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SSA Translation is an Abstract Interpretation
MATTHIEU LEMERRE, Université Paris-Saclay, CEA, List, France

Static single assignment (SSA) form is a popular intermediate representation that helps implement useful

static analyses, including global value numbering (GVN), sparse dataflow analyses, or SMT-based abstract

interpretation or model checking. However, the precision of the SSA translation itself depends on static

analyses, and a priori static analysis is even indispensable in the case of low-level input languages like machine

code. To solve this chicken-and-egg problem, we propose to turn the SSA translation into a standard static

analysis based on abstract interpretation. This allows the SSA translation to be combined with other static

analyses in a single pass, taking advantage of the fact that it is more precise to combine analyses than applying

passes in sequence. We illustrate the practicality of these results by writing a simple dataflow analysis that

performs SSA translation, optimistic global value numbering, sparse conditional constant propagation, and

loop-invariant code motion in a single small pass; and by presenting a multi-language static analyzer for both

C and machine code that uses the SSA abstract domain as its main intermediate representation.

CCS Concepts: • Software and its engineering→ Compilers; Formal software verification; • Theory of
computation→ Program analysis; Program verification; Abstraction; Equational logic and rewriting.

Additional Key Words and Phrases: Static Single Assignment (SSA), Abstract interpretation, Cyclic term graph.

ACM Reference Format:
Matthieu Lemerre. 2023. SSA Translation is an Abstract Interpretation. Proc. ACM Program. Lang. 7, POPL,
Article 65 (January 2023), 41 pages. https://doi.org/10.1145/3571258

1 INTRODUCTION
"SSA translation is an abstract interpretation" may be a surprising statement. Usually, SSA transla-

tion [Cytron et al. 1991] is presented as a code transformation that modifies the input program so

that each variable is assigned only once (the Static Single Assignment (SSA) property). Abstract

interpretation, on the other hand, is a method for designing sound static analyses that retrieve

information about the program. If a code transformation can be based on the results of an analysis,

and the results of an analysis can be made more precise by a previous code transformation, both

are usually clearly separated and done in separate passes. This is unfortunate as it is known that

performing analyses in a sequence of passes yields less precise results than combining them in a

single pass [Click and Cooper 1995; Cousot and Cousot 1979].

To solve this problem, we perform SSA translation using abstract interpretation, i.e. the program

abstraction that the analysis computes is the SSA translation of the program. More precisely, our

SSA abstraction builds upon a variant of a global value numbering (GVN) analysis that we call

symbolic expression analysis (Section 4). This is unlike most existing work (e.g., [Alpern et al.

1988; Barthe et al. 2014; Rosen et al. 1988; Rüthing et al. 1999]), where GVN is performed after
SSA translation. Indeed in existing work, GVN requires a previous SSA translation to name the

subexpressions of the program so that GVN then only needs to partition the names in equality

classes. By contrast, in our work, the underlying abstraction used by GVN is not SSA names, but a

Author’s address: Matthieu Lemerre, Université Paris-Saclay, CEA, List, F-91120, Palaiseau, France, matthieu.lemerre@cea.fr.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for third-party components of this work must be honored. For all other uses,

contact the owner/author(s).

© 2023 Copyright held by the owner/author(s).

2475-1421/2023/1-ART65

https://doi.org/10.1145/3571258

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 65. Publication date: January 2023.

https://doi.org/10.1145/3571258
https://doi.org/10.1145/3571258


50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

65:2 Matthieu Lemerre

cyclic term graph [Ariola and Klop 1996] called the global value graph [Reif and Lewis 1986]. This

allows performing GVN directly on the original program.

Our SSA graph abstraction (Section 5) then builds upon the global value graph abstraction by

adding control flow and conditionals. Like the symbolic expression analysis, the SSA translation

is described as a standard dataflow analysis that directly applies to the source program. As SSA

translation preserves the semantics of the original program, we prove that our SSA-abstraction

analysis is both sound and complete. Interestingly, our proof method consists in finding a surjective

strong homomorphism (a stronger variant of bisimulation) between the SSA translation and the

original program, where the homomorphism directly derives from our symbolic expression analysis.

Finally, we provide (Section 6) alternative transfer functions for our SSA translation that allows the

analysis to be complete (i.e. excludes spurious behaviors) also on unfinished fixpoint computations,

which makes our SSA translation algorithm incremental.

The syntax and semantics of our SSA abstraction are non-standard but can readily be translated

to the usual SSA syntax by choosing an order of evaluation for expressions; moreover, our SSA

translation enjoys the classic minimality and strictness [Rastello 2016] properties of SSA.

Motivation. Interesting theoretical contributions of this work are its alternative syntax and

semantics for SSA form (both are new, concise and simple), the algorithm used for its translation

(a standard dataflow analysis which builds on global value numbering and does not require the

computation of any dominance properties), the theoretical connections it reveals between global

value numbering, symbolic expression analysis and SSA, and the technique used to perform dataflow

analysis on cyclic terms or systems of recursive equations in general (reusing cyclic names of the

original program to detect cycles and guarantee termination).

A practical motivation for presenting SSA translation as an abstract domain is that abstract

domains can be combined modularly [Cousot and Cousot 1979; Cousot et al. 2006; Journault et al.

2019]. An application of this is to explore alternative designs for the combination of compiler

optimizations. In general, compiler optimizations are written as a succession of analysis and

rewriting passes. Viewing SSA as an abstract domain allows combining the analysis and the

rewriting pass in a single step, with the benefit that the SSA invariants (e.g., related to domination)

are automatically maintained when the control-flow graph changes (e.g., when a branch is found

dead, or a new target of a computed goto is discovered). This is beneficial as “maintaining SSA is

often one of the more complicated and error-prone parts in such optimizations” [Hack 2016].

It is even possible to group all the different analyses and transformations in a single pass,

avoiding the burden of performing any intermediate rewriting steps. As an example (Section 7),

we implemented a simple dataflow analysis that performs global value numbering, loop-invariant

code motion, sparse conditional constant propagation, and SSA translation in a single dataflow

analysis pass. This pass is followed by a pass of linear complexity translating our internal SSA

representation into LLVM bitcode, mainly consisting in making explicit the order of evaluation of

the symbolic expressions appearing in our representation of SSA. Experimental results show that

the implementation is small and the compiling time is compatible with inclusion in a compiler.

Another application is formal verification. In general, combining analyses yields an analysis

which is more precise than performing different analyses in a sequence of passes [Click and Cooper

1995; Cousot and Cousot 1979]. Viewing SSA as an abstract domain is thus interesting when

analyzing programs where the SSA translation can be improved by a static analysis, and the static

analysis can itself be improved by more precise SSA translation. For instance, it is common to use

SSA as an intermediate language before translation into logic formulas queried to an automated

solver (e.g., [Brain et al. 2015; Gurfinkel et al. 2015; Henry et al. 2012; Leino 2005]). Combining

the SSA translation with other abstract domains allows simplifying the generated formula, and
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SSA Translation is an Abstract Interpretation 65:3

simplifications significantly impact the solver performance [Farinier et al. 2018; Gurfinkel et al.

2015]. In turn, the solver’s response can improve the precision of the static analysis. One example

application is the analysis of machine code, where the precision of the recovered control-flow graph

is crucial, and SMT-based techniques can be used to ensure the reachability of the locations of the

recovered CFG [Djoudi et al. 2016; Reinbacher and Brauer 2011]. Note, however, that using such a

combination requires that the SSA form produced from an unfinished fixpoint iteration is complete

(i.e., does not introduce any spurious behavior): this problem is solved in Section 6.

The benefits of this combination of domains grow in importance when analyzing lower-level

languages, such as machine code or C. Indeed, more precise SSA translation in these languages

demands that memory locations are promoted to SSA variables; this promotion requires precise

memory and control flow analyses, which depend on a numeric analysis; the numeric analysis can

be enhanced by more precise SSA translation. Having SSA as an abstract domain and using it with

a combination of memory, numerical and control-flow abstractions solves this chicken-and-egg

problem. For instance, we have implemented a static analyzer for both C andmachine code programs

that decompiles low-level code into a higher-level SSA abstraction using the SSA graph abstract

domain; simultaneously, this SSA abstraction is used as the language on which the numerical

analyses are performed. This paper is the first step in explaining how such an analysis works.

2 OVERVIEW
This section provides an overview of our main results on a running example (Figure 1b) that

we will use in most of the paper. In our view, the essence of SSA is the addition of control flow

information to a structure called the global value graph [Reif and Lewis 1986]; our presentation

shows how to build these two abstractions in turn. We start from a program consisting of basic

blocks, each associated with a unique program location ℓ0, . . . , ℓ3 ∈ L labeling the basic block. Each

block contains a sequence of instructions and performs nondeterministic jumps to other basic

blocks; these jumps have guards that block some executions. The semantic is standard and consists

of a transition between states, where a state contains both the current location and a store 𝜎 ∈ Σ (a

mapping from program variables 𝑥 ∈ X to values). The initial states are all the states starting at ℓ0.

2.1 Symbolic expressions, global value numbering and the global value graph.

The symbolic expression abstraction. Our main program abstraction 𝑝♯ ∈ L→ Σ♯
⊥ associates to

each location ℓ ∈ L an abstract store 𝜎♯ ∈ Σ♯
⊥ describing the possible states before execution of

the basic block. An abstract store is either ⊥ or a mapping from program variables to symbolic
expressions, i.e. terms containing symbolic variables ∈ V. The result of the analysis for our example

program is given on the first line of Figure 1a. For instance, the abstract store at 𝑝♯ [ℓ2] refers
to two symbolic variables, namely iℓ1 and timeℓ1 . An abstract store represents all the concrete

stores that can be obtained using any valuation of the symbolic variables, e.g., the concrete store

[inc ↦→ 1, time ↦→ 0, i ↦→ 0, hours ↦→ 0] is represented by 𝑝♯ [ℓ2] (using any valuation where both

iℓ1 and timeℓ1 are assigned 0). Note that the symbolic expressions allow describing relations between

variables (e.g. hours = time/(1 * 3600) in the states at ℓ2) or some numerical information (e.g.

2 ∗ xℓ5 describes an even value). One particular relation between variables is equality, and indeed

this abstraction can be used to detect equality between variables corresponding to global value
numbering [Alpern et al. 1988; Rosen et al. 1988] (where the "number" uniquely identifies a subterm

of a symbolic expression).

Note that symbolic variables ∈ V = X × L are named using a program variable and a location:

intuitively, iℓ1 represents the value of program variable i at location ℓ1 (in the SSA abstraction, as iℓ1
is unconstrained in the symbolic expression abstraction). To express more equalities, we can reuse
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ℓ0 ℓ1 ℓ2 ℓ3

𝑝♯
when V = X × L


inc ↦→ incℓ

0

time ↦→ timeℓ
0

i ↦→ iℓ
0

hours ↦→ hoursℓ
0




inc ↦→ 1

time ↦→ timeℓ
1

i ↦→ iℓ
1

hours ↦→ hoursℓ
1




inc ↦→ 1

time ↦→ timeℓ
1

i ↦→ iℓ
1

hours ↦→ timeℓ
1
/(1 ∗ 3600)




inc ↦→ 1

time ↦→ timeℓ
3

i ↦→ iℓ
3

hours ↦→ hoursℓ
3


𝑝♯

when V = P(X) × L


inc ↦→ incℓ

0

time ↦→ timeℓ
0

i ↦→ iℓ
0

hours ↦→ hoursℓ
0




inc ↦→ 1

time ↦→ time_iℓ
1

i ↦→ time_iℓ
1

hours ↦→ hoursℓ
1




inc ↦→ 1

time ↦→ time_iℓ
1

i ↦→ time_iℓ
1

hours ↦→ time_iℓ
1
/(1 ∗ 3600)




inc ↦→ 1

time ↦→ time_iℓ
3

i ↦→ time_iℓ
3

hours ↦→ hoursℓ
3


(a) Results of the basic (top) and improved (bottom) symbolic expression analyses (abstract domain: L→ Σ♯

⊥).

inc := 1 ;

time := 0 ;

i := 0

ℓ0

hours := time/(inc ∗ 3600)

ℓ1

time := 0 ;

i := 0 ;

hours := 0

ℓ2

i := i + 1 ;
time := time + inc

ℓ3

1

hours ≥ 24

hours < 24

1

1

(b) Original program.

ℓ0

ℓ1

ℓ2

ℓ3

1,[
time_iℓ1 ↦→ 0

hoursℓ1 ↦→ hoursℓ0

]

time_iℓ1/(1 ∗ 3600) ≥ 24,

[ ]
time_iℓ1/(1 ∗ 3600) < 24,[

time_iℓ3 ↦→ time_iℓ1
hoursℓ3 ↦→ time_iℓ1/(1 ∗ 3600)

]
1,[

time_iℓ3 ↦→ 0

hoursℓ3 ↦→ 0

]

1,[
time_iℓ1 ↦→ time_iℓ3 + 1
hoursℓ1 ↦→ hoursℓ3

]

(c) Representation in the SSA abstract domain.

0

1

3600

1*3600

timeℓ0 iℓ0 incℓ0 hoursℓ0

time_iℓ1 =

𝜙 (0, time_iℓ3 + 1)
hoursℓ1 =

𝜙 (hoursℓ0 , hoursℓ3 )

time_iℓ1/(1 ∗ 3600)

time_iℓ3 =

𝜙 (0, time_iℓ1 )
hoursℓ3 =

𝜙 (0, time_iℓ1/(1 ∗ 3600) )

time_iℓ3 + 1

(d) The global value graph is a cyclic term graph.

zero := 0 ;

one := 1 ;

big := 3600 ;

tmp
1
:= one ∗ big

ℓ0

time_iℓ1 := 𝜙 (zero, tmp
3
) ;

hoursℓ1 := 𝜙 (zero, hoursℓ3 )
tmp

2
:= time_iℓ3/tmp1

ℓ1

ℓ2

time_iℓ3 := 𝜙 (zero, time_iℓ1 ) ;
hoursℓ3 := 𝜙 (zero, tmp

2
) ;

tmp
3

:= time_iℓ3 + one

ℓ3

1

tmp
2
≥ 24

tmp
2
< 24

1

1

(e) Usual SSA representation.

Fig. 1. Analyses and transformations of an SSA program.
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the same name when symbolic variables are equal. This is why we shift to another representation

V = P(X) ×L where a symbolic variable is named using one location and a set of program variables;

intuitively, time_iℓ1 represents the value of both i and time at location ℓ1 (thus, i = time at ℓ1).

The second line of Figure 1a presents the program abstraction 𝑝♯ with this change.

Analysis operations. We focus now our attention on how to compute 𝑝♯. Many domain operations

are simple and exact: notably, interpretation of expression substitutes program variables with

their corresponding symbolic expression; interpretation of assignment updates the abstract store

(observe, for instance, how hours is bound to time_iℓ1/(1 ∗ 3600) in 𝑝♯ [ℓ2] given 𝑝♯ [ℓ1]). The only
operation in this domain that lose precision is the join operation ⊔ℓ, which merges abstract stores

at control-flow join points such as ℓ3.

One way to perform these joins would be to add a nondeterministic choice operator 𝜙 , as a function
symbol in the language of symbolic expressions. For instance, the value of the program variable i at
ℓ3, which is either 0 or time_iℓ1 depending on the previous program location, could be represented

by the term 𝜙 (0, time_iℓ1 ).
A first issue with this technique is the handling of nondeterminism: i.e. two terms 𝜙 (0, 1) and

𝜙 (0, 1) correspond to the same value if one is copied from the other but to different values if

different nondeterministic choices between 0 and 1 must be made in the program. However, this

problem could be mitigated by using different labels for each 𝜙 function (as in [Alpern et al. 1988;

Rüthing et al. 1999]). A much more problematic issue is that this approach cannot terminate in the

presence of loops, as each iteration would create a larger term without ever converging.

The global value graph. Our solution to both of these issues is to use cyclic term graphs [Ariola

and Klop 1996] instead of simple terms. In cyclic term graphs, recursion variables are introduced to

name some nodes, which allows breaking cycles (in addition, sharing between terms is maximized).

The whole cyclic graph is described using a set of recursive definitions, each definition mapping a

recursion variable to a simple term that can refer to recursion variables. We apply this idea to our

terms: the cyclic term graph corresponds to a structure called the global value graph [Reif and Lewis
1986] (sometimes also called the SSA graph [Stanier 2016]), and our symbolic variables play the

role of the recursion variables of the cyclic term graph. In addition, symbolic variables are defined

for all 𝜙 terms: i.e. every term 𝜙 (𝑒1, 𝑒2) is named using a symbolic variable varℓ . The global value
graph corresponding to the program of Figure 1b is represented graphically in Figure 1d. In this

graph, each node corresponds to a term; dotted lines correspond to the "direct subterm" relation

(e.g., "1 ∗ 3600" has "1" and "3600" as subterms); solid lines correspond to the direct subterm relation

between a 𝜙 term 𝜙 (𝑒1, 𝑒2) and its subterms 𝑒1 and 𝑒2 (they can also be seen as representing the

definition of a symbolic variable as a 𝜙 term).

Switching from terms to cyclic terms and using symbolic variables to name 𝜙 terms solves both
the nondeterminism and termination issues. The names differentiate two terms built from different

nondeterministic choices between two values: e.g. if we have both xℓ5 = 𝜙 (0, 1) and yℓ6 = 𝜙 (0, 1),
we can conclude that xℓ5 − xℓ5 = 0 but that xℓ5 − yℓ6 may be different from 0. Furthermore, cyclic

terms provide a finite representation of the values that exist in the program, which is necessary for

the analysis to terminate.

