointers: a branch up to 3 instructions after the correct
address may happen.

In both v3_Og and v3_Os, the instructions contained in
the buffer are replayed without side effects for successful faults
that fall in this category. However, the desynchronization of
the pointers read and write allows the PIN-comparison
loop to be exited prematurely. The countermeasure verifying
the loop counter detects this faulty behavior (corresponding to
line 22 in Listing 4). A call to the countermeasure function is
then performed but it jumps three instructions further. Conse-
quently, the execution continues where the user is assumed to
be authenticated (corresponding to line 27 in Listing 4).

5) Remaining Faults: Some faults identified in Table II
are categorized as other. Many of them are related to mul-
tiplexer selector signals that control operations in the EX
stage. These fault effects are mostly computational errors, and
we develop one of them below. Performing a fault injection
on the bmask_b_mux signal for both Og and Os version
of verifyPIN allows a successful authentication. In the last
update of the variable diff (Listing 4 line 20) the boolean
False is written instead of the value True. This is due to the
choice made for encoding hardened Booleans, i.e., False =
0x55 and True = 0xAA. The fault injection triggers a one-
bit shift of the result to the right, i.e., 0xAA � 1 = 0x55.
This behavior raises questions about the choice of hardened
Booleans. These certainly have a maximum hamming distance,
but some elementary operations allow to pass from one to the
other (e.g., False + False = True; False � 1 = True), which
should be avoided.

6) Conclusion: The described results involve subtle fault
effects that are not directly addressable with ISA-level analy-
sis. Specifically, we have targeted specific mechanisms in the
microarchitecture, that are not visible at the ISA level, such
as the pipeline or speculative behavior of the PFB. We also



TABLE III: Results of FI analysis on VerifyPIN v7. Two fault
models permit satisfying the vulnerability property ϕ := φ0.

Module Targeted RTL Signal Category Cycle of Fault Injection
v7_Og v7_Os

aligner update state ALGNR 47, 52

noticed that the found vulnerabilities are strongly related to
the microarchitectural state at the fault injection time. Both
the microarchitecture state before the fault injection (e.g., the
content of the prefetch buffer which is replayed) and the
state after the fault injection (e.g., the data remaining in the
microarchitecture’s memory elements) need to be considered.
It can lead to the manifestation of the vulnerability only a long
time after the injection.

B. Software Robustness Analysis

We now consider VerifyPIN v7, which has a software coun-
termeasure against test inversions. Some of the faults reported
in the previous section lead to such an effect. Table III shows
the results of the formal analysis on v7_Og and v7_Os. The
analysis indicated that no fault injection exists to satisfy the at-
tack oracle ϕ := φ0 for the considered fault model on v7_Os.
The formal analysis only identifies two successful fault in-
jections targeting the signal update_state on v7_Og. As
explained before, by exploiting the desynchronization between
PCIF and PCPFB in the IF stage, it is possible to jump a certain
amount of instructions. Here, in both found vulnerabilities,
the exit branch of the comparison loop directly jumps at the
instruction that allows a successful authentication (line 27 in
Listing 4).

In order to explain the difference between the results
from VerifyPIN v3 and VerifyPIN v7, two reasons can be
given. First, many fault injections previously identified by the
analysis result in inverting or skipping a conditional branch.
The test duplication countermeasure makes it impossible to
reverse both tests with a single fault injection and these
identified fault injections disappear. Two fault injections from
the ALGNR category remain on v7_Og and permit to jump
to a relative offset from a faulty PC value. The duplication
test countermeasure is of no use against this fault effect.
Finally, it is worth mentioning that vulnerabilities are often
the result of a good timing of the fault injection with a well-
chosen instruction sequence and a particular microarchitectural
state left by the preceding executed instructions. Consequently,
some vulnerabilities can disappear (or appear) due to mi-
nor differences in the binary code: number of instructions,
code layout, instruction order, etc. Some previously found
vulnerabilities rendered possible due to a particular order and
instructions layout no longer exist due to the addition of
test duplication countermeasure. In conclusion, vulnerabilities
due to specificities of the hardware implementation can be
very subtle and need to be analyzed by considering both the
software and the hardware as our workflow proposes.

C. Hardware Countermeasure Analysis

SCI-FI is verified using two versions of VerifyPIN that are

TABLE IV: Verification time for each VerifyPIN analysis.
# Fault Injection column indicates the number of fault loca-
tions (spatial and temporal) explored. userPIN, cardPIN and
the fault effects are left symbolic.

VerifyPIN version Overall Run Time (h) # Fault Injections
v3_Og 12.9 15240
v7_Og 13.9 17526
v3_Os 14.1 14478
v7_Os 14.5 15240

known to be the most vulnerable to single fault injection
after our security analysis on the unprotected CV32E40P:
v3_Og, and a specific version of VerifyPIN v3 without the
verification on the loop counter (in Figure 4, line 22). We use
the vulnerability oracle ϕ (3) and the same microarchitectural
fault models as previously (Section V-B). The verification did
not identify any vulnerability.

D. Performance

Table IV shows the verification times required to obtain
the results previously presented in Section V-B. Tests were
carried out on Intel(R) Xeon(R) CPU E7-4870 @ 2.40GHz,
80 cores. As the PIN codes of the program are symbolic
variables, we have at least 64 bits of degrees of freedom
on each verification run. Similarly, the effects of the injected
faults are not constrained either. The maximal depth of the
BMC for the VerifyPIN programs reaches 64 for v7_Og. For
the hardware countermeasure assessment (Section V-C), the
overall verification run time is 25 hours, and the maximum
BMC depth reaches 120. These results illustrate that the de-
veloped workflow can formally check in a reasonable amount
of verification time the execution of a hundred instructions
with symbolic data in the presence of faults.

VI. CONCLUSION

Facing the subtle effects of fault injection related to the
implementation of microarchitecture and software characteris-
tics, the design of sensitive systems requires security analyses
encompassing both hardware and software. We presented a
workflow that combines software and hardware models to
formally explore fault injection effects. This workflow gen-
erates an SMT model of the hardware and extends it with
fault injection modeling. Software is modeled as the content of
the memory of the hardware SMT model. The workflow uses
bounded model checking to verify the absence of vulnerability
or outputs counterexamples that permit understanding the
fault injection effects that result in an exploit. We illustrated
the benefit of our workflow considering two versions of the
CV32E40P RISC-V processor executing several versions of a
PIN authentication. On the baseline processor implementation,
the conducted analyses highlight new fault effects, highly
dependent on the microarchitectural state at the fault injection
time as well as the instruction flow afterward. We also reported
well-known fault effects, but we showed that our workflow
enables us to understand the fault propagation in the microar-
chitecture. We used the proposed workflow to verify that the



countermeasure implemented in CV32E40P effectively detects
microarchitectural fault injection. These use cases show that
the proposed workflow is a valuable tool for exploring fault
injection effects or designing secure hardware.
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