Regarding termination, a standard approach consisting of widening [Cousot and Cousot 1977]

two terms to create a cyclic term (e.g., “0” ∇ “0 + 1” = “let 𝑥 = 𝜙 (0, 𝑥 + 1) in 𝑥”) would be difficult to

implement. Instead, our idea is to view the program locations as the recursion variables in a cyclic

structure, which is the control flow graph of the original program, and to make use of these names

to help us terminate the analysis. This is the reason why our symbolic variables have a program

location in their definition. Essentially, our analysis terminates if variables are named according to

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 65. Publication date: January 2023.
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©­­­«ℓ0,

incℓ0 ↦→ 11

timeℓ0 ↦→ 22

iℓ0 ↦→ 33

hoursℓ0 ↦→ 44


ª®®®¬

©­­­­­­­«
ℓ1,



incℓ0 ↦→ 11

timeℓ0 ↦→ 22

iℓ0 ↦→ 33

hoursℓ0 ↦→ 44

time_iℓ1 ↦→ 0

hoursℓ1 ↦→ 44



ª®®®®®®®¬

©­­­­­­­­­­­«
ℓ3,



incℓ0 ↦→ 11

timeℓ0 ↦→ 22

iℓ0 ↦→ 33

hoursℓ0 ↦→ 44

time_iℓ1 ↦→ 0

hoursℓ1 ↦→ 44

time_iℓ3 ↦→ 0

hoursℓ3 ↦→ 0



ª®®®®®®®®®®®¬

©­­­­­­­«
ℓ1,



incℓ0 ↦→ 11

timeℓ0 ↦→ 22

iℓ0 ↦→ 33

hoursℓ0 ↦→ 44

time_iℓ1 ↦→ 1

hoursℓ1 ↦→ 0



ª®®®®®®®¬
⇝𝑔 ⇝𝑔 ⇝𝑔

𝑝♯ [ℓ0 ] =
inc ↦→ incℓ0
time ↦→ timeℓ0
i ↦→ iℓ0
hours ↦→ hoursℓ0


𝑝♯ [ℓ1 ] =

inc ↦→ 1

time ↦→ time_iℓ1
i ↦→ time_iℓ1
hours ↦→ hoursℓ1


𝑝♯ [ℓ3 ] =

inc ↦→ 1

time ↦→ time_iℓ3
i ↦→ time_iℓ3
hours ↦→ hoursℓ3


𝑝♯ [ℓ1 ] =

inc ↦→ 1

time ↦→ time_iℓ1
i ↦→ time_iℓ1
hours ↦→ hoursℓ1


©­­­«ℓ0,


inc ↦→ 11

time ↦→ 22

i ↦→ 33

hours ↦→ 44


ª®®®¬

©­­­«ℓ1,

inc ↦→ 1

time ↦→ 0

i ↦→ 0

hours ↦→ 44


ª®®®¬

©­­­«ℓ3,

inc ↦→ 1

time ↦→ 0

i ↦→ 0

hours ↦→ 0


ª®®®¬

©­­­«ℓ1,

inc ↦→ 1

time ↦→ 1

i ↦→ 1

hours ↦→ 0


ª®®®¬↣ ↣ ↣

Fig. 2. Top: Execution trace of the SSA program of Figure 1c. Middle: The symbolic expression abstraction 𝑝♯

seen as an homomorphism or bisimulation. Bottom: Execution trace of the original program of Figure 1b.

a "deterministic" naming scheme based on the program locations: in the actual implementation, we

use integers instead of a set of program variables like time_i to name our symbolic variables. We

prove that this technique is sound, but the soundness proofs are unusual.

If the global value graph of Figure 1d can be computed explicitly in the analysis, it is not necessary

to do it: computing 𝑝♯ (that never contains any 𝜙 term) is sufficient. Still, the value graph is useful to

justify how 𝑝♯ is built, in particular, how the transfer function chooses the name of fresh symbolic

variables and how this choice allows the analysis to terminate.

2.2 The SSA graph abstract domain
2.2.1 The SSA graph abstraction. Compared to 𝑝♯, the value graph has more information as it links

symbolic variables to their 𝜙 definition. But the value graph does not capture all the information

about the initial program. First, it misses some relations between symbolic variables: for instance,

we have hoursℓ3 = time_iℓ3/(1 ∗ 3600), but this cannot be inferred from the global value graph as

the definition of hoursℓ3 and time_iℓ3 are on different cycles. Second, the conditions in the original

program appear nowhere in the global value graph.

What the global value graph lacks is information about control flow, which is necessary to

encode the fact that different symbolic variables are updated simultaneously, and only when

some conditions are met. Our SSA graph abstraction is built upon the idea of adding control flow

information to the global value graph. More precisely, an SSA graph is a graph whose nodes are

the locations of the original program, and whose edges are associated with a guard (translated

from the guard of the original program) and a set of bindings from symbolic variables to symbolic

expressions (corresponding to 𝜙 nodes in usual SSA). Figure 1c presents the SSA graph computed

by our SSA abstract domain on the program of Figure 1b. Similarly to the global value graph, the

SSA graph links symbolic variables to their 𝜙 definition; but unlike in the global value graph, it

relates this information to the edges of the control flow. For instance, while the global value graph

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 65. Publication date: January 2023.



295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

SSA Translation is an Abstract Interpretation 65:7

only says that time_iℓ3 is a nondeterministic choice between 0 and time_iℓ1 , the SSA graph also

says that time_iℓ3 is 0 at ℓ3 when control comes from ℓ2, and then hoursℓ3 will also be 0; that when

control comes from ℓ1, time_iℓ3 gets the same value that time_iℓ1 had, and that this transition is

possible only if time_iℓ1/(1 ∗ 3600) < 24.

The SSA graph can be given a simple semantics as a transition system: states consists in a location

ℓ (the same as in the original program) and a valuation Γ (mapping from symbolic variables to

values). The transition from a state (ℓ, Γ) to a state (ℓ ′, Γ′) is possible only if there is an edge from ℓ

to ℓ ′ in the SSA graph; the guard on this edge evaluates to true; and Γ′ is updated from Γ using the

bindings on the edge. Finally, a symbolic variable xℓ has a scope corresponding to all the locations

dominated by ℓ , and variables of a valuation are unbound when they go out of scope. The top of

Figure 2 provides an example of an execution trace for the SSA graph of Figure 1c.

2.2.2 A sound and complete abstract interpretation. One of the main result of this paper is that the

behavior of the SSA graph computed using abstract interpretation is equivalent to the behavior of

the original program. More precisely, the transition systems described by the original program and

SSA graph are, once limited to the reachable states, related by a surjective strong homomorphism,

a relation that is stronger than bisimulation [Sangiorgi 2009]. Furthermore, this surjective strong

homomorphism directly derives from the symbolic expression abstraction 𝑝♯ : in essence, 𝑝♯ is a

map from SSA states to program states. Consider Figure 2 again : observe that the abstract stores

in the middle can be used to retrieve values for program variables in the states at the bottom from

the values of symbolic variables in the SSA states at the top. Thus, to each SSA execution trace

corresponds a concrete execution trace (and conversely, every concrete execution traces can be

simulated by one SSA execution trace).

This correspondence makes our abstract interpretation both sound (it does not miss any be-

havior) and complete (it does not include extra behavior). Furthermore, we can make the abstract

interpretation complete even when the fixpoint is not finished (see Section 6).

2.2.3 Translation to the usual SSA representation. Our SSA graph representation is a faithful

representation of the semantics of the original program, but it abstracts away some details of

the usual SSA representation. Thus, translating from an SSA graph to standard SSA consists in

additionally constraining the code to fill in these details. For instance, Figure 1e corresponds to a

translation of the SSA graph of Figure 1c to a usual representation. The translation has to:

• Name every intermediate computation (i.e., flatten [Ariola and Klop 1996]) the term graph,

as SSA representations are usually in three-address code. For instance, our representation

names intermediate results like tmp
1
.

• Determine the location where each intermediate computation is done. In Section 5.1 we

define a notion of scope of symbolic expression that determines a suitable location for each

intermediate computation (although other locations might be preferred). For instance, the

assignment tmp
1
:= one ∗ big has been moved outside the loop, because the scope 1 ∗ 3600

is ℓ0 : i.e., SSA graphs naturally perform loop-invariant code motion.

• Explicit the order of evaluation of symbolic expressions by appropriately scheduling instruc-

tions. For instance in Figure 1c the order of assignment between one and big is arbitrary,
but must be done before tmp

1
is assigned.

The SSA graph that we present is more appropriate for static analysis. It is however easy to

modify SSA graphs so that it is more adapted to compilation, e.g. by using terminator instructions

instead of guards on edges, by treating constant expressions specially, or by explicitly restricting the

scope of symbolic expressions. This is what our experiment on compilation to LLVM (Section 7.1)

does.
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65:8 Matthieu Lemerre

𝑥 ∈ X (program variables) 𝑧 ∈ Z( numeric constant) ⋄ ∈ {+,−, ∗, /}) (binary operation)

𝑒 ∈ EX (program expression) ≜ 𝑧 | 𝑥 | 𝑒 ⋄ 𝑒 𝑖 ∈ I (instruction) ≜ 𝑥 := 𝑒 | 𝑖 ; 𝑖

ℓ ∈ L (location) G ∈ G ≜ L × L ⇀ EX (program graph) 𝑝 ∈ P ≜ (L→ I) × G (program)

Σ ≜ X→ Z (stores) S ≜ L × Σ (states) S0 ≜ {ℓ0} × Σ (initial states)

EJ·K(·) : EX×Σ ⇀ Z EJ𝑧K(𝜎) = 𝑧 EJ𝑥K(𝜎) = 𝜎 [𝑥] EJ𝑒1⋄𝑒2K(𝜎) = EJ𝑒1K(𝜎)⋄EJ𝑒2K(𝜎)

IJ·K(·) : I × Σ ⇀ Σ IJ𝑥 := 𝑒K(𝜎) = 𝜎 [𝑥 ← EJ𝑒K(𝜎)] IJ𝑖1 ; 𝑖2K(𝜎) = IJ𝑖2K
(
IJ𝑖1K(𝜎)

)
↣∈ S × S (ℓ1, 𝜎1)↣ (ℓ2, 𝜎2) ≜ 𝜎2 = IJinstr[ℓ1]K(𝜎1) ∧ ∃𝑒 : ((ℓ1, ℓ2) ↦→ 𝑒) ∈ G ∧ EJ𝑒K(𝜎2) ≠ 0

Fig. 3. Syntax (top) and semantics (bottom) of the example language.

3 BACKGROUND AND NOTATIONS
Notations. We view (partial) functions as sets of bindings 𝑥 ↦→ 𝑦, replacing the curly braces {} of

set notation by square brackets [], e.g., [𝑥 ↦→ 𝑥 + 1 | 𝑥 ∈ Z] defines the successor function while

[0 ↦→ 5, 1 ↦→ 7] represents an array of two elements. We write [𝑥 ∈ S ↦→ 𝑦] as a shorthand for

[𝑥 ↦→ 𝑦 | 𝑥 ∈ S]. We note the domain of a partial function 𝑓 by dom 𝑓 . We note by 𝐴 ⇀ 𝐵 the set

of partial functions whose domain is contained in 𝐴 and codomain is contained in 𝐵 . The notation

𝐴→ 𝐵 denotes the set of total functions from 𝐴 to 𝐵, i.e. partial functions whose domain is exactly

𝐴 and whose codomain is a subset of 𝐵. If 𝑓 is a function and 𝑎 ∈ dom 𝑓 , we note by 𝑓 [𝑎] the
image of 𝑎 by 𝑓 . We define 𝑓 [𝑥 ← 𝑦] ≜ [𝑎 ∈ dom 𝑓 ↦→ 𝑓 [𝑎] | 𝑎 ≠ 𝑥] ∪ [𝑥 ↦→ 𝑦] the function 𝑓

where the binding 𝑥 ↦→ 𝑦 has been added (𝑥 may or may not be bound in 𝑓 ).

We represent graphs by partial functions from pairs of nodes (representing an edge from the

first node to the second) to the label of the edge. Given a graph 𝑔 and node 𝑛, we note preds(𝑛) ≜
{𝑚 : (𝑚,𝑛) ∈ dom𝑔} the set of predecessors of 𝑛 in 𝑔.

Syntax. We express our analyses on the language defined in Figure 3, featuring assignments

of expressions to variables, separation of conditionals into guards and nondeterminism [Dijkstra

1975], and unstructured control flow. It is close to the standard control-flow graph representation

of imperative programs.

A program 𝑝 ∈ P = (instr[·],G) is expressed as a flow-chart doing transitions between locations
ℓ ∈ L. To each location ismapped an instruction instr[ℓ] ∈ I, consisting in a sequence of assignments.

The expressions 𝑒 ∈ EX are standard (being either variables, constants, or binary operations); EX

stands for "expressions over the program variables X". The possibles transitions between locations

are expressed using a graph G ∈ (L × L) ⇀ EX, mapping edges to a guard filtering the possible

transitions. The choice between multiple outgoing edges is nondeterministic.

We assume the existence of an initial location ℓ0 that has no predecessors. To simplify our

definitions and proofs, we assume that there are at most 2 predecessors to any location ℓ .

Concrete semantics. We denote by Σ ≜ X→ Z the set of stores, i.e. mapping from variables to

values, in the program, and by S ≜ L × Σ the set of states. The semantics is given as a transition

system (S,↣), where↣ is a relation describing the transition between states. S0 ≜ {ℓ0} × Σ is

the set of initial states. The full definition of↣ is given in Figure 3, and makes use of EJ·K(·) and
IJ·K(·) (describing respectively the evaluation of expressions and instructions).
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𝑥ℓ ∈ V ≜ X × L (symbolic variables) 𝑒 ∈ EV ≜ 𝑧 | 𝑥ℓ | 𝑒 ⋄ 𝑒 (symbolic expressions)

𝜎♯ ∈ Σ♯ ≜ X→ EV (abstract stores) Σ♯
⊥ ≜ Σ♯ ∪ {⊥} Γ ∈ Γ ≜ V ⇀ Z (valuations)

𝛾EV : EV → (Γ ⇀ Z) 𝛾EV (𝑒) ≜ [Γ ∈ Γ ↦→ EJ𝑒K(Γ)]

𝛾Σ♯ : Σ♯ → (Γ ⇀ Σ) 𝛾Σ♯ (𝜎♯) ≜ [Γ ∈ Γ ↦→ [𝑥 ∈ X ↦→ 𝛾EV (𝜎♯ [𝑥]) [Γ]]]

𝛾
L→Σ♯

⊥
: (L→ Σ♯

⊥) → P(S) 𝛾
L→Σ♯

⊥
(𝑝♯) ≜ {(ℓ, 𝑓 [Γ]) | ℓ ∈ L, 𝑝♯ [ℓ] ≠ ⊥, 𝑓 ∈ 𝛾Σ♯ (𝑝♯ [ℓ]), Γ ∈ Γ}

E♯J·K(·) : EX × Σ♯ → EV E♯J𝑒K(𝜎♯) ≜ subst(𝑒, 𝜎♯)

I♯J·K(·) : I × Σ♯ → Σ♯ I♯J𝑖1 ; 𝑖2K(𝜎♯)
I♯J𝑥 := 𝑒K(𝜎♯)

≜ I♯J𝑖2K(I♯J𝑖1K(𝜎♯))
≜ 𝜎♯ [𝑥 ← E♯J𝑒K(𝜎♯)]

𝜙𝑥,ℓ
: EV × EV → EV 𝜙𝑥,ℓ (𝑒1, 𝑒2) ≜

{
𝑒1 if 𝑒1 = 𝑒2
𝑥ℓ otherwise

⊔ℓ : Σ♯ × Σ♯ → Σ♯ 𝜎
♯

1
⊔ℓ𝜎♯

2
≜ [𝑥 ∈ X ↦→ 𝜙𝑥,ℓ (𝜎♯

1
[𝑥], 𝜎♯

2
[𝑥])]

FL→Σ♯
⊥
(𝑝♯) ≜

[
ℓ ′ ∈ L ↦→

{
[𝑥 ∈ X ↦→ 𝑥ℓ0 ] if ℓ ′ = ℓ0⊔ℓ ′ {I♯Jinstr[ℓ]K(𝑝♯ [ℓ]) | G[ℓ, ℓ ′] ≠ 0 ∧ 𝑝♯ [ℓ] ≠ ⊥} if ℓ ′ ≠ ℓ0

]

Fig. 4. The symbolic expression domain: abstraction (top), concretizations (middle), and operations (bottom).

Least fixpoint and collecting semantics. Given F𝑆 ∈ 𝑆 → 𝑆 , we note by lfp(F𝑆 ) the least fixpoint
of F𝑆 , i.e. the smallest element 𝑋 ∈ 𝑆 such that F𝑆 (𝑋 ) = 𝑋 . We will mainly use the set of reachable

states as our main collecting semantics. It is expressed as the least fixpoint of the following function

FP(S) ∈ P(S) → P(S):
FP(S) (𝑋 ) ≜ S0 ∪ {𝑠′ | ∃𝑠 ∈ 𝑋 : 𝑠 ↣ 𝑠′}

The set of reachable states is noted by S∗, i.e.

S∗ = lfp(FP(S) ) = {𝑠 ∈ S : ∃𝑠0 ∈ S0, 𝑠0↣
∗ 𝑠}

where↣∗ is the transitive and reflexive closure of the transition relation↣.

4 SYMBOLIC EXPRESSION ANALYSIS
This section formalizes the definition of the symbolic expression analysis presented in the overview

(Section 2.1). The analysis is formalized as a forward abstract interpretation [Cousot and Cousot

1977].

4.1 The symbolic expression abstract domain
4.1.1 Symbolic expression, abstract store, and main program abstraction. The structure of our

abstraction (fully defined in Figure 4) follows the concrete semantics.

Concrete values are abstracted by symbolic expressions 𝑒 ∈ EV, where EV is similar to expressions

EX except that variables are not program variables X, but elements from a set V of symbolic variables.
In this section, V ≜ X × L, and we note symbolic variables by 𝑥ℓ where 𝑥 ∈ X and ℓ ∈ L. Note that
the fact that our symbolic variables are given a deterministic, unique name (instead of generating

"fresh" symbolic variables as is common in existing formula-based abstract domains (e.g.,[Chang
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and Leino 2005; Chang and Rival 2013; Gange et al. 2016; Illous et al. 2021]) is a distinctive feature

of our analysis.

As is common in abstract interpretation [Cousot and Cousot 1977], symbolic expressions are

given a meaning using a concretization function 𝛾EV , that associates an abstract element to the

set of concrete elements that it describes. Instead of concretizing a symbolic expression to a set of

values, we concretize it as a function from valuations to values, where a valuation Γ is a function

that defines how symbolic variables are bound to a concrete value. Given a symbolic expression 𝑒 ,

𝛾EV (𝑒) is a function that takes a Γ and returns the value obtained by evaluation of the symbolic

expression after replacement of the symbolic variables by their value in Γ. This function can be

seen as representing a set of values (the image of the function); but the point of having a function

is that different symbolic expressions can be related by sharing a Γ.
Concrete stores are abstracted by abstract stores 𝜎♯ ∈ Σ♯ ≜ X→ EV, which simply maps program

variables to symbolic expressions. Sometimes we need to represent a set of no abstract store, and

use the symbol ⊥ for this; we define Σ♯
⊥ ≜ Σ♯ ∪ {⊥}. The concretization function for abstract

stores 𝛾Σ♯ is a function from valuations to concrete stores; here we observe that the same Γ is

passed to the concretization of all the symbolic expression in the store to get the corresponding

value, thereby allowing relations between symbolic expressions. For instance, the abstract store

[𝑥 ↦→ 2 ∗ 𝑧ℓ1 ;𝑦 ↦→ 6 ∗ 𝑧ℓ1 ; 𝑧 ↦→ 𝑧ℓ3 ] represents concrete stores where 𝑥 is even, 𝑦 is a multiple of 𝑥 ,

and 𝑧 is arbitrary. Again, the function returned by 𝛾Σ♯ can be seen as set of concrete stores (the

image of the function).

Finally, as is standard in flow-sensitive dataflow analyses, our main program abstraction is an

element 𝑝♯ ∈ L→ Σ♯
⊥ assigning to each program location an abstract store, or ⊥ (which happens

when the location is unreachable, or the computation of the program abstraction is incomplete).

We concretize elements 𝑝♯ ∈ L→ Σ♯
⊥ as a set of states: a state (ℓ, 𝜎) is described by 𝑝♯ whenever 𝜎

is described by the abstract store 𝑝♯ [ℓ] (i.e., if Γ exists such that 𝛾Σ♯ ( [𝑝♯ [ℓ]]) [Γ] = 𝜎).

4.1.2 Analysis operations. The abstract evaluation of expressions (E♯J·K(·)) consists in substituting

the free program variables in the expression with the corresponding symbolic expression in the

abstract store. The abstract evaluation of instructions (I♯J·K(·)) mimics the concrete evaluation by

updating the abstract store after abstract evaluation of the expression.

The most interesting operation is the join operation ⊔ℓ, which rely on a kind of "join of expres-

sions" performed by a function 𝜙 . The current definition of 𝜙 is simple: when the two arguments

of 𝜙 differ, a new symbolic variable is created; when they are equal, that expression is returned

(this latter case corresponds to the notion of minimal number of 𝜙 functions in an SSA translation

[Cytron et al. 1991]). The additional 𝑥, ℓ argument allows deterministic creation of variable names,

which is important to ensure termination of the analysis. The ⊔ℓ operation is extended to operate

on a set (i.e. ⊔ℓ{} = ⊥, ⊔ℓ{𝜎♯} = 𝜎♯
, ⊔ℓ{𝜎♯

1
, 𝜎

♯

2
} = 𝜎

♯

1
⊔ℓ𝜎♯

2
).

Example 4.1. When analyzing ℓ1 after the first loop iteration, we have to join two abstract stores:

𝜎
♯

1
= [inc ↦→ 1, time ↦→ 0, i ↦→ 0, hours ↦→ hoursℓ0 ] and

𝜎
♯

2
= [inc ↦→ 1, time ↦→ 0 + 1, i ↦→ 0 + 1, hours ↦→ hoursℓ3 ] .

The result is in Figure 1a (top): inc is bound to 1 in both incoming abstract stores, and thus stays

bound to 1; while a new symbolic variable is created for time, i and hours .

The main transfer function FL→Σ♯
⊥
does a classic fixpoint step in flow-sensitive dataflow analysis,

by merging at each location ℓ ′ the states coming from its predecessors. Note that this transfer

function makes use of the information that a predecessor location ℓ is unreachable (i.e., 𝑝♯ [ℓ] = ⊥)
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or that the guard on an edge always evaluates to false (i.e. G[ℓ, ℓ ′] = 0) to improve its precision.

When combined with other domains (e.g. using a reduced product [Cousot and Cousot 1979] with

a numerical abstraction), it is easy for the symbolic expression domain to benefit from interaction

with the other domains by determining more unreachable locations or dead branches; in the end this

mechanism ensures the automatic preservation of SSA invariants when another domain discovers

dead code.

There is an order on L→ Σ♯
⊥ (see Section 6) and the lattice has a finite height (which is |L| × |X|,

where |𝑆 | is the cardinal of 𝑆) : hence, a Kleene iteration [Cousot and Cousot 1977] of FL→Σ♯
⊥
will

find a fixpoint in a finite number of steps.

4.1.3 Soundness of the analysis. Due to space constraints, the full proof of soundness of this

analysis is put in Appendix (Appendix A). Here we summarize the main interesting points about

the proof.

First, note that if the SSA abstraction is sound and complete, the symbolic expression analysis is

sound, but incomplete. It is in fact an advantage to have an incomplete abstraction that goes along

the exact SSA abstraction: while the SSA abstraction exactly translates the semantics of the original

program, the concretization of the incomplete the symbolic expression domain allows assessing

the precision of this translation.

That said, a second observation is that the E♯J·K(·) and I♯J·K(·) operations are exact, in addition

to being sound. This property is important to prove the soundness and completeness of the SSA

translation.

A last, unusual, point is that the ⊔ℓ operator is not sound when applied to any pair of elements in

Σ♯
. The problem comes from the fact that we reuse variable identifiers, which could thus create

spurious relations between terms (this problem does not happen in analyses which only create

fresh variables). Consider for instance:

[x ↦→ 1 + yℓ6 , y ↦→ 2] ⊔ℓ6 [x ↦→ 1 + yℓ6 , y ↦→ 3] = [x ↦→ 1 + yℓ6 , y ↦→ yℓ6 ]

The resulting abstract store implies the relation x = 1 + y through the shared use of yℓ6 , but this
relation is false in both arguments to ⊔ℓ6.
However, the complete analysis is sound, because 1. ⊔ℓ is sound in the case when ℓ does not

occur in at least one of the arguments to ⊔ℓ, and 2. during the fixpoint computation, 𝑝♯ is always

such that ⊔ℓ is applied in the sound case (because ℓ never occurs in the abstract stores on the simple

paths from ℓ0 to ℓ).

4.2 Building 𝜙 dynamically
The abstract domain defined Figure 4 sometimes assigns different symbolic expressions to program

variables that could be proved equal. Consider again Example 4.1 (page 10). The program variables

time and i are bound to the same symbolic expression in each of 𝜎
♯

1
and 𝜎

♯

2
, and are thus equal;

it would thus be more precise to have these program variables be bound to the same symbolic

variable. What we want is in Figure 1a (𝑝♯ [ℓ1] on the second line): there, both time and i are bound
to the same symbolic variable time_iℓ1 , which represents the value of both time and i at ℓ1.

Building 𝜙 dynamically. For this to work, we need to perform small changes to our static analysis.

The 𝜙 function can no longer have a static definition, but will be computed based on the arguments

of ⊔ℓ. For this, we define Φ ≜ ((EV × EV) ⇀ EV) to be the set of 𝜙 functions, and we define

Φℓ
: Σ♯ × Σ♯ → Φ as the function computing 𝜙 from two abstract states. A definition for Φℓ

that
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returns a 𝜙 equivalent to the one statically defined in Figure 4 is as follows:

Φℓ
= : Σ♯ × Σ♯ → Φ Φℓ

= (𝜎
♯

1
, 𝜎

♯

2
) ≜ [(𝑒, 𝑒) ↦→ 𝑒 | ∃𝑥 ∈ X : 𝜎

♯

1
[𝑥] = 𝜎

♯

2
[𝑥] = 𝑒]

Φℓ
≠ : Σ♯ × Σ♯ → Φ Φℓ

≠ (𝜎
♯

1
, 𝜎

♯

2
) ≜ [(𝜎♯

1
[𝑥], 𝜎♯

2
[𝑥]) ↦→ 𝑥ℓ | 𝑥 ∈ X ∧ 𝜎♯

1
[𝑥] ≠ 𝜎

♯

2
[𝑥]]

Φℓ
: Σ♯ × Σ♯ → Φ Φℓ (𝜎♯

1
, 𝜎

♯

2
) ≜ Φ≠ (𝜎♯

1
, 𝜎

♯

2
) ∪ Φ= (𝜎♯

1
, 𝜎

♯

2
)

We actually defined three Φ functions: Φℓ
= returns the 𝜙 function for the cases where the arguments

to 𝜙 are equal, Φℓ
≠ for the cases where they are different, and Φℓ

handles both cases. Later on, we

will focus on Φℓ
≠ as it corresponds to the 𝜙 functions in standard SSA.

We now need to change the definition of ⊔ℓ to make use of Φℓ
:

𝜎
♯

1
⊔ℓ𝜎♯

2
≜ let 𝜙 ≜ Φℓ (𝜎♯

1
, 𝜎

♯

2
) in [𝑥 ∈ X ↦→ 𝜙 (𝜎♯

1
[𝑥], 𝜎♯

2
[𝑥])]

More precise global value numbering. With the above changes, we compute the same analysis as

in the previous section, the only difference being that the 𝜙 function is computed dynamically. But

we can now adapt the analysis to return the same symbolic variable when two pairs of variables

point to the same symbolic expression. It suffices first to change the definition of V so that symbolic

variables are named according to a set of program variables 𝑋 ∈ P(X) , instead of a single variable
𝑥 ∈ X: i.e., now V ≜ P(X) × L. Second, we change the definition of Φℓ

≠ as follows:

Φℓ
≠ (𝜎

♯

1
, 𝜎

♯

2
) ≜ [ (𝑒1, 𝑒2) ↦→ 𝑋ℓ | 𝑒1 ≠ 𝑒2 ∧ 𝑋 ≠ {} ∧ ∀𝑥 ∈ 𝑋 : 𝜎

♯

1
[𝑥] = 𝑒1 ∧ 𝜎

♯

2
[𝑥] = 𝑒2 ]

This new definition associates to each pair of different expressions 𝑒1, 𝑒2 all the variables that

contain these expressions in the abstract stores. The new analysis is still sound, and all the theorems

of Section A still hold (only the proof of Lemma A.6 needs to be modified).

Note. The formalization requires ⊔ℓ to perform two passes (one to build 𝜙 , and one to use it), but

it is feasible to do it in one pass. It suffices to return a fresh (integer) identifier every time a new

pair of expressions 𝑒1, 𝑒2 is passed to 𝜙 , and modify, using a mutable state, the relation between

the identifier and the set of variables that it represents. Actually the implementation may only use

the fresh identifier and completely omit to represent the set of variables, which is useful only to

understand what the integer identifier (i.e., value number [Rosen et al. 1988]) represents.

Building the global value graph. We return to the 𝜙 function computed by Φℓ1
≠ (Example 4.1),

which is

Φℓ1
≠ (𝜎

♯

1
, 𝜎

♯

2
) = [(0, time_iℓ3 ) ↦→ time_iℓ1 , (hoursℓ0 , hoursℓ3 ) ↦→ hoursℓ1 ]

In other words, time_iℓ1 = 𝜙 (0, time_iℓ3 ) and hoursℓ1 = 𝜙 (hoursℓ0 , hoursℓ3 ): the computed 𝜙

function corresponds to the binding of a symbolic variable to a 𝜙 expression in usual SSA. Thus, if

we first collect all the terms that appear in 𝑝♯, the result of the symbolic analysis, with all the 𝜙

functions computed by FL→Σ♯
⊥
(𝑝♯) viewed as a definition of symbolic variables, we obtain a cyclic

term graph which is the global value graph. This can be done efficiently and incrementally; we do

not explain this further as the generation of SSA is a generalization of this construction (as SSA is

the global value graph with additional information about the control-flow).

4.3 Note on practical implementation
Several points must be observed for an efficient practical implementation. Firstly, the symbolic

expressions should be hash-consed (i.e. the terms should be built as a minimal DAG [Reif and Lewis

1986]). This ensures that the total memory taken by the symbolic expressions corresponds to the

number of nodes in the global value graph, and that the complexity of a E♯J𝑒K(𝜎♯) operation is in

O(|𝑒 |) (i.e. proportional to the number of nodes in 𝑒).
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Secondly, the abstract stores 𝜎♯ ∈ Σ♯
should be implemented using balanced binary search trees

[Blanchet et al. 2002] or, better, Okasaki maps [Okasaki and Gill 1998] (see Section 7.1). This allows

the complexity of insertion in the map for the interpretation of assignments to be in O(log |X|),
and maximum complexity of the ⊔ℓ operation to be in O(|X|) (but the average complexity of the ⊔ℓ
operation is in O(Δ log |X|), where Δ is the number of variables that differs in the arguments of ⊔ℓ).
Thirdly, a chaotic iteration strategy [Cousot 1977, 1978] should be used to propagate states

efficiently. For instance, using the iterative iteration strategy of Bourdoncle [1993] ensures that

each location of the program will be analyzed less than ℎ time, where ℎ is the height of the lattice

of abstract stores. It can be shown that ℎ = |X| (we can view EV as a lattice of height 2, and abstract

stores contain |X| of them).

Thus, assuming that the size of all expressions in the program is bound by a small constant (in

addition to the assumption that nodes have no more than 2 predecessors), the maximum complexity

of our analysis is O(|L| ∗ |X|2). However, in a typical analysis, only a few iterations of the outermost

component will be needed for the fixpoint iteration to converge (in general almost all the program

variables converge simultaneously), the number of join points is smaller than the number of

instructions, and many program variables have the same expression during joins (especially if there

are many variables), so the typical complexity is O(|L| ∗ log |X|), which makes the analysis quite

efficient in practice (see Section 7.1).

Finally, the evaluation of expressions may perform more than just substitutions – it can perform

some rewriting operations such as arithmetic simplifications, constant folding, normalization of

commutative operations, etc. so as to detect more equalities between variables. It should also be

possible to replace symbolic expressions by equivalent classes of equal expressions – using equality

saturation [Nelson 1980; Willsey et al. 2021] to find more equalities between expressions.

5 CONSTRUCTION OF AN SSA GRAPH USING ABSTRACT INTERPRETATION
The previous section explained how a symbolic expression abstraction 𝑝♯ ∈ L → Σ♯

⊥ could

be computed using an analysis based on abstract interpretation. This section explains how this

abstraction can be turned into an SSA graph.

5.1 Scope and dominance properties

First, we study some properties of the result 𝑝♯ ∈ L → Σ♯
⊥ of a symbolic expression analysis.

More generally, in this section, we assume that 𝑝♯ is a fixpoint of FL→Σ♯
⊥
(although the results also

apply when 𝑝♯ is a postfixpoint) in a program whose graph is G. The study of these properties is

important to define the notion of scope and the semantics of SSA graphs.

We recall the notion of domination: we say that ℓ𝐷 dominates ℓ (in a graph G) if every path from

ℓ0 to ℓ in the graph G must go through ℓ𝐷 . We also define the location of a variable : if 𝑣 ∈ V is

a pair whose second element is a location ℓ , then loc(𝑣) = ℓ . Informally, loc(𝑣) corresponds, in
traditional SSA, to the basic block where the variable 𝑣 will be defined.

We saw that the symbolic expression analysis (alone or paired with other abstract domains)

can determine if an edge or a location is unreachable. To simplify our definitions, we assume that

dead code elimination has been performed on G – otherwise, excluding the paths that go through

unreachable nodes would make some notions, like domination, more complex.

Strictness. First we prove a property corresponding to the dominance or strictness property of

SSA [Rastello 2016]. In strict SSA, if a variable occurs at location ℓ , then it is defined at a location

ℓ𝐷 that dominates ℓ . Note however that our theorem apply to a symbolic expression abstraction

𝑝♯ ∈ L→ Σ♯
⊥, which is a different mathematical object than an SSA program.
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Theorem 5.1 (Strictness). ∀ℓ ∈ L, 𝑥 ∈ X, 𝑣 ∈ V : 𝑣 occurs in 𝑝♯ [ℓ] [𝑥] ⇒ loc(𝑣) dominates ℓ .

See proof on page 33.

Note that this result only applies when 𝑝♯ is a fixpoint: during the fixpoint computation, there

may be a variable 𝑥ℓ𝐷 that gets propagated to a location ℓ without ℓ being dominated by ℓ𝐷 (e.g.

when another path to ℓ is not yet propagated).

Scope. We now define a notion of scope, that intuitively corresponds to the set of locations on

which an expression has a meaning: i.e. the locations that are dominated by the locations of all the

variables of the expression.

Definition 5.2 (Scope). Given a graph 𝐺 , the function scope𝐺 : EV → P(L) is defined as follows:

scope𝐺 (𝑣) ≜ {ℓ ∈ L | loc(𝑣) dominates ℓ in the graph 𝐺} scope𝐺 (𝑧) ≜ L

scope𝐺 (𝑒1 ⋄ 𝑒2) ≜ scope𝐺 (𝑒1) ∩ scope𝐺 (𝑒2)

Another interpretation of the scope of an expression 𝑒 is the set of locations of 𝑝♯ where 𝑒 may

appear when the analysis is complete.

Theorem 5.3 (𝑝♯ respects scope). ∀ℓ ∈ L : ∀𝑥 ∈ X : ℓ ∈ scopeG (𝑝♯ [ℓ] [𝑥])

Proof. Direct consequence of Theorem 5.1 and definition of scope. □

We say that the scope of 𝑒 is defined when scope𝐺 (𝑒) is non-empty. Intuitively, if the scope of a

symbolic expression 𝑒 is undefined, then 𝑒 is meaningless.

Corollary 5.4. ∀ℓ ∈ L : ∀𝑥 ∈ X : scopeG (𝑝♯ [ℓ] [𝑥]) is defined.

Example 5.5. Here is the scope of some expressions for the program of Figure 1b, where G
corresponds to the graph of the program. All these expressions are defined except time_iℓ2+hoursℓ3 .

scopeG (hoursℓ1 ) = {ℓ1, ℓ2, ℓ3} scopeG (1 ∗ 3600) = L = {ℓ0, ℓ1, ℓ2, ℓ3}
scopeG (time_iℓ2 ) = {ℓ2} scopeG (hoursℓ1 + hoursℓ3 ) = {ℓ1, ℓ2, ℓ3} ∩ {ℓ3} = {ℓ3}
scopeG (hoursℓ3 ) = {ℓ3} scopeG (time_iℓ2 + hoursℓ3 ) = {ℓ2} ∩ {ℓ3} = {}

Single-location scope. The scope of any expression, when defined, can be represented by a single

location; this property comes from the fact that domination is a tree relation [Appel 1998a]. The

following function scope expresses how this location can be computed (where the min of two

locations is the location dominated by the other; this min exists when the scope of 𝑒 is defined).

scope𝐺 (𝑣) ≜ loc(𝑣) scope𝐺 (𝑧) ≜ ℓ0 scope𝐺 (𝑒1 ⋄ 𝑒2) ≜ min(scope𝐺 (𝑒1), scope𝐺 (𝑒2))

Theorem 5.6. scopeG (𝑒) = {ℓ | scopeG (𝑒) dominates ℓ}

See proof on page 33.

We use this scope operation when translating an expression in our SSA representation into

assignment of a temporary variable in usual SSA: scope (𝑒) represents the most hoisted location

where to place the assignment.

5.2 The SSA graph
We can now present (Figure 5) the syntax and semantics of our variant of SSA, the SSA graph (note

that some authors [Stanier 2016] call the global value graph the SSA graph, which should not be

confused with the SSA graph that we present here). The main use of this form of SSA is to be used

as an abstraction of an abstract domain; however, its simple syntax and semantics may be useful in
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ˆG ≜ (L × L) ⇀ (EV × (V ⇀ EV)) (SSA graph)
ˆS ≜ L × Γ (SSA state) Γ ≜ V ⇀ Z (valuation)

unbind𝑔 : L × Γ→ Γ unbind𝑔 (ℓ, Γ) ≜ [ 𝑣 ∈ dom Γ ↦→ Γ [𝑣] | ℓ ∈ scope𝑔 (𝑣) ]

bind : (V ⇀ EV) × Γ→ Γ bind(𝐵, Γ) ≜
[
𝑣 ∈ V ↦→

{
EJ𝐵 [𝑣]K(Γ) if 𝑣 ∈ dom𝐵

Γ [𝑣] otherwise

]
⇝𝑔 ∈ ˆS × ˆS (ℓ, Γ) ⇝𝑔 (ℓ ′, Γ′) ≜ ∃𝑒 ∈ EV, 𝐵 ∈ V ⇀ EV : (ℓ, ℓ ′) ↦→ (𝑒, 𝐵) ∈ 𝑔

∧EJ𝑒K(Γ) ≠ 0

∧ Γ′ = unbind𝑔 (ℓ ′, bind(𝐵, Γ))

Fig. 5. Syntax and semantics of SSA graphs

other contexts. A distinctive feature of this form (compared to traditional SSA form) is that it is

implicitly scoped: we define the location of definition only for the symbolic variables (corresponding

to the phi variables in traditional SSA form), and not for every expression (corresponding to other

variables in traditional three-address SSA form). However, the largest scope in which an expression

𝑒 is defined is given by scope (𝑒) in the previous section; hence the scope of 𝑒 is defined implicitly

(and we can use this scope when translating to traditional SSA).

Syntax of SSA graphs. Our SSA representation is a graph𝑔 ∈ ˆGwith
ˆG ≜ (L×L) ⇀ EV×(V ⇀ EV).

The graph consists in a set of bindings (ℓ, ℓ ′) ↦→ (𝑒, 𝐵) representing an edge from ℓ to ℓ ′ labeled by

a guard 𝑒 and binding 𝐵, where a binding is a mapping from some variables to terms. Figure 1c

presents the SSA graph produced by our analysis of the program of Figure 1b.

Semantics of SSA graphs. A graph 𝑔 ∈ ˆG represents a transition system ( ˆS,⇝𝑔) between symbolic

states 𝑠 ∈ ˆS ≜ L × Γ where a symbolic state consists of a control location ℓ and a valuation. The

valuations Γ ∈ Γ ≜ V ⇀ Z are those used in the concretization of our symbolic expression

abstraction, and assign values to symbolic variables. The initial states
ˆS0 ≜ {(ℓ0, Γ) | dom Γ = {𝑥ℓ0 |

𝑥 ∈ X}} intuitively describes the initial value of each program variable at the starting location ℓ0.

The transition relation⇝𝑔, formally defined in Figure 5, works as follows : transition from a

state (ℓ, Γ) to a state at location ℓ ′ in the graph is possible only if 1. there is a (ℓ, ℓ ′) ↦→ (𝑒, 𝐵) edge
in the graph 𝑔, and 2. the guard 𝑒 evaluates to true. The transition then consists in adding some new

bindings to Γ using the definitions provided by 𝐵 (operator bind), but also to unbind the variables

that go out of scope in the new control location ℓ ′, using the notion of scope that we defined in the

previous section. An example of execution trace for the SSA program given in Figure 1c is given

Figure 2 (first line).

The use of unbind is unusual in SSA semantics: generally SSA variables are assigned rather than

bound (see e.g. [Barthe et al. 2014; Cytron et al. 1991; Zhao et al. 2012]). Our proof of soundness

still holds with the assignment semantics (and is actually simpler), but unbind is important when

SSA graphs are used in a combination with other abstract domains (e.g., to limit the scope where

information about a variable must be retained).

Note that the semantics of SSA uses scope𝑔 which depends on the SSA graph 𝑔 instead of the

program graph G, as we want the SSA semantics to be independent of the original program. Note

however, that scope𝑔 and scopeG are the same when we define G to be the subset of the original

program that excludes the parts that the symbolic expression analysis can prove unreachable.
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graph(𝑝♯) ≜
⋃

(ℓ,ℓ ′ ) ∈dom G
edge(𝑝♯, ℓ, ℓ ′)

edge(𝑝♯, ℓ, ℓ ′) ≜ [(ℓ, ℓ ′) ↦→ (𝑒, 𝐵) | 𝑒 ≠ 0 ∧ 𝑝♯ [ℓ] ≠ ⊥] where

𝑒 = G[ℓ, ℓ ′],
𝜎 ′♯ = I♯Jinstr[ℓ]K(𝑝♯ [ℓ]),
𝑒 = E♯J𝑒K(𝜎 ′♯),
𝐵 = {𝑝♯ [ℓ ′] [𝑥] ↦→ 𝜎 ′♯ [𝑥] | 𝑥 ∈ X ∧ 𝑝♯ [ℓ ′] [𝑥] ≠ 𝜎 ′♯ [𝑥]}

Fig. 6. Translation of a symbolic expression abstraction to an SSA graph

5.3 From symbolic expressions to SSA graphs
We now explain how the symbolic expression abstraction 𝑝♯ can be translated into an SSA graph

(Figure 6). The idea is that each edge of the original program corresponds to at most one edge in the

SSA translation : if we detect that the source location ℓ is unreachable (i.e., 𝑝♯ [ℓ] = ⊥) or the guard
is not satisfiable (i.e. 𝑒 = 0), we leave the corresponding edge out of the SSA graph. The translation

is done as follows: we first compute the abstract store 𝜎 ′♯ after execution of the block, and use it

to translate the original guard 𝑒 into an SSA guard 𝑒; finally we examine the difference between

𝜎 ′♯ and 𝑝♯ [ℓ ′], the abstract store at ℓ ′, so that there is a binding in 𝐵 whenever a new symbolic

variable was introduced.

Example 5.7. Let 𝑝♯ be the result of the analysis of our running example (Figure 1a). Then,

𝑝♯ [ℓ1] ≠ ⊥ and G[ℓ1, ℓ3] = “hours < 24
′′ ≠ 0, thus we have an edge from ℓ1 to ℓ3 in the SSA graph.

Moreover:

edge(𝑝♯, ℓ1, ℓ3) = {(ℓ1, ℓ3) ↦→ (E♯J𝑒K(𝜎 ′♯), {𝑝♯ [ℓ3] [𝑥] ↦→ 𝜎 ′♯ [𝑥] | 𝑥 ∈ X∧𝑝♯ [ℓ3] [𝑥] ≠ 𝜎 ′♯ [𝑥]})} where

𝜎 ′♯ = I♯Jinstr[ℓ1]K(𝑝♯ [ℓ1]) =


inc ↦→ 1

time ↦→ time_iℓ1
i ↦→ time_iℓ1
hours ↦→ time_iℓ1/(1 ∗ 3600)

 and 𝑝♯ [ℓ3] =


inc ↦→ 1

time ↦→ time_iℓ3
i ↦→ time_iℓ3
hours ↦→ hoursℓ3


The result is

edge(𝑝♯, ℓ1, ℓ3) =
{
(ℓ1, ℓ3) ↦→

(
time_iℓ1/(1 ∗ 3600) < 24,

[
time_iℓ3 ↦→ time_iℓ1
hoursℓ3 ↦→ time_iℓ1/(1 ∗ 3600)

] )}
as in Figure 1c.

5.4 The SSA abstract domain
5.4.1 Abstract elements. We can now describe our SSA abstract domain (Figure 7). Elements of

this domain are a pair (𝑝♯, 𝑔) where 𝑝♯ ∈ L→ Σ♯
⊥ is an element of the symbolic expression abstract

domain and 𝑔 ∈ ˆG is an SSA graph. Note that 𝑝♯ is a flow-sensitive abstraction while 𝑔 is a

flow-insensitive abstraction.

5.4.2 Concretization. The central idea of the concretization is that an element 𝑝♯ ∈ L→ Σ♯
⊥ can

be viewed as a functionH𝑝♯ ∈ ˆS ⇀ S mapping SSA states to concrete states. More precisely, given

an SSA state 𝑠 = (ℓ, Γ) composed of a location ℓ and a valuation Γ, the abstract store 𝑝♯ [ℓ] can
be viewed as a function from valuations to concrete stores using the concretization 𝛾Σ♯ : indeed,

𝛾Σ♯ (𝑝♯ [ℓ]) ∈ Γ ⇀ Σ. H𝑝♯ retrieves a concrete store by applying Γ to this function, keeps the

location ℓ , and use both to create a concrete state.
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SSA♯ = (L→ Σ♯
⊥) × ˆG

H𝑝♯ :
ˆS ⇀ S 𝛾Ĝ (𝑔) : ˆG→ P(P( ˆS × ˆS))

H𝑝♯ (ℓ, Γ) ≜ (ℓ, 𝛾Σ♯ (𝑝♯ [ℓ]) (Γ)) 𝛾Ĝ (𝑔) ≜ ⇝𝑔 |Ŝ∗

𝛾SSA♯ : SSA♯ → P(P(S × S))

𝛾SSA♯ (𝑝♯, 𝑔) ≜ {(H𝑝♯ (𝑠),H𝑝♯ (𝑠′)) | (𝑠, 𝑠′) ∈ 𝛾Ĝ (𝑔)}

FSSA♯ (𝑝♯, 𝑔) ≜ (𝑝′♯, graph(𝑝′♯)) where 𝑝′♯ = FL→Σ♯
⊥
(𝑝♯)

Fig. 7. The SSA abstract domain : definition (top), concretizations (middle), transfer function (bottom)

Once we have theH𝑝♯ function, the meaning of the SSA abstraction (𝑝♯, 𝑔) is given as the image

of the transition system ( ˆS,⇝𝑔) by H𝑝♯ . This image is a transition system (S, ↩→) where ↩→ is

defined as follows:

∀𝑠, 𝑠′ ∈ ˆS : 𝑠 ⇝𝑔 𝑠
′ ⇔H𝑝♯ (𝑠) ↩→H𝑝♯ (𝑠′). (1)

This definition implies thatH𝑝♯ is a strong homomorphism from ( ˆS,⇝𝑔) to (S, ↩→) (indeed, the
H inH𝑝♯ stands for homomorphism). The goal of our soundness theorem will be to establish that

↩→ overapproximates↣ (and, since the SSA translation is sound but also complete, we will also

prove that ↩→ and↣ are equal). Figure 2 illustrates theH𝑝♯ homomorphism.

Now as we will see, the original transition system (S,↣ ) and the corresponding SSA transition

system ( ˆS,⇝𝑔) only match when both transition systems are restricted to the reachable states. This

justifies why in Figure 7 we concretize SSA graphs as a transition system between the reachable

SSA states
ˆS∗. Formally, given 𝑔, we define ˆS∗ as ˆS∗ ≜ {𝑠 ∈ ˆS : ∃𝑠0 ∈ ˆS0, 𝑠0 ⇝

∗
𝑔
𝑠} where⇝∗

𝑔

represent the reflexive and transitive closure of⇝𝑔. We define⇝𝑔 |Ŝ∗ ≜ {(𝑠, 𝑠′) ∈⇝𝑔 | 𝑠 ∈ ˆS∗}.

5.4.3 Transfer functions. The transfer function for the SSA abstraction consists in updating 𝑝♯

at every step (using the previously defined FL→Σ♯
⊥
), and using the graph operator to accordingly

update the SSA graph 𝑔.

This formal analysis can be made more efficient in practice. Note that the computation of the SSA

graph at each iteration does not require the SSA graph at the previous iteration. Thus, in analyses

where the SSA abstraction is only used to get an SSA translation, and is not used to improve the

precision of other abstract domains, it suffices to call graph once at the end. This is what our

evaluation of Section 7.1 does.

If the SSA graph is used in a combination with other domains, we can avoid recomputing the

whole SSA graph at each iteration and instead compute the SSA graph incrementally along with a

chaotic iteration. In Section 6 we present an algorithm that does this (and also ensures completeness

of the SSA abstraction during the fixpoint computation).

5.4.4 Soundness of the analysis. Our main soundness theorem states that once the analysis reaches

a fixpoint, the SSA abstraction is sound and complete representation of the transition system of the

original program.

Theorem 5.8 (Soundness and completeness of the SSA abstraction computation).

Let (𝑝♯, 𝑔) be a fixpoint of FSSA♯ . Then: 𝛾SSA♯ (𝑝♯, 𝑔) =↣ |S∗
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Proof sketch. First, we show that H𝑝♯ is a strong homomorphism from ( ˆS,⇝𝑔) to (S,↣).
The main idea of this proof is that E♯J·K(·) and I♯J·K(·) are exact operations, and the bindings

to symbolic variables created by edge operator compensates the loss of precision introduced by

⊔ℓ. Note thatH𝑝♯ is still a strong homomorphism if we use the assignment semantics of SSA (i.e.

without the unbind operation) for⇝𝑔, as, following Theorem 5.1, in a transition from ℓ to ℓ ′ the

unbound variables are those that no longer occur 𝑝♯ [ℓ ′].
This strong homomorphism allows proving completeness, but not soundness. Indeed, 𝑝♯ does

not represent all the states, only the reachable states (i.e. in general 𝛾
L→Σ♯

⊥
(𝑝♯) ⊂ S). Because of

this,⇝𝑔 cannot represent all the transitions that↣ can. However, it can represent the transitions

between the reachable states. Thus, we restrict↣ to↣ |S∗ ≜ {(𝑠, 𝑠′) ∈ ↣ | 𝑠 ∈ S∗}. If we want
H𝑝♯ to remain a strong homomorphism, we also need to restrict⇝𝑔 to⇝𝑔 |Ŝ∗ . In that case,H𝑝♯

becomes a surjective strong homomorphism (and hence, a bisimulation [Sangiorgi 2009]) which

implies that 𝛾SSA♯ =↣ |S∗ . □

The full proof is given in Appendix C.

We can make two observations about this theorem. Firstly, a transition system is one of the

most precise semantics in the hierarchy of program semantics [Cousot 2002], being equivalent

to the maximal trace semantics
1
. Thus, the fact that the SSA abstraction is sound and complete

when concretized into a transition system implies that it is also sound and complete for standard

semantics such as set of traces, set of input/output relations, or set of reachable states.

Secondly, throughout the proof we are only interested in the soundness and completeness

when the fixpoint is reached, which is unlike the usual proof structure in static analyses based on

abstract interpretation. Indeed, the concretization of successive iterations of FSSA♯ is not monotonic,

and some intermediate iterations include spurious traces (i.e. are not complete) that disappear

when the fixpoint is reached (by contrast, the computation of successive iterations of FL→Σ♯
⊥
was

monotonic). The next section fixes this completeness issue in intermediate iterations, but note that

the computation of the SSA abstraction will still be non-monotonic.

6 INCREMENTALLY COMPLETE CONSTRUCTION OF SSA
This section first explains why the previous construction of SSA abstraction is not incrementally

complete, and provides a practical solution to fix the issue.

6.1 Normal construction of SSA abstraction is not incrementally complete
Our computation of SSA using abstract interpretation is both sound (it describes all the behaviors

of the original program) and complete (all the behaviors that it describes are present in the original

program). However, it is not continuously sound and complete, i.e. intermediate computations

may produce abstractions that are neither sound nor complete. While the fact that intermediate

computations are not sound is expected (as abstract interpretation grows the abstraction until the

fixpoint is reached), the incompleteness of intermediate computations is more problematic. This

has practical consequences: if other domains rely on the intermediate SSA construction (e.g. for

translation into a logic formula given to an SMT solver [Gurfinkel et al. 2015], to compute an exact

abstract transformer [Reps et al. 2004], to retrieve the target of indirect jumps when analyzing

machine code [Djoudi et al. 2016], etc.), this may lead to imprecisions of the static analysis.

Consider the example of Figure 8. Figure 8a presents a program and the computation of the term

abstraction 𝑝♯ after 4 iterations of FL→Σ♯
⊥
(the abstract store 𝑝♯ [ℓ] is given next to each program

1
It is usual to define the set of traces from a transition system, but we can also define a transition relation from the successive

states that appear in all the traces.
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x← 0

ℓ0

x← x + 1

ℓ1

x← x + 2

ℓ2
1 1

1[𝑥 ↦→ 𝑥ℓ0 ] [𝑥 ↦→ 𝑥ℓ1 ] [𝑥 ↦→ 0 + 1]

(a) Unfinished global value numbering (after 4 steps)

ℓ0 ℓ1 ℓ2
1

[𝑥ℓ1 ↦→ 0]
1

[]

1 [𝑥ℓ1 ↦→ 0 + 1 + 2]

(b) Corresponding SSA program

(
ℓ0,

[
xℓ0 ↦→ 11

] ) (
ℓ1,

[
xℓ0 ↦→ 11

xℓ1 ↦→ 0

] ) (
ℓ2,

[
xℓ0 ↦→ 11

xℓ1 ↦→ 0

] ) (
ℓ1,

[
xℓ0 ↦→ 11

xℓ1 ↦→ 0 + 1 + 2

] ) (
ℓ2,

[
xℓ0 ↦→ 11

xℓ1 ↦→ 0 + 1 + 2

] )
⇝𝑔 ⇝𝑔 ⇝𝑔 ⇝𝑔

𝑝♯ [ℓ0 ] = [x ↦→ xℓ0 ] 𝑝♯ [ℓ1 ] = [x ↦→ xℓ1 ] 𝑝♯ [ℓ2 ] = [x ↦→ 0 + 1] 𝑝♯ [ℓ1 ] = [x ↦→ xℓ1 ] 𝑝♯ [ℓ2 ] = [x ↦→ 0 + 1]

(
ℓ0,

[
x ↦→ 11

] ) (
ℓ1,

[
x ↦→ 0

] ) (
ℓ2,

[
x ↦→ 1

] ) (
ℓ1,

[
x ↦→ 3

] ) (
ℓ2,

[
x ↦→ 1(4)

] )
↣ ↣ ↣ ̸↣

(c) Faulty bisimulation. Top: Execution trace of the intermediate SSA program (b). Middle: Intermediate term
abstraction. Bottom: Execution trace obtained by homomorphism (and execution trace of the original program).

Fig. 8. Example of an incomplete intermediate SSA abstraction, with the wrong execution trace.

location ℓ). We see that the fixpoint computation has joined, at the loop entry ℓ1, the abstract stores

coming from the beginning of the program ℓ0 and from the loop back edge ℓ2, creating the symbolic

variable xℓ1 , but xℓ1 has not yet been propagated to ℓ2.

Figure 8b presents the corresponding graph 𝑔 ≜ graph(𝑝♯). We can see that the back-edge is

labeled with the binding [xℓ1 ↦→ 0 + 1 + 2], which is not the correct binding that we will get at the

end of the analysis (the correct binding is [xℓ1 ↦→ xℓ1 + 1 + 2]).
However, the fact that the bindings on the SSA graph are "wrong" is only a consequence of the

real issue: because the analysis is unfinished, the intermediate versions of 𝑝♯ do not represent

all the possible program states (e.g., 𝑝♯ [ℓ2] only represents the program states at ℓ2 for the first

iteration of the loop); and at the same time, the edges present in 𝑔 allows the transition system that

𝑔 represents to follow paths that lead to program states that are not yet represented by 𝑝♯. The

erroneous execution trace of Figure 8c illustrates this: the program path ℓ0—ℓ1—ℓ2—ℓ1—ℓ2 leads to a

concrete store [𝑥 ↦→ 4] which is not represented by 𝑝♯ [ℓ2], leading to the fact that this path in the

original program cannot be matched in the SSA graph (instead, the path continues with a wrong

transition). Note that this problem can also appear in loop-free programs.

6.2 Making SSA construction incrementally complete
To make the SSA construction complete on intermediate steps, we need to limit the SSA graph so

that transition to states that are not represented by 𝑝♯ is impossible. For instance in Figure 8, if we

remove the transition from ℓ2 to ℓ1 (for instance, by keeping only the transition between ℓ0 and

ℓ1), then the SSA program represents a subset of the reachable program transitions of the original

program.

Our idea is that the SSA graph should contain an edge from ℓ to ℓ ′ only if

∀𝜎, 𝜎 ′ ∈ Σ : (ℓ, 𝜎) ∈ 𝛾
L→Σ♯

⊥
(𝑝♯) ∧ (ℓ, 𝜎)↣ (ℓ ′, 𝜎 ′) ⇒ (ℓ ′, 𝜎 ′) ∈ 𝛾

L→Σ♯
⊥
(𝑝♯)

i.e. if all states represented by 𝑝♯ [ℓ], will have the next state 𝑠′ be represented by 𝑝♯ [ℓ ′]. We call

such an edge fully-propagated. For instance, the edge from ℓ1 to ℓ2 in the SSA graph in Figure 8 is
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not fully propagated, because (ℓ1, [𝑥 ↦→ 8]) ∈ 𝛾
L→Σ♯

⊥
(𝑝♯) and (ℓ1, [𝑥 ↦→ 8]) ↣ (ℓ2, [𝑥 ↦→ 9]), but

(ℓ2, [𝑥 ↦→ 9]) ∉ 𝛾
L→Σ♯

⊥
(𝑝♯). On the contrary, the edge from ℓ0 to ℓ1 is fully-propagated.

This idea of a fully-propagated edge (ℓ, ℓ ′) is that the stores that can be seen at ℓ ′ include the
stores that come from ℓ . In the abstract semantics, it corresponds to an (abstract) inclusion between

abstract stores, that we define below.

Definition 6.1 (Order relation on Σ♯
⊥, the abstract stores extended with ⊥).

∀ℓ ∈ L,∀𝜎♯

1
, 𝜎

♯

2
, 𝜎

♯

3
∈ Σ♯

: ⊥ ⊑ℓ ⊥ ⊥ ⊑ℓ 𝜎♯

2
𝜎
♯

1
⊑ℓ 𝜎♯

2
≜ ∃𝜎♯

3
: 𝜎

♯

2
= 𝜎

♯

1
⊔ℓ𝜎♯

3

This definition is equivalent to the usual algebraic definition 𝜎
♯

1
⊑ℓ 𝜎♯

2
≜ 𝜎

♯

2
= (𝜎♯

1
⊔ℓ 𝜎♯

2
)

(Lemma D.1), but it is closer to the intended meaning of why the ⊑ℓ relation is needed in our case

(i.e. 𝜎
♯

1
⊑ℓ 𝜎♯

2
if we can obtain 𝜎

♯

2
by joining 𝜎

♯

1
with something else).

Equipped with this order relation, we can define the maximal set of fully-propagated edges (or,

maximal fully-propagated subgraph) given 𝑝♯ ∈ L→ Σ♯
⊥ as follows:

maxG(𝑝♯) ≜ {(ℓ, ℓ ′) ∈ domG | G[ℓ, ℓ ′] = 0 ∨ 𝑝♯ [ℓ] = ⊥ ∨ I♯Jinstr[ℓ]K(𝑝♯ [ℓ]) ⊑ℓ ′ 𝑝♯ [ℓ ′]}
This definition is derived from the definition of FL→Σ♯

⊥
describing the transfer function over edges

in Figure 4. On the example of Figure 8, we have maxG(𝑝♯) = {(ℓ0, ℓ1)}.
Then, we define a modified transfer function for the SSA abstract domain, consisting in limiting

the SSA graph to the maximal fully-propagated subgraph of the current value of 𝑝♯. Formally:

F ′SSA♯ (𝑝♯, 𝑔) ≜ FL→Σ♯
⊥
(𝑝♯), graph(FL→Σ♯

⊥
(𝑝♯)) |maxG(𝑝♯ )

where we note by 𝑔 |𝐺 ≜ {(ℓ, ℓ ′) ↦→ (𝑒, 𝐵) | (ℓ, ℓ ′) ↦→ (𝑒, 𝐵) ∈ 𝑔 ∧ (ℓ, ℓ ′) ∈ 𝐺} the restriction of an

SSA graph 𝑔 to the edges in 𝐺 . By restricting the SSA graph to fully-propagated edges of 𝑝♯, we

can prove that intermediate computation performed by this new transfer function is complete:

Theorem 6.2 (Incremental SSA graphs are complete).

Let 𝑝♯ ∈ L→ Σ♯
⊥, 𝐺 = maxG(𝑝♯), and 𝑔 = graph(FL→Σ♯

⊥
(𝑝♯)). Then: 𝛾SSA♯ (𝑝♯, 𝑔 |𝐺 ) ⊆↣ |S∗ .

Proof sketch. The proof goes as follows. We show that the notion of fully-propagated graph
(a set of fully-propagated edges) 𝐺 corresponds to being a post-fixpoint of the original program

restricted to 𝐺 . For this, we define the notion of post-fixpoint and show that the theorems that we

proved when 𝑝♯ is a fixpoint also apply when 𝑝♯ is a post-fixpoint, and in particular the soundness

and completeness of 𝑝♯, 𝑔 when it is a (post)fixpoint of the SSA analysis (Theorem C.10). Using this

theorem and the fact that we have a post-fixpoint of the original program restricted to𝐺 , we prove

that 𝛾SSA♯ (𝑝♯, 𝑔 |𝐺 ) is transition system of the original program limited to 𝐺 , which is a subset of

the original transition system: thus our SSA abstraction does not have spurious behaviours. □

The full proof is in Appendix D page 37.

6.3 A practical algorithm for incremental computation of SSA graphs
The fixpoint computation using F ′SSA♯ above has two efficiency problems. The first is that it

recomputes the whole 𝑝♯ and 𝑔 at every step even though these do not change much between

two iterations. The solution for computing 𝑝♯ incrementally is known, and consists in performing

chaotic iteration [Bourdoncle 1993; Cousot 1977]. It is quite easy to also compute the incomplete

version of the graph incrementally (i.e., make the transfer functions of Figure 7 incremental) by

updating all the edges going to ℓ when 𝑝♯ [ℓ] is updated. However, it is more difficult to ensure that

𝑔 is complete, and in particular to ensure that 𝑔 only contains the edges of maxG(𝑝♯).
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Input: A weak topological ordering

(WTO) of locations𝑤𝑡𝑜

Output: A program abstraction (𝑝♯)

and SSA graph (𝑔)

Main algorithm is
𝑝♯ := [];
𝑔 := {};
sequence(𝑤𝑡𝑜);

Procedure sequence(𝑙𝑖𝑠𝑡) is
forall 𝑒𝑙𝑡 ∈ 𝑙𝑖𝑠𝑡 do

if 𝑒𝑙𝑡 is a single location ℓ

then
location(ℓ);

else
component(𝑒𝑙𝑡);

Procedure location(ℓ) is
𝑝♯ [ℓ] := FL→Σ♯

⊥
(𝑝♯) [ℓ];

𝑔 := 𝑔 ∪ {edge(𝑝♯, ℓ1, ℓ) | (ℓ1, ℓ) ∈ domG};
Procedure component(ℎ𝑒𝑎𝑑 :: 𝑡𝑎𝑖𝑙) is

local variables save𝑔, curhead;
𝑠𝑎𝑣𝑒𝑔 := 𝑔;

location(ℎ𝑒𝑎𝑑);

repeat
𝑐𝑢𝑟ℎ𝑒𝑎𝑑 := 𝑝♯ [ℎ𝑒𝑎𝑑];
𝑔 := 𝑠𝑎𝑣𝑒𝑔 ∪
{ edge(𝑝♯, ℓ, ℎ𝑒𝑎𝑑) | (ℓ, ℎ𝑒𝑎𝑑) ∈ domG

∧ ℓ ⪯ ℎ𝑒𝑎𝑑 };
sequence(𝑡𝑎𝑖𝑙);

location(ℎ𝑒𝑎𝑑);

until 𝑐𝑢𝑟ℎ𝑒𝑎𝑑 = 𝑝♯ [ℎ𝑒𝑎𝑑];

Fig. 9. A practical algorithm for incremental computation of an SSA abstraction.

Our solution to this problem (Figure 9) is to rely on a property of the recursive fixpoint iteration

strategy of Bourdoncle [1993], which is that when ℓ𝑐 is the currently modified location and 𝑝♯ the

current program abstraction, the subgraph {(ℓ, ℓ ′) ∈ L × L | ℓ ⪯ ℓ𝑐 ∧ ℓ ′ ⪯ ℓ𝑐 } is a fully-propagated
subgraph of 𝑝♯ (here, ⪯ represents the weak topological ordering of Bourdoncle [1993]). Our

algorithm builds on this observation and incrementally compute 𝑔 so that the edges of 𝑔 are limited

to this subgraph. In more details, the algorithm mostly implements Bourdoncle’s recursive iteration

strategy, taking as input a WTO (which is a sequence of locations or (connected) components,

where a component is a head location followed by a sequence of locations or components). The

main change compared to the normal recursive iteration strategy is that the SSA graph 𝑔 is saved

in a snapshot (𝑠𝑎𝑣𝑒𝑔) before processing a component, and this snapshot is retrieved when another

iteration on the component is needed. The feedback edges (edges from later locations going to the

head of the component) do not appear in the 𝑔 graph until the fixpoint iteration over the component

is over. The end result is that this algorithm continuously produces (e.g. before the call to every

location function) a complete SSA abstraction of the program (and moreover, terminates with a

sound and complete SSA abstraction of the program).

7 USE CASES
7.1 Single-pass optimized translations to SSA

Implementation. In the first use case, we demonstrate the feasibility of doing SSA translation using

abstract interpretation.We have implemented the algorithms described in the paper as a small plugin

for the Frama-C platform and used the LLVM intermediate representation (which is in SSA form) as

the target of our translation. In particular, we have implemented the symbolic expression analysis of

Section 4, followed by a call to the graph operator, modified to directly produce LLVM code instead

of SSA graphs. An important (but small) change compared to our formalization is that we have

replaced guards and non-determinism with terminator instructions (i.e., branches and conditional

branches). Following the formal definition of our analysis, the implementation of this plugin

does SSA translation, Global value numbering, Global code motion, but also Sparse Conditional

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 65. Publication date: January 2023.



1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

65:22 Matthieu Lemerre

Constant Propagation [Wegman and Zadeck 1991] (by rewriting constant terms when it can), all in

only 970 lines of OCaml code (measured by Sloccount), excluding a 316 lines implementation of

Okasaki’s Patricia tries [Okasaki and Gill 1998], and code implementing the iterative and recursive

iteration strategy on Bourdoncle’s [Bourdoncle 1993] WTO (183 lines). The parser and WTO

calculation is provided by Frama-C, and the LLVM translation by the standard LLVM OCaml

bindings. The goal of this experiment is to demonstrate that doing SSA translation via abstract

interpretation is not only of theoretical interest but that it can be done in practice as the translation

achieves reasonable performances. The full description of this implementation and the results of

the evaluation is provided in Appendix E, while the code for the experiment and its results can be

retrieved at https://doi.org/10.5281/zenodo.7152678. Here we reproduce only the main elements

and our conclusions.

Experimental settings. We have used this implementation to evaluate both the soundness and

performance of our algorithm. To avoid the problem of addressable variables in C that cannot be

directly translated to SSA, we have used the Csmith [Yang et al. 2011] C generator, using options to

generate only non-addressable integer variables and complex unstructured control flow, to generate

100 large C files. We used our plugin to convert the C code to LLVM code, then used LLVM (version

13) to compile it to native x86 code, that we executed.

Results and conclusions. First, all the C code without undefined behavior that we generated,

returned the same value as the one compiled using a standard compiler. This confirms that SSA
translation using abstract interpretation can be used to soundly translate programs to SSA, which is

not a surprise since we provided the proof for all of our algorithms.

Furthermore, the time spent doing so is in the order of magnitude compatible for incorporation in a
compiler: if we add incorporated our SSA translation pass inside clang, the maximum observed

slowdown compared to a native code compilation by clangwould have been ×6.57, which is slower

but acceptable (the median slowdown would have been ×4.30). This is a maximum, as such an

incorporation would lead to removing existing passes in clang; furthermore, additional engineering

(such as switching from OCaml to C) could further improve the performance. One of the reason for
this efficiency is that fixpoint iteration with the symbolic expression domain is usually obtained using
few iterations, even in large programs: in the iterative fixpoint iteration strategy of Bourdoncle

[Bourdoncle 1993], we never needed more than 6 iterations to reach the fixpoint on any strongly

connected component. The other part is explained by the use of functional maps for low-complexity

operations on abstract stores. One crucial engineering decision in our analysis performance was the
use of Okasaki maps [Okasaki and Gill 1998] to implement the abstract stores, instead of the more

common binary search trees (as used in Astrée [Blanchet et al. 2002]), as otherwise the time spent

in the ⊔ℓ operation dominates the time spent in the analysis. Okasaki maps allow more efficient

handling of the parts of the abstract store that have not changed between when the different states

that are joined with ⊔ℓ. Finally, combining SSA translation with other analyses such as constant
propagation and dead code elimination can significantly improve the time spent in the analysis: in this

case, incorporating our pass in clang would make it only 4.73 time slower (instead of 6.57 times),

at worst (and the median slowdown would have been ×3.19)
Whether, with careful engineering, implementing compilers as a single-pass combination of modular

abstract domains, can outperform the existing designs as a sequence of passes, is an open question, but
our initial results indicate that the single-pass design could be competitive in terms of speed of

compilation.
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7.2 A static analyzer for C and machine code
The main motivation for this work is to describe the working of Codex, a multi-language static

analyzer that can process both C (as a Frama-C plugin) and machine code (as a Binsec plugin)

that was used as the basis of the experiments in Nicole et al. [2021b,a, 2022]. Codex analyses an

input program by combining the symbolic expression and SSA abstract domains with control-flow,

numeric and memory abstractions. The symbolic expressions and SSA abstract domains have three

main uses:

(1) The symbolic expressions allow proving equality between values. Combined with term

rewriting rules, it can be used to prove the preservation of complex predicates; one applica-

tion is proving preservation of some OS kernel invariants in Nicole et al. [2021b].

(2) It is used to perform a sparse [Tavares et al. 2014; Wegman and Zadeck 1991] numerical

analysis of the program simultaneously with its SSA translation. This numerical analysis,

in turn, is used to improve the precision of the symbolic expressions, control-flow, and

memory abstractions. The benefit of such a sparse analysis is that it is more efficient in

terms of memory and CPU time, and that it allows propagating constraints across different

statements, which is important when analyzing machine code (that consists of a lot of small

instructions).

(3) The SSA translation allows generating SMT or Horn queries. Thanks to the combination of

SSA and memory abstractions, this logic query is automatically simplified, which is impor-

tant as SMT solvers do not handle memory very well [Farinier et al. 2018]. Thanks to the

incrementally complete construction of SSA (Section 6), the SMT queries can be performed

anytime during the analysis, and is used in particular to refine Boolean expressions such as

assertions or opaque predicates, or to enumerate control-flow targets when needed.

The full description of this analysis and combination of domains in out of the scope of this paper,

but the above description motivates the practical benefits of using the symbolic expressions and

SSA abstractions.

8 RELATEDWORK
8.1 Abstract interpretation on cyclic terms and computing the global value graph
Having terms representing expressions or predicates inside an abstract domain is a natural idea

already present in the seminal paper of Kildall [1973]. The main difficulty of using terms in a

static analysis is dealing with cycles of the term (coming from loops in the original program), and

ensuring termination. Indeed, many analyses (e.g., symbolic execution [King 1976], bounded model

checking [Clarke et al. 2004], weakest precondition and strongest-postcondition [de Bakker and

Meertens 1975; Dijkstra 1975; Leino 2005] calculus) transform the program into a single global

term or formula, but sidestep the problem of termination by analyzing only loop-free subsets of

the program (although they can be viewed as abstract interpretations [Cousot 1978, ch.3.3]).

Some static analyses [Gulwani and Necula 2004; Kildall 1973] include terms that refer to program

variables instead of symbolic variables. This generally removes the need for the terms to be cyclic.

However, cyclicity reappears when program variables are substituted with their definition; Miné

[2006] solves this problem by using a special ⊤ variable where we would use symbolic variables,

thereby losing some precision. Some static analyses [Chang and Leino 2005; Chang and Rival

2013; Gange et al. 2016; Illous et al. 2021] create fresh variables when needed, which is precise but

requires special care to ensure termination when the program has loops. Their solution is to use

renaming: in particular, inclusion to test if a post-fixpoint is reached is done modulo renaming of

the variables in the abstract elements. One issue with renaming is that it makes the definition and

implementation of an abstract domain more complex. Furthermore, these solutions can be used
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to get acyclic terms at different program points, but not to create one global cyclic term like the

global value graph.

The most common cyclic term graph used by static analyses is the global value graph. The classic

solution to get this graph is to do an SSA translation, which solves the problem of termination of

the analysis because SSA translation is done as a program translation [Cytron et al. 1991] rather

than as an abstract interpretation. Analyses using this graph then only need to manipulate SSA

variables instead of nodes in a cyclic term graph, and, for instance, the problem of global value

numbering is reduced to computing equivalence classes of equality between SSA variables [Alpern

et al. 1988; Barthe et al. 2014; Rosen et al. 1988; Rüthing et al. 1999]. The drawback of this design is

that SSA translation must be done sequentially with GVN and other analyses, instead of having

mutually beneficial combination of domains.

Some papers predating SSA [Reif and Lewis 1986; Reif and Tarjan 1982] did build the global value

graph and performed global value numbering directly on the original program. In particular, [Reif

and Lewis 1986] provided a fixpoint characterization of the global value graph, and introduced

mappings from program expressions to symbolic expressions (playing the same role as our symbolic

expression abstraction 𝑝♯). However, they dismissed the computation of the global value graph

using dataflow analysis (proposing a complex sparse algorithm instead) for fear of it being too slow,

and because their characterization did not lead to a sufficiently precise value graph; we solve these

issues using efficient abstract interpretation techniques [Blanchet et al. 2002; Bourdoncle 1993;

Cousot 1977], and by combining creation of the global value graph with global value numbering.

We propose to solve the problem of having cyclic terms in an abstract domain by introducing
recursion variables [Ariola and Klop 1996] that have a deterministic name, and have this name follow
the name of the recursion variables that already exists in the original program, i.e. the names of
the control-flow locations. We apply this method to build the global value graph using a standard
flow-sensitive analysis on the original program, where the graph is simplified by a simultaneous global
value numbering. The method does not require a prior SSA translation (instead, it is used to perform
SSA translation).

8.2 SSA translation and reconstruction
Since the invention of SSA form [Rosen et al. 1988], several algorithms have been created to compute

SSA form. The classic algorithm of Cytron et al. [1991] works in two phases, first computing where

to insert 𝜙 functions after computation of the dominance frontier, then applying a linear pass that

assigns unique names to the different definitions of each variable. Sreedhar and Gao [1995] makes

the 𝜙-function insertion pass linear by proposing a data structure called DJ-graph, that builds upon

the dominator tree. The algorithm of Aycock and Horspool [2000] performs a pessimistic insertion

of 𝜙-functions and then improves the translation using rewriting rules. The 𝜙-function insertion

phase of these algorithms is related to our symbolic expression analysis, as the introduction of

symbolic variables introduced during a ⊔ℓ operation corresponds to the insertion of a 𝜙 node at ℓ .

Some algorithms can work directly from programs in AST form [Brandis and Mössenböck 1994;

Braun et al. 2013], without requiring a prior analysis, like computation of the domination tree. In

particular, the algorithm of Braun et al. [2013] produces minimal SSA on unstructured programs,

and can perform "on the fly optimizations" (which are similar to rewriting terms in our symbolic

expression analysis) to improve the precision and efficiency of SSA generation.

SSA translation based on abstract interpretation improves on the latter algorithm by performing "on
the fly" global value numbering, sparse conditional constant propagation, or any optimization based
on semantic properties obtained by combination with an abstract domain, in addition to not requiring

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 65. Publication date: January 2023.



1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

1211

1212

1213

1214

1215

1216

1217

1218

1219

1220

1221

1222

1223

1224

1225

SSA Translation is an Abstract Interpretation 65:25

a prior analysis. It is also the first algorithm to do SSA translation incrementally while maintaining
completeness.
“Maintaining SSA is often one of the more complicated and error-prone part in [program]

optimizations” [Hack 2016]. Combing our SSA abstract domain with another domain, and viewing a

program transformation as a reduced product [Cousot and Cousot 1979] between the two domains,

is an interesting solution to this problem that can be used to create transformation passes that

automatically maintain SSA.

8.3 Syntax and semantics of SSA programs
We represent a program in SSA form as a graph whose nodes are control locations and edges contain
guards and bindings to symbolic variables, where the bindings correspond to 𝜙 functions in traditional
SSA. We have proposed a semantics where SSA states consists of valuations of the symbolic variables
that are in scope, so that SSA states and original program states are made bisimilar using the computed
symbolic expressions as a bisimulation (and homomorphism) relation.

Usually, SSA is viewed as reusing the original program syntax, and SSA transformation consists

in renaming the program variables and inserting the necessary 𝜙 functions. The SSA semantics

is based on the assignment of SSA variables, and 𝜙 functions are also seen as doing assignments

[Barthe et al. 2014; Cytron et al. 1991; Mansky and Gunter 2010; Zhao et al. 2012].

The idea of binding (instead of assigning) SSA variables to unbind those that go out of scope also

exists when SSA is viewed as a functional program [Appel 1998b; Kelsey 1995], where the scope

is represented explicitly in the syntax (rather than implicitly by domination). Schneider [2013]

showed that both interpretations (one based on assignments and the other on bindings) can be

used on functional representations of SSA. We showed that we can also have both interpretations on
a graph-based language without an explicit syntactic scope. We preferred using a graph as the syntax

for SSA rather than lambda terms, as graphs can be built incrementally using abstract domain

operations, which seems more difficult to do when the abstraction is a lambda term.

The idea of not attaching sub-terms to a specific control location was proposed by Click and

Paleczny [1995] in an SSA representation called Sea of Nodes, which is the closest to our SSA

graphs (in particular, to a variant of our graphs that uses terminator instructions instead of guards

+ nondeterminism). The Sea of Nodes can be described as a low-level description of our SSA graphs,

where their nodes would correspond to the memory blocks used to represent the graph and the

edges to the pointers. Demange et al. [2018] proposed a formal semantics for Sea of Nodes using a

mixture of big-step semantics for expressions and small-step semantics for instructions which is

similar to our semantics: the main changes are that we propose to unbind variables that go out of

scope, and we take advantage of the simpler, higher-level syntax of SSA graphs.

An important characteristic of SSA syntax and semantics, and of the SSA translation algorithm, is

simplicity, particularly when the goal is to formally verify SSA transformations [Barthe et al. 2014;

Buchwald et al. 2016; Zhao et al. 2012]. The entire syntax and semantics of our SSA abstraction fit in

Figure 5, and our SSA translation algorithm is completely and formally described in a dozen of lines

(coming from parts of Figure 4 and Figure 6), and are thus arguably very simple. Furthermore, this

description includes GVN and dead code elimination, and other optimizations can be described in a

very compact way as a reduced product with other abstract domains. It would thus be interesting

to investigate if SSA translation based on abstract interpretation can be an effective basis for formal

verification of SSA transformations.

8.4 SSA and static analysis
One of the motivations for our work is to combine the SSA abstraction with other abstractions. Such a
combination benefit from interplay between SSA and static analyses that already exist.
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One of the benefits of SSA form is that it allows more efficient sparse static analyses [Choi
et al. 1991] (see, e.g., Tavares et al. [2014] for partitioned per variable analyses, and Mirliaz and

Pichardie [2022] for analyses using relational domains). Combining our SSA domain with a sparse
analysis allows performing sparse analyses simultaneously with the SSA translation, and integrating
sparse analyses in a standard [Blanchet et al. 2002; Blazy et al. 2017; Journault et al. 2019] abstract
interpretation framework.
The need for static analyses and, in particular, memory, pointer or alias analyses to improve

the precision of SSA is well-known. This requirement is very important, for instance, when the

SSA form is used to generate logic formulas to an SMT solver [Clarke et al. 2004; Gurfinkel et al.

2015] to increase precision and decrease solving time. Static analyses are even indispensable for

programs where the control-flow is not known in advance because usual SSA translations require a

CFG (e.g., to compute dominance frontiers). In particular, this is the case when analyzing machine

code, i.e. when doing decompilation [Brumley et al. 2013] to SSA, which is a popular target for

decompilation [Van Emmerik 2007; Yadavalli and Smith 2019]. Precisely recovering control-flow in

machine code requires doing control-flow and value analysis simultaneously [Bardin et al. 2011;

Kinder et al. 2009]; and SSA is a good intermediate representation to do this value analysis. To

deal with this phase ordering problem, Van Emmerik [2007] used a simple but inefficient method

consisting in redoing the whole SSA decompilation every time an indirect jump target is discovered

in a function. Doing SSA translation as an abstract interpretation solves these phase ordering problems:
we can use the incrementally built (Section 6) SSA representation to help the memory, numeric, or
control-flow analyses that improve or are necessary to build the SSA representation.
Outside SSA, is it well-known that symbolic domains can be used to improve the precision

of abstract domains [Gange et al. 2016; Miné 2006], and our symbolic expression domain can be

used for the same purpose (e.g., to detect equalities between variables that would be missed by

numerical domains). Finally, Cousot and Cousot [2002] explains how abstract interpretation can

help design and prove correct program transformations, and discusses the possibility of doing some

transformations, like constant propagation and dead code elimination, using dataflow analysis.

9 CONCLUSION
SSA translation is not only a program transformation; it is the result of a static analysis based on

abstract interpretation. This analysis has two parts: symbolic expression analysis, which maps

program variables to symbolic expressions; and SSA graph creation, which expresses how the

symbolic variables in the symbolic expressions change according to the control flow. The symbolic

expression analysis (that also does a global value numbering) relates the SSA program graph to the

original program graph by providing a strong homomorphism, a relation that implies bisimulation.

Due to this bisimulation, the SSA-translation domain computes an abstraction of the original

program which is both sound and complete. Furthermore, we can modify the analysis so that

all intermediate abstractions are also complete. This static analysis can be done using relatively

standard dataflow frameworks, which allows combination [Cousot and Cousot 1979] with other

abstract domains. We explained, in this paper, how numerical abstract domains can strengthen

the symbolic expression analysis and SSA abstractions, notably by detecting dead transitions or

more equalities between symbolic expressions. Using a reduced product, we can build optimizing

transformations from a source program to SSA in a single pass.

We have only sketched how the SSA abstraction can strengthen numerical abstract domains,

and did not mention how the SSA abstraction can be combined with memory abstractions to do

register promotion; these studies should be the target of future publications.
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A SOUNDNESS OF THE SYMBOLIC EXPRESSION ANALYSIS
While the description of the symbolic expression analysis (performing global value numbering)

is sufficiently simple that its complete description fits in Figure 4, the soundness proof is more

complex. This soundness proof is interesting in that it shows that the interpretation of instruction is

very precise, and that approximations only comes from the join operation (for which the soundness

is more involved).

A.1 Soundness and completeness of abstract evaluation of instructions
For the analysis of instructions we prove a stronger version of the usual soundness theorem, where

the argument and result of transfer functions are related using the same valuation Γ.

Lemma A.1 (Strong soundness and completeness of E♯JK()). Let 𝜎♯ ∈ Σ♯, 𝑒 an expression.
Let Γ ↦→ 𝜎 ∈ 𝛾Σ♯ (𝜎♯), i.e. Γ and 𝜎 are such that 𝜎 = 𝛾Σ♯ (𝜎♯) [Γ]. Then:

EJ𝑒K(𝜎) = EJE♯J𝑒K(𝜎♯)K(Γ)
Proof. By structural induction on 𝑒 , using the hypothesis that ∀𝑥, 𝜎 [𝑥] = EJ𝜎♯ [𝑥]K(()Γ) for

the base variable case. □

Example A.2. Let 𝜎♯ = [𝑥 ↦→ (2+𝑥ℓ0 )], Γ = [𝑥ℓ0 ↦→ 7], and 𝜎 = [𝑥 ↦→ 9]. We have 𝜎 = 𝛾Σ♯ (𝜎♯) [Γ].
• E♯J1 + 𝑥K(𝜎♯) = subst(1 + 𝑥, 𝜎♯) = 1 + (2 + 𝑥ℓ0 ). We have EJ1 + (2 + 𝑥ℓ0 )K(Γ) = 10.

• E♯J1 + 𝑥K(𝜎) = 1 + 9 = 10.

Lemma A.3 (Strong soundness of I♯JK()). Let 𝜎♯ ∈ Σ♯, 𝑖 an instruction. Let Γ ↦→ 𝜎 ∈ 𝛾Σ♯ (𝜎♯),
i.e. Γ and 𝜎 are such that 𝜎 = 𝛾Σ♯ (𝜎♯) [Γ]. Then:

IJ𝑖K(𝜎) = I♯J𝑖K(𝜎♯) [Γ]
Proof. Both IJK() and I♯JK() define sequence of instructions as function composition, so we

only need to consider the case where 𝑖 is an assignment. We have IJ𝑥 := 𝑒K(𝜎) = 𝜎 [𝑥 ← EJ𝑒K(𝜎)]
and I♯J𝑥 := 𝑒K(𝜎♯) = 𝜎 [𝑥 ← E♯J𝑒K(𝜎♯)], so we can conclude the proof using Lemma A.1. □

Corollary A.4 (Soundness and completeness of I♯JK()). Let 𝑖 an instruction and 𝜎♯ ∈ Σ♯.

𝛾Σ♯ ◦ I♯J𝑖K(𝜎♯) = { Γ ↦→ IJ𝑖K(𝜎) | Γ ↦→ 𝜎 ∈ 𝛾Σ♯ (𝜎♯) }
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Proof. Immediate consequence of Lemma A.3. □

A.2 Soundness of ⊔ℓ

The ⊔ℓ operator is not sound when applied to any pair of elements in Σ♯
. The problem comes from

the fact that we reuse variable identifiers, which could thus create spurious relations between

terms (this problem does not happen in analyses which create fresh variables instead). Consider for

instance:

[x ↦→ 1 + yℓ6 , y ↦→ 2] ⊔ℓ6 [x ↦→ 1 + yℓ6 , y ↦→ 3] = [x ↦→ 1 + yℓ6 , y ↦→ yℓ6 ]
which contains a relation between x and y through the shared use of yℓ6 , while this relation does

not hold in the concrete. We can thus only prove a weaker soundness theorem:

Definition A.5 (Occurs). Let 𝑝♯ ∈ L→ Σ♯
⊥. Given two locations ℓ and ℓ𝐷 , we say that ℓ𝐷 occurs in

𝑝♯ [ℓ] if a variable 𝑣 exists, with loc(𝑣) = ℓ𝐷 and 𝑣 occurs in 𝑝♯ [ℓ] (i.e. 𝑣 is a subterm of 𝑝♯ [ℓ] [𝑥]
for some 𝑥 ∈ X). For instance, if 𝑝♯ = [ℓ8 ↦→ [x ↦→ 1 + xℓ3 ]], then ℓ3 occurs in 𝑝♯ [ℓ8].

Lemma A.6 (Soundness of ⊔ℓ ). Let 𝜎♯

1
and 𝜎♯

2
∈ Σ♯. If ℓ does not occur inside one of 𝜎♯

1
or 𝜎♯

2
, then

𝛾Σ♯ (𝜎♯

1
⊔ℓ𝜎♯

2
) ⊇ 𝛾Σ♯ (𝜎♯

1
) ∪ 𝛾Σ♯ (𝜎♯

2
)

Proof. Let 𝜎♯ = 𝜎
♯

1
⊔ℓ 𝜎♯

2
. Let Γ1 ∈ Γ and 𝜎1 = 𝛾Σ♯ (𝜎♯

1
) [Γ1]. We show that Γ exits, such that

𝜎1 = 𝛾Σ♯ (𝜎♯) [Γ]. For this we take Γ =

[
𝑣 ∈ V ↦→

{
𝜎1 [𝑥] if ∃𝑥 ∈ X : 𝑣 = 𝑥ℓ
Γ1 [𝑣] otherwise

]
.

• For variables𝑥 such that𝜎
♯

1
[𝑥] ≠ 𝜎

♯

2
[𝑥], i.e. such that𝜎♯ [𝑥] = 𝑥ℓ , it is clear that𝛾Σ♯ (𝜎♯) [Γ] [𝑥] =

EJ𝑥ℓK(Γ) = 𝜎1 [x].
• For variables 𝑥 such that 𝜎♯ [𝑥] = 𝜎

♯

1
[𝑥] = 𝜎

♯

2
[𝑥], we note that ℓ does not appear in any

subterm of 𝜎♯ [𝑥] by hypothesis. Thus, 𝛾Σ♯ (𝜎♯) [Γ] [𝑥] = 𝛾Σ♯ (𝜎♯

1
) [Γ1] [𝑥] (as Γ and Γ1 have

the same values for variables whose location is not ℓ). And because 𝛾Σ♯ (𝜎♯

1
) [Γ1] [𝑥] = 𝜎1 [𝑥],

this allows to conclude that 𝛾Σ♯ (𝜎♯) [Γ] [𝑥] = 𝜎1 [𝑥].
□

A.3 Soundness of FL→Σ♯
⊥

Fortunately, FL→Σ♯
⊥
will always use ⊔ℓ in the context where it is sound. This is formally established

using the following definition and theorem:

Definition A.7 (Location of a variable). Let 𝑥ℓ ∈ V. We call ℓ the location of the variable 𝑥ℓ , and
we define the function loc(·) : V→ L the function that returns the location of its argument (i.e.

loc(𝑥ℓ ) = ℓ).

Lemma A.8. Let 𝑛 ∈ N and 𝑝♯𝑛 = F (𝑛)
L→Σ♯

⊥
( []). Then, for all ℓ ∈ L, for any location ℓ ′ on any simple

(acyclic) path from ℓ0 to ℓ , ℓ does not occur in ℓ ′.

Proof. The proof relies on the property (𝑃) that if 𝑛 > 0 and 𝑝
♯
𝑛 [ℓ] ≠ ⊥, then there exists

a simple path from ℓ0 to a predecessor of ℓ such that every element ℓ ′ in that path is such that

𝑝
♯

𝑛−1 [ℓ ′] ≠ ⊥, which is easily proved by induction.

The main proof is then done by induction of the property of the Lemma on 𝑛.

• the property is obviously true for 𝑛 = 0, as F (0)
L→Σ♯

⊥
( []) = [], whose domain is empty.
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• when 𝑛 > 0, we note 𝑝
♯

𝑛−1 = F
(𝑛−1)

L→Σ♯
⊥
( []) and 𝑝♯𝑛 = FL→Σ♯

⊥
(𝑝♯

𝑛−1).
– the property is true for ℓ0 by definition (there is no other location in the path from ℓ0

to ℓ0).

– we consider ℓ ∈ L and ℓ ′ on a simple path from ℓ0 to ℓ . By definition of FL→Σ♯
⊥
, we see

that ℓ occurs in 𝑝
♯
𝑛 [ℓ ′] only if for all the predecessors ℓ ′′ of ℓ ′, ℓ occurs in 𝑝

♯

𝑛−1 [ℓ ′′].
But either 𝑝

♯
𝑛 [ℓ ′] = ⊥, and then trivially ℓ does not occur in 𝑝

♯
𝑛 [ℓ ′]. Or 𝑝♯𝑛 [ℓ ′] ≠ ⊥, and

then by (𝑃) there is a predecessor ℓ ′′ of ℓ ′ such that 𝑝
♯

𝑛−1 [ℓ ′′] ≠ ⊥, and futher ℓ ′′ is on
a simple path from ℓ0 to ℓ ′. Using the induction hypothesis, we know that ℓ does not

occur in 𝑝
♯

𝑛−1 [ℓ ′′]. This concludes that ℓ does not occur in 𝑝
♯
𝑛 [ℓ ′].

□

With this lemma, we can now proceed to prove the soundness of the analysis:

Theorem A.9 (Soundness of FL→Σ♯
⊥
).

∀𝑝♯ ∈ L→ Σ♯
⊥ : (FP(S) ◦ 𝛾L→Σ♯

⊥
) (𝑝♯) ⊆ (𝛾

L→Σ♯
⊥
◦ FL→Σ♯

⊥
) (𝑝♯))

Proof. We focus on the computation of 𝑝′♯ = FL→Σ♯
⊥
(𝑝♯) at location ℓ . Thanks to Lemma A.8,

we know that for at least one of the predecessors ℓ ′ of ℓ , the location ℓ will not occur in 𝑝♯ [ℓ ′].
This will still be the case of I♯Jinstr[ℓ ′]K(𝑝♯ [ℓ ′]), by definition. Thus, the usage of ⊔ℓwill be sound
in this case. By combination with the soundness of I♯J·K(·), we can conclude on the soundness of

FL→Σ♯
⊥
. □

Note. This analysis is sound, but it is not exact: notably, tests are not taken into account, nor is

the semantic of the binary operation (we do as if they were uninterpreted functions); finally, the

creation of simultaneous variables loose any relations that may exist between these variables. It

is obviously usual for abstract domains to lose information; but it is still interesting to note that

despite the fact that global value numbering is not exact, the SSA abstraction that builds on it will

be exact.

A.4 Soundness of the symbolic expression analysis
Our main soundness theorem for the global value numbering states that the analysis computes a

sound overapproximation of all the reachable states of the program.

Theorem A.10 (Soundness of global value numbering). Let 𝑝♯ be a fixpoint of FL→Σ♯
⊥
, i.e.

𝑝♯ = FL→Σ♯
⊥
(𝑝♯). Then 𝑝♯ is a sound overapproximation of the reachable states of the (S,↣) transition

system:

𝛾
L→Σ♯

⊥
(𝑝♯) ⊇ S∗

0

Proof. By Theorem A.9 and the Tarski fixpoint transfer theorem. □

Note. The soundness of the algorithm works independently of the iteration strategy being used; we

are thus free to use chaotic iteration methods [Cousot 1977] instead of the naive method presented

in this formalization, to compute the global value numbering.
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B PROOFS OF SCOPE AND DOMINANCE PROPERTIES
In this section, let 𝑝♯ be a fixpoint of FL→Σ♯

⊥
in a program whose graph is G. We note by freevars(𝑒)

the set of all the variables 𝑣 ∈ V that occur in 𝑒 .

Theorem 5.1 (Strictness). ∀ℓ ∈ L, 𝑥 ∈ X, 𝑣 ∈ V : 𝑣 occurs in 𝑝♯ [ℓ] [𝑥] ⇒ loc(𝑣) dominates ℓ .

Proof of Theorem 5.1. We can prove the following property:

∀ℓ𝐷 , ℓ ∈ L : ℓ𝐷 occurs in 𝑝♯ [ℓ] ⇒ ℓ = ℓ𝐷 or ∀ℓ ′ ∈ preds(ℓ) : ℓ𝐷 occurs in 𝑝♯ [ℓ ′] (2)

This is proved from the definition of FL→Σ♯
⊥
: when analyzing location ℓ , if ℓ = ℓ𝐷 , a new symbolic

variable 𝑣 with loc(𝑣) = ℓ𝐷 can be created. If ℓ ≠ ℓ𝐷 , assume there is 𝑣 with loc(𝑣) = ℓ𝐷 that occurs

in 𝑝♯ [ℓ]. Then 𝑣 must be present in all the predecessors: the ⊔ℓ operation replaces the term with

a new symbolic variable (with a location ℓ) when the abstract stores differ, so 𝑣 must occur in all

arguments to ⊔ℓ. Because I♯J·K(·) cannot introduce new variables, 𝑣 must occur in 𝑝♯ [ℓ ′] for all
the predecessors ℓ ′ or ℓ .
Now, iterating (2) implies that every path arriving at ℓ must either come from ℓ𝐷 , or from a

location with no predecessor. The only location with no predecessor is ℓ0, and ℓ𝐷 does not occur in

the abstract store at ℓ0. Hence, ℓ𝐷 dominates ℓ . □

Theorem B.1. If both ℓ1 and ℓ2 dominate ℓ , then either ℓ1 dominate ℓ2 or ℓ2 dominate ℓ1.

Proof of Theorem B.1. The proof can be found in [Appel 1998a, p.408]. □

Theorem 5.6. scopeG (𝑒) = {ℓ | scopeG (𝑒) dominates ℓ}

Proof of Theorem 5.6. We prove this property by induction on 𝑒:

• Case 𝑒 = 𝑣 : scopeG (𝑣) = {ℓ | scopeG (𝑣) dominates ℓ} (by definition)

• Case 𝑒 = 𝑧: scopeG (𝑧) = L = {ℓ | ℓ0 dominates ℓ} (because G only contains reachable

locations and execution starts at ℓ0)

• Case 𝑒 = 𝑒1 ⋄ 𝑒2: Note that our induction property can be equivalently formulated as

∀ℓ ∈ L : ℓ ∈ scopeG (𝑒) ⇔ ℓ dominated by scopeG (𝑒). And:

ℓ ∈ scopeG (𝑒1 ⋄ 𝑒2) ⇔ ℓ ∈ scopeG (𝑒1) ∧ ℓ ∈ scopeG (𝑒2) (by definition)

⇔ ℓ dominated by scopeG (𝑒1) ∧ ℓ dominated by scopeG (𝑒2) (recursion hypothesis)

⇔ ℓ dominated by min(scopeG (𝑒1), scopeG (𝑒2)) (using Theorem B.1)

⇔ ℓ dominated by scopeG (𝑒1 ⋄ 𝑒2) (by definition)

□

C SOUNDNESS AND COMPLETENESS OF THE SSA ABSTRACTION
C.1 H𝑝♯ is a strong homomorphism

We now prove that when 𝑝♯, 𝑔 is a fixpoint,H𝑝♯ is a strong homomorphism from⇝𝑔 to↣.

This result is linked to the soundness (and completeness) of the FSSA♯ transfer function, that we

prove in the case where we reached a fixpoint 𝑝♯, 𝑔:

Lemma C.1 (Soundness and completeness of FSSA♯ ). Let (𝑝♯, 𝑔) such that FSSA♯ (𝑝♯, 𝑔) =
(𝑝♯, 𝑔). Let ℓ ′ ∈ L and ℓ ∈ preds(ℓ ′). Let 𝜎♯ = 𝑝♯ [ℓ] and 𝜎 ′♯ = 𝑝♯ [ℓ ′]. Let Γ ↦→ 𝜎 ∈ 𝛾Σ♯ (𝜎♯), i.e.
𝜎 = 𝛾Σ♯ (𝜎♯) [Γ].
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Then:

{𝜎 ′ : (ℓ, 𝜎)↣ (ℓ ′, 𝜎 ′)} = {𝛾Σ♯ (𝜎 ′♯) [Γ′] : (ℓ, Γ) ⇝𝑔 (ℓ ′, Γ′)} (3)

{(ℓ ′, 𝜎 ′) : (ℓ, 𝜎)↣ (ℓ ′, 𝜎 ′)} = {H𝑝♯ (ℓ ′, Γ′) : (ℓ, Γ) ⇝𝑔 (ℓ ′, Γ′)} (4)

Proof. Equation (4) is obtained from (3) by expanding the definition ofH𝑝♯ , so we can concen-

trate on the proof of (3). The proof is simplified by the fact that both transitions⇝𝑔′♯ and↣ are

deterministic when the next location is fixed. More precisely, let 𝑒, 𝐵 be such that (ℓ, ℓ ′) ↦→ (𝑒, 𝐵) ∈ 𝑔,
then

∃𝜎 ′ : (ℓ, 𝜎)↣ (ℓ ′, 𝜎 ′) ⇒ 𝜎 ′ = IJinstr[ℓ]K(𝜎)
∃Γ′ : (ℓ, Γ) ⇝𝑔 (ℓ ′, Γ′) ⇒ Γ′ = unbind𝑔 (ℓ ′, bind(𝐵, Γ))

Thus the set {𝜎 ′ : (ℓ, 𝜎) ↣ (ℓ ′, 𝜎 ′)} is either a singleton or the empty set, and the same is true

for {𝛾Σ♯ (𝜎 ′♯) [Γ′] : (ℓ, Γ) ⇝𝑔 (ℓ ′, Γ′)}.
The condition for the former set to be non-empty is that if 𝑒 is the condition guarding the

transition from ℓ to ℓ ′ (i.e. G[ℓ, ℓ ′] = 𝑒), then EJ𝑒K(𝜎 ′) ≠ 0. Similarly, (ℓ, Γ) ⇝𝑔′♯ (ℓ ′, Γ′) if, and
only if, EJ𝑒K(Γ) ≠ 0. Using Lemma A.1 (which says that the abstract evaluation of expression

E♯JK() is exact) and the definition of “edge”, we know that both conditions are equivalent. In the

case where there is no edge from ℓ to ℓ ′ in 𝑔, by definition of edge it means that either there is no

edge from ℓ to ℓ ′ in G, or that this edge has 0 for guard, or that 𝑝♯ [ℓ] = ⊥ and there is no state that

reaches ℓ : in every case the left and right sets are empty.

It remains to show that 𝜎 ′ = 𝛾Σ♯ (𝜎 ′♯) [Γ′]. The main idea is that the binding 𝐵 produced by

the edge function binds all the variables that are introduced at ℓ ′. Combined with Lemma A.3

(saying that the abstract evaluation of instructions I♯JK() is exact), this allows to prove that

𝜎 ′ = 𝛾Σ♯ (𝜎 ′♯) [bind(𝐵, Γ)].
However, Γ′ is not just bind(𝐵, Γ), but unbind𝑔 (ℓ ′, bind(𝐵, Γ)). It remains to prove that this

unbind operation has no effect. This is achieved using Theorem 5.3 (and the fact that scopeG =

scope𝑔), that says that because 𝑝
♯
is a fixed point, only symbolic variables that are scoped in ℓ ′

will occur in 𝜎 ′♯, thus unbind has no effect on the evaluation. Thus:

𝛾Σ♯ (𝜎 ′♯) (Γ′) = 𝛾Σ♯ (𝜎 ′♯) [unbind𝑔 (ℓ ′, bind(𝐵, Γ))] = 𝛾Σ♯ (𝜎 ′♯) [bind(𝐵, Γ)] = 𝜎 ′ .

□

One consequence of this Lemma is the following theorem.

Theorem C.2 (Same successor states). Let (𝑝♯, 𝑔) such that FSSA♯ (𝑝♯, 𝑔) = (𝑝♯, 𝑔). Let 𝑠 ∈
S, 𝑠 ∈ ˆS such that 𝑠 = H𝑝♯ (𝑠). Then:

{𝑠′ ∈ S | 𝑠 ↣ 𝑠′} = {H𝑝♯ (𝑠′) | 𝑠 ⇝𝑔 𝑠
′} (5)

Proof. Obtained from Lemma C.1 (equation (4)) by union over all the successors of the location

of 𝑠 . □

Corollary C.3. H𝑝♯ is a strong homomorphism.

Proof. Equation (5) is equivalent to Equation (1). □

A consequence ofH𝑝♯ being a strong homomorphism is that it is a homomorphism, and thus

a simulation, which implies that the traces of ( ˆS,⇝𝑔) are included in the traces of the (S,↣)
transition system. Thus, we can conclude that (𝑝♯, 𝑔) represents a subset of all the traces of (S,↣)
(and is thus complete). In the next section, we also prove the soundness.

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 65. Publication date: January 2023.



1667

1668

1669

1670

1671

1672

1673

1674

1675

1676

1677

1678

1679

1680

1681

1682

1683

1684

1685

1686

1687

1688

1689

1690

1691

1692

1693

1694

1695

1696

1697

1698

1699

1700

1701

1702

1703

1704

1705

1706

1707

1708

1709

1710

1711

1712

1713

1714

1715

SSA Translation is an Abstract Interpretation 65:35

C.2 H𝑝♯ is a surjective strong homomorphism between the reachable states
Up to now we could conclude thatH𝑝♯ is a simulation from SSA to the original program, but we did

not prove that it is a simulation from the original program to SSA. And indeed it is not: there are

transitions in the original transition system that cannot be simulated in the SSA transition system.

Example C.4. Taking the transition system stemming from the program of Figure 1b, we have

for instance:

let 𝑠 =

©­­­«ℓ3,

inc ↦→ −4
time ↦→ 35

i ↦→ 10

hours ↦→ 0


ª®®®¬ and 𝑠′ =

©­­­«ℓ4,

inc ↦→ −4
time ↦→ 31

i ↦→ 11

hours ↦→ 0


ª®®®¬ . Then: 𝑠 ↣ 𝑠′.

This 𝑠 ↣ 𝑠′ transition cannot be simulated by the SSA program, because the states where inc ≠ 1

and time ≠ i cannot be represented in the SSA version (i.e. : ∀𝑠 ∈ ˆS : H𝑝♯ (𝑠) ≠ 𝑠).

However, the reason why states like 𝑠 or 𝑠′ cannot be represented by 𝑝♯ is that they are not

reachable: 𝑝♯ is a sound abstraction of the reachable states S∗
0
(Theorem A.10), but nothing requires

that 𝑝♯ represent non-reachable states.

We thus want to restrict the transition relation↣ to the reachable states:

↣ |S∗≜ {(𝑠, 𝑠′) ∈ S∗ | 𝑠 ↣ 𝑠′} (6)

However, H𝑝♯ is no longer an homomorphism from⇝𝑔 to↣ |S∗ , because unreachable SSA

transitions cannot be matched in↣ |S∗ .

Example C.5. Indeed, if we take again Figure 1 as an example:

let 𝑠 =

©­­­­­­­«
ℓ1,



incℓ0 ↦→ 11

timeℓ0 ↦→ 22

iℓ0 ↦→ 33

hoursℓ0 ↦→ 44

time_iℓ1 ↦→ −1
hoursℓ1 ↦→ 27



ª®®®®®®®¬
and 𝑠′ =

©­­­­­­­«
ℓ2,



incℓ0 ↦→ 11

timeℓ0 ↦→ 22

iℓ0 ↦→ 33

hoursℓ0 ↦→ 44

time_iℓ1 ↦→ −1
hoursℓ1 ↦→ 27



ª®®®®®®®¬
Then we have 𝑠 ⇝𝑔 𝑠

′
but we do not haveH𝑝♯ (𝑠)↣ |S∗ H𝑝♯ (𝑠′), becauseH𝑝♯ (𝑠) is not a reachable

state.

We thus also need to restrict SSA transitions to the reachable SSA states.

Definition C.6 (Reachable SSA state). Given 𝑔, we define ˆS∗ to be the reachable set of SSA states:

ˆS∗ ≜ {𝑠 ∈ ˆS : ∃𝑠0 ∈ ˆS0, 𝑠0 ⇝
∗
𝑔 𝑠}

where⇝∗
𝑔
represent the reflexive and transitive closure of⇝𝑔.

Definition C.7 (Restricted SSA transition).

⇝𝑔 |Ŝ∗≜ {(𝑠, 𝑠
′) ∈ ˆS∗ | 𝑠 ⇝𝑔 𝑠

′} (7)

We can now prove thatH𝑝♯ is a surjective strong homomorphism on these restricted relations:

Theorem C.8 (H𝑝♯ is a surjective strong homomorphism). H𝑝♯ is a strong homomorphism
from⇝𝑔 |Ŝ∗ to↣ |S∗ :

∀𝑠, 𝑠′ ∈ ˆS : 𝑠 ⇝𝑔 |Ŝ∗ 𝑠
′ ⇔H(𝑠)↣ |S∗ H(𝑠′) (8)

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 65. Publication date: January 2023.



1716

1717

1718

1719

1720

1721

1722

1723

1724

1725

1726

1727

1728

1729

1730

1731

1732

1733

1734

1735

1736

1737

1738

1739

1740

1741

1742

1743

1744

1745

1746

1747

1748

1749

1750

1751

1752

1753

1754

1755

1756

1757

1758

1759

1760

1761

1762

1763

1764

65:36 Matthieu Lemerre

H𝑝♯ is surjective on the field of↣ |S∗ :

∀𝑠, 𝑠′ ∈ S : H(𝑠)↣ |S∗ H(𝑠′) ⇒ ∃𝑠, 𝑠′ ∈ ˆS : 𝑠 = H(𝑠) ∧ 𝑠′ = H(𝑠′) (9)

Proof. We note by S𝑛
and

ˆS𝑛
respectively the original program states and SSA states reachable

after 𝑛 transitions, and we show by induction on 𝑛 that

∀𝑠, 𝑠′ ∈ ˆS𝑛
: 𝑠 ⇝𝑔 |Ŝ∗ 𝑠

′ ⇔H(𝑠)↣ |S∗ H(𝑠′)
using Theorem C.2. □

Note that it is quite clear that a surjective strong homomorphism is also a bisimulation.

C.3 Meaning, soundness and completeness of the SSA abstraction
Up to now we discussed how an SSA abstraction can be constructed using transfer functions, and

the strong relation between the SSA abstraction and the original program. What is missing is to

define the concretization for the SSA abstraction.

Definition C.9 (Concretization of the SSA abstraction). We define the concretization of the SSA♯

domain as follows:

𝛾SSA♯ : SSA♯ → P(P(S × S))

𝛾SSA♯ (𝑝♯, 𝑔) = {(H𝑝♯ (𝑠),H𝑝♯ (𝑠′)) | 𝑠 ⇝𝑔 |Ŝ∗ 𝑠
′}

(note that the definition of
ˆS∗ depends on⇝𝑔).

Using this concretization, we can say that what our SSA-transformation analysis computes a

lossless (but non-trivial) abstraction of the transition system of the original program.

Theorem C.10 (Soundness and completeness of the SSA abstraction computation).

Let (𝑝♯, 𝑔) be a fixpoint of FSSA♯ . Then: 𝛾SSA♯ (𝑝♯, 𝑔) =↣ |S∗

Proof. By definition of 𝛾SSA♯ (𝑝♯, 𝑔) and Theorem C.8. □

Following the hierarchy of semantics [Cousot 2002], we can derive from this result that our

analysis also computes weaker abstractions of the original program in a lossless way. For instance,

the result of our analysis also exactly represents the set of reachable states:

Theorem C.11 (Soundness and completeness of the SSA abstraction computation viewed

as reachable states). Let 𝛾 be defined as

𝛾 : SSA♯ → P(S)

𝛾 (𝑝♯, 𝑔) = {𝑠 ∈ S : ∃𝑠0 ∈ S0, 𝑠0R∗𝑠} where R ≜ 𝛾SSA♯ (𝑝♯, 𝑔)

Let (𝑝♯, 𝑔) be a fixpoint of FSSA♯ . Then:

𝛾 (𝑝♯, 𝑔) = S∗

Proof. Consequence of Theorem C.10 □

The same could be done for the set of program traces, or the set of pairs of input/output states

of the program. When viewed as a program transformation, this result also proved that the SSA

translation preserved the semantics of the original program.
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D PROOFS FOR INCREMENTALLY COMPLETE CONSTRUCTION OF SSA
D.1 Soundness and completeness of the analysis when a post-fixpoint is reached

Lemma D.1. The following conditions are equivalent:

𝜎
♯

1
⊑ℓ 𝜎♯

2
= 𝜎

♯

2
= (𝜎♯

1
⊔ℓ𝜎♯

2
) (10)

𝜎
♯

1
⊑ℓ 𝜎♯

2
= ∃𝜎♯

3
: 𝜎

♯

2
= 𝜎

♯

1
⊔ℓ𝜎♯

3
(11)

Proof. • (10)⇒ (11): it suffices to pick 𝜎
♯

3
= 𝜎

♯

2
.

• (11)⇒ (10):

(𝜎♯

1
⊔ℓ𝜎♯

2
) = 𝜎

♯

1
⊔ℓ (𝜎♯

1
⊔ℓ𝜎♯

3
) (by definition of 𝜎

♯

2
)

= (𝜎♯

1
⊔ℓ𝜎♯

1
) ⊔ℓ𝜎♯

3
(associativity of ⊔ℓ)

= 𝜎
♯

1
⊔ℓ𝜎♯

3
(idempotence of ⊔ℓ)

= 𝜎
♯

2
(by definition of 𝜎

♯

2
)

□

Definition D.2 (Order relation on L→ Σ♯
⊥). Let 𝑝

♯

1
, 𝑝

♯

2
∈ L→ Σ♯

⊥. We define:

𝑝
♯

1
⊑ 𝑝

♯

2
≜ ∀ℓ ∈ L : 𝑝

♯

1
[ℓ] ⊑ℓ 𝑝♯

2
[ℓ]

Definition D.3 (Post-fixpoint). 𝑝♯ ∈ L→ Σ♯
⊥ is a post-fixpoint of FL→Σ♯

⊥
if: FL→Σ♯

⊥
(𝑝♯) ⊑ 𝑝♯.

This is the classic definition of a post-fixpoint in abstract interpretation.

Now, many of the previous theorems that applied when 𝑝♯ was a fixpoint of the program can be

generalized to the case where 𝑝♯ is only a post-fixpoint (see Theorems D.4,D.5 and Lemma D.6 in

the appendix). In particular, we can generalize our soundness theorem to the post-fixpoint case:

Theorem D.4 (Theorem 5.1 in the post-fixpoint case). Let 𝑝♯ be a post-fixpoint of FL→Σ♯
⊥
.

Then
∀ℓ ∈ L,∀𝑥 ∈ X : ∀𝑣 free variable of 𝑝♯ [ℓ] [𝑥] : loc(𝑣) dominates ℓ

Proof. Equation (2) remains true, and we can iterate it again. □

Theorem D.5 (Theorem 5.3 in the post-fixpoint case). Let 𝑝♯ be a post-fixpoint of FL→Σ♯
⊥
for

a program whose graph is G. Then:

∀ℓ ∈ L : ∀𝑥 ∈ X : ℓ ∈ scopeG (𝑝♯ [ℓ] [𝑥])

Proof. Direct consequence of Theorem D.4 and definition of scope. □

Lemma D.6 (Lemma C.1 in the post-fixpoint case). Let 𝑝♯ be a post-fixpoint of FL→Σ♯
⊥
and

𝑔 = graph(𝑝♯). Let ℓ ′ ∈ L and ℓ ∈ preds(ℓ ′). Let 𝜎♯ = 𝑝♯ [ℓ] and 𝜎 ′♯ = 𝑝♯ [ℓ ′]. Let Γ ↦→ 𝜎 ∈ 𝛾Σ♯ (𝜎♯),
i.e. 𝜎 = 𝛾Σ♯ (𝜎♯) [Γ].

Then:

{𝜎 ′ : (ℓ, 𝜎)↣ (ℓ ′, 𝜎 ′)} = {𝛾Σ♯ (𝜎 ′♯) [Γ′] : (ℓ, Γ) ⇝𝑔 (ℓ ′, Γ′)} (12)

{(ℓ ′, 𝜎 ′) : (ℓ, 𝜎)↣ (ℓ ′, 𝜎 ′)} = {H𝑝♯ (ℓ ′, Γ′) : (ℓ, Γ) ⇝𝑔 (ℓ ′, Γ′)} (13)
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Proof. The proof is similar to the one of Lemma C.1. Because we are a post-fixpoint instead of

a fixpoint, there may be more "𝜙" variables created than necessary, but they are still compensated

by a corresponding binding in the graph.

Moreover, Theorem 5.3 still holds when 𝑝♯ is a post-fixpoint instead of a fixpoint (see Theo-

rem D.5). Thus, the Lemma is still true when 𝑝♯ is a post-fixpoint. □

Theorem D.7 (Soundness and completeness of the SSA abstraction computation (Theo-

rem C.10) when 𝑝♯ is a post-fixpoint). Let 𝑝♯ be a post-fixpoint of FL→Σ♯
⊥
and 𝑔 = graph(𝑝♯).

Then: 𝛾SSA♯ (𝑝♯, 𝑔) =↣ |S∗

Proof. It suffices to redo all the proofs of Theorem C.10 starting from Lemma D.6. □

D.2 Fully-propagated subgraph
In this section, we provide and prove equivalent two characterizations of a fully-propagated

subgraph 𝐺 :

• In one, 𝐺 is the set of edges (ℓ, ℓ ′) which are stable when FL→Σ♯
⊥
is applied, i.e. the edges

for which 𝑝♯ [ℓ ′] represents the successors of the states represented by 𝑝♯ [ℓ];
• In the other, 𝐺 is the part of the original program graph G for which 𝑝♯ is a post-fixpoint.

The first characterization provides a computable definition of a fully-propagated subgraph, while

the second will allow reusing the Theorems of the previous section.

First we introduce some notations. A subgraph 𝐺 ∈ P(L × L) is a set of edges. We denote by:

• L |𝐺 ≜ {ℓ | ∃ℓ ′ : (ℓ, ℓ ′) ∈ 𝐺 ∨ (ℓ ′, ℓ) ∈ 𝐺} the set of locations that appear in 𝐺 ;
• 𝑝

♯

|𝐺 ≜ {ℓ ↦→ 𝑝♯ [ℓ] | ℓ ∈ L |𝐺 } the restriction of 𝑝♯ ∈ L→ Σ♯
⊥ to the locations of 𝐺 ;

• G|𝐺 ≜ {(ℓ, ℓ ′) ↦→ 𝑒 | (ℓ, ℓ ′) ↦→ 𝑒 ∈ G ∧ (ℓ, ℓ ′) ∈ 𝐺} the restriction of the original program

graph G to the edges of the subgraph 𝐺 ;

• F |𝐺
L→Σ♯

⊥
(𝑝♯) ≜

[
ℓ ′ ∈ L ↦→

{
[𝑥 ∈ X ↦→ 𝑥ℓ0 ] if ℓ ′ = ℓ0⊔ℓ ′ {I♯Jinstr[ℓ]K(𝑝♯ [ℓ]) | ℓ ∈ preds𝐺 (ℓ ′)} if ℓ ′ ≠ ℓ0

]
where preds𝐺 (ℓ ′) ≜ {ℓ ∈ L | (ℓ, ℓ ′) ∈ 𝐺 ∧ G[ℓ, ℓ ′] ≠ 0 ∧ 𝑝♯ [ℓ] ≠ ⊥} the restriction of the

transfer function FL→Σ♯
⊥
to G|𝐺 .

Theorem D.8. Let 𝑝♯ ∈ L→ Σ♯
⊥ and 𝐺 ⊆ domG. The following conditions are equivalent:

- The edges of 𝐺 are propagated in 𝑝♯:

∀(ℓ, ℓ ′) ∈ 𝐺 : G[ℓ, ℓ ′] ≠ 0 ∧ 𝑝♯ [ℓ] ≠ ⊥ ⇒ I♯Jinstr[ℓ]K(𝑝♯ [ℓ]) ⊑ℓ ′ 𝑝♯ [ℓ ′] . (14)

- 𝑝♯|𝐺 is a post-fixpoint of F |𝐺
L→Σ♯

⊥
:

𝑝
♯

|𝐺 ⊑ F
|𝐺

L→Σ♯
⊥
(𝑝♯|𝐺 ) (15)

When either holds, we say that 𝐺 is a fully-propagated subgraph of 𝑝♯.

Proof.

• (15)⇒ (14): If (ℓ, ℓ ′) ∈ 𝐺 then, by definition ofF |𝐺
L→Σ♯

⊥
,∃𝜎♯

: 𝑝♯ [ℓ ′] = I♯Jinstr[ℓ]K(𝑝♯ [ℓ])⊔ℓ ′

𝜎♯
. This means that I♯Jinstr[ℓ]K(𝑝♯ [ℓ]) ⊑ℓ ′ 𝑝♯ [ℓ ′] per Definition 6.1.

• (14)⇒ (15): A standard property of semi-lattices is ∀𝑎, 𝑏, 𝑐 : 𝑎 ⊑ 𝑏 ∧ 𝑎 ⊑ 𝑐 ⇔ 𝑎 ⊑ (𝑏 ⊔ 𝑐).
Using the definition of F |𝐺

L→Σ♯
⊥
, this allows to conclude.

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 65. Publication date: January 2023.



1863

1864

1865

1866

1867

1868

1869

1870

1871

1872

1873

1874

1875

1876

1877

1878

1879

1880

1881

1882

1883

1884

1885

1886

1887

1888

1889

1890

1891

1892

1893

1894

1895

1896

1897

1898

1899

1900

1901

1902

1903

1904

1905

1906

1907

1908

1909

1910

1911

SSA Translation is an Abstract Interpretation 65:39

□

The following theorem provides a computable definition of a suitable fully-propagated subgraph

𝐺 :

Corollary D.9. Let 𝑝♯ ∈ L→ Σ♯
⊥. The set

maxG(𝑝♯) ≜ {(ℓ, ℓ ′) ∈ domG | G[ℓ, ℓ ′] = 0 ∨ 𝑝♯ [ℓ] = ⊥ ∨ I♯Jinstr[ℓ]K(𝑝♯ [ℓ]) ⊑ℓ ′ 𝑝♯ [ℓ ′]}
is the maximal fully-propagated subgraph of 𝑝♯.

Note that the theorems in this section are not restricted to 𝑝♯ ∈ L → Σ♯
⊥ and works for any

flow-sensitive abstraction; in particular it can be readily extended in the case where𝑝♯ is combined

with other abstract domains (e.g., to have a more precise discovery of dead locations and branches).

D.3 An incrementally complete transfer function
We can now complete the proof:

Theorem D.10 (Incremental SSA graphs are complete).

Let 𝑝♯ ∈ L→ Σ♯
⊥, 𝐺 = maxG(𝑝♯), and 𝑔 = graph(FL→Σ♯

⊥
(𝑝♯)). Then: 𝛾SSA♯ (𝑝♯, 𝑔 |𝐺 ) ⊆↣ |S∗ .

Proof. We define S |𝐺 = {(ℓ, 𝜎) ∈ S | ℓ ∈ L |𝐺 }.

𝛾SSA♯ (𝑝♯, 𝑔 |𝐺 ) = 𝛾SSA♯ (𝑝♯|𝐺 , 𝑔 |𝐺 ) (by definition of 𝛾SSA♯ )

= 𝛾SSA♯ (𝑝♯|𝐺 , graph(𝑝
♯

|𝐺 )) (by definition of the graph operator)

=↣ | (S|𝐺∩S∗ ) (by Theorem D.7 and Theorem D.8)

⊆↣ |S∗ (by definition of restriction)

□

Note that if the intermediate versions of the SSA graph produced by F ′SSA♯ are now complete,

F ′SSA♯ is not monotonic, becausemaxG is not monotone: if FL→Σ♯
⊥
(𝑝♯) always represents more

states than 𝑝♯, there may be fewer fully-propagated locations in (FL→Σ♯
⊥
(𝑝♯)) than in 𝑝♯.

E USE CASE : SINGLE-PASS OPTIMIZED TRANSLATIONS TO SSA
This section describes our experiments to use SSA translation based on abstract interpretation to

compile (a subset of) C to the LLVM IR (which is in SSA form).

Implementation. Our goal is to demonstrate the feasibility of using dataflow analysis as a basis

for SSA translation. We have implemented the algorithms described in the paper as a small plugin

for the Frama-C platform, and used the LLVM intermediate representation as the target of our

translation. In particular, we have implemented the symbolic expression analysis of Section 4,

followed by one call to the graph operator, modified to directly produce LLVM code instead of

SSA graphs. This second, linear, pass consists on traversing all the subterms in the global value

graph, determining for each the location where to place the instruction, and then inserting the

corresponding instruction in the LLVM IR.

We have experimented with several possibilities for finding where to insert instructions. The first

is to use our scope function. This corresponds to the "schedule early" strategy of Click [1995]. An

alternative is change our symbolic expressions so that scope becomes explicit; i.e. the language of

symbolic expression becomes 𝑒 ∈ E ≜ L× (𝑧 | 𝑣 | 𝑒 ⋄𝑒). It is easy to change the analysis to register

the current location in the newly created expressions. The benefit of this technique is that the SSA
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With Constant Propagation Without Constant Propagation

Clang Iterative (/Clang) Recursive (/Clang) Ĝ→LLVM Iterative (/Clang) Recursive (/Clang) Ĝ→LLVM

Min 0.06s 0.207s (×1.70) 0.205s (×1.66) 0s 0.205s (×2.36) 0.204s (×2.34) 0s

Median 0.29s 0.601s (×2.19) 0.612s (×2.19) 0.027s 0.814s (×3.30) 0.791s (×3.27) 0.284s

Average 0.359s 0.754s (×2.48) 0.759s (×2.48) 0.365s 1.230s (×3.32) 1.220s (×3.30) 1.084s

Max 1.2s 2.270s (×3.70) 2.343s (×3.73) 0.127s 4.572s (×5.57) 5.756s (×5.33) 7.947s

Table 1. Time spent in SSA translation in the generated programs (and compared to a standard compiler run).

translation is closer to original program and to what a usual SSA translation would perform; the

drawback is that the global value numbering detects fewer equalities between symbolic variables.

The time below is given for this alternative version.

A necessary change is to insert terminator instructions (branches and conditional branches) in-

stead of using guards and non-determinism. Formally, we define terminators as 𝑡𝑒𝑟𝑚 ∈ 𝑇𝑒𝑟𝑚𝑖𝑛𝑎𝑡𝑜𝑟 ≜
Exit | Jmp(ℓ) | JmpIf(𝑒, ℓ, ℓ), we replace the graph of the original program by a mapping

L → 𝑇𝑒𝑟𝑚𝑖𝑛𝑎𝑡𝑜𝑟 (using a program expression for the condition), and we replace the guards

on the SSA graphs by a mapping L→ 𝑇𝑒𝑟𝑚𝑖𝑛𝑎𝑡𝑜𝑟 (using symbolic expression for the condition).

The semantics is the standard one.

The implementation of this plugin, that does SSA translation, Global value numbering, global

code motion, and sparse conditional constant propagation, required only 970 lines of OCaml code

(measured by Sloccount), excluding a 316 lines implementation of Okasaki’s Patricia tries [Okasaki

and Gill 1998], and code implementing the iterative and recursive iteration strategy on Bourdoncle’s

[Bourdoncle 1993] WTO (183 lines). The parser and WTO calculation is provided by Frama-C, and

the LLVM translation by the standard LLVM OCaml bindings.

Evaluation. We have used this implementation to evaluate both the soundness and performance

of our algorithm. In languages like C, the variables are addressable, in which case they cannot be

directly translated to SSA (Clang, for instance, does not translate C variables to SSA variables and

delegates this process to later passes). To evaluate our algorithm on large programs containing only

non-addressable variables, we have used the Csmith [Yang et al. 2011] C generator, using options

to generate only non-addressable integer variables (but complex unstructured control flow), to

generate 100 large random programs (in particular, we increased Csmith option –max-block-size
to 10 to generate larger files). The median size of the files is 144kb, the largest is weighting 692kb.

These are very large C file, and the Frama-C parser (whose performance are usually acceptable)

took more than 5 minutes just to parse some of these files.

We used the Frama-C parser on this program, our dataflow analysis to generate an SSA graph

followed by a linear pass to translate it to the LLVM Intermediate Representation; finally we

used LLVM (version 13) to compile the result to native x86 code, that we executed. We then

compared the result to a native LLVM compilation. All tests were executed on a standard laptop

(Intel i7-8850H CPU @ 2.60GHz). The code for the experiment and its results can be retrieved at

https://doi.org/10.5281/zenodo.7152678.

Soundness. We obtained the following results: all the 100 files provided the same result as the

execution of the LLVM version. In another run we generated 100 other files without the safe-math

option of Csmith (that add guards before undefined behaviors, like overflowing shifts or division

by zero), in which case we found a difference for 18 files, all of them explainable by an actual

undefined behavior in the code (this was checked using the Frama-C/Eva [Bühler et al. 2017]

abstract interpreter).

Performance. We measured the time needed for the dataflow analysis pass (Table 1) in 4 configu-

rations : by choosing a fixpoint iteration strategy [Bourdoncle 1993] (Recursive or Iterative), or by
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enabling or disabling the combination of the SSA domain with constant propagation and dead code

elimination. We provide this time in seconds, but also as a ratio compared to the performance of a

standard compiler (using clang to compile the file). For instance, at worst the iterative strategy with

constant propagation took 2.270s, and at worst it took 3.70 times the time spent by clang to compile

the file. We can observe that the choice between different iteration strategies does not significantly

impact the performance of the analysis, contrary to the use of constant propagation and dead

code elimination. Furthermore, in a previous version of the program, we used the standard Map of

OCaml instead of Okasaki maps to implement our abstract stores (as done in Astrée [Blanchet et al.

2002]), in which case the performance was noticeably slower (e.g. the analysis could take up to one

minute).

We also measured the time for the linear compilation pass translating our SSA graphs to LLVM IR

(with and without constant propagation, as the choice of an iteration strategy does not impact the

result of the dataflow analysis). Again, the use of constant propagation and dead code elimination

allows spending less time in this phase. The time spent in this phase is generally low except in

some cases; a large part of this is due to a naive translation generating one LLVM basic block per C

instruction. The majority of the work in this phase is spent in LLVM, and it is probable that the

exported OCaml bindings do not provide the most efficient way of building the program in the

intermediate representation.

Finally, we also measured the maximum number of iterations required to attain the fixpoint

when analyzing a strongly connected component, which was 6 in the case of an iterative strategy

and 3 for the iterative strategy. This contrasts with the theoretical maximum, which corresponds to

the number of program variables (usually several thousands in our tests).

Conclusions. Doing SSA translation using a dataflow analysis is a sound and simple way to perform
SSA translation. The soundness is not a surprise since we provided the proof for all of our algorithms,

but the experimental evaluation confirms that it works in practice.

Furthermore, the time spent doing so is in the order of magnitude compatible for incorporation in a
compiler : if we add incorporated our SSA translation pass inside a compiler, the maximum observed

slowdown would have been ×6.57 (i.e. 5.57 + 1), which is slower but acceptable. This is a maximum,

as such an incorporation would lead to removing existing passes in clang; furthermore, additional

engineering (such as switching from OCaml to C) could further improve the performance. One of
the reason for this efficiency is that fixpoint iteration with the symbolic expression domain is usually
obtained using few iterations, even in large programs. The other part is explained by the use of

functional maps for low-complexity operations on abstract stores. One crucial engineering decision
in our analysis performance was the use of Okasaki maps [Okasaki and Gill 1998] to implement the
abstract stores, instead of the more common binary search trees [Blanchet et al. 2002], as otherwise

the time spent in the ⊔ℓ operation dominates the time spent in the analysis. Okasaki maps allow

more efficient handling of the parts of the abstract store that have not changed between when the

different states that are joined with ⊔ℓ. Finally, combining SSA translation with other analyses such
as constant propagation and dead code elimination can significantly improve the time spent in the
analysis: in this case, incorporating our pass in LLVM would make it only 4.73 time slower (instead

of 6.57 times), at worst.

Whether, with careful engineering, implementing compilers as a single-pass combination of modular
abstract domains, can outperform the existing designs as a sequence of passes, is an open question, but
our initial results indicate that the single-pass design could be competitive in terms of speed of

compilation.
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