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Abstract: In the framework of SiC/SiC composite development for nuclear applications, the influence
of pyrocarbon interphase texture and thickness on the mechanical behavior both on as-processed
materials and on irradiated materials is a major concern. Thus, the PyC interphase influence has
to be clearly addressed to define its optimal chemical vapor infiltration processing parameters. For
this purpose, specific 2.5D SiC/SiC composites reinforced with Hi-Nicalon S fibers and with two
kinds of PyC texture and thickness were produced. Transmission electronic microscopy allowed
PyC thickness and microstructure/texture characterizations, whereas push-out and tensile tests were
employed as experimental mechanical procedures. The original result is that PyC nature directly
influences the interfacial shear stress and failure mode of the weakest interface, regardless of the PyC
thickness within the studied range. Adhesive failure or cohesive failure are highlighted depending
on the PyC CVI deposition mechanisms. Similar post-irradiation characterizations will be required to
assess the role of irradiation on the PyC microstructure/texture evolution and mechanical behavior
of these materials.

Keywords: interphase; pyrocarbon; ceramic matrix composites; texture; SiC; fibers

1. Introduction

SiC composites are widely studied for high-temperature severe environment appli-
cations. They are being introduced in aero-engines or land-based gas turbines in hot
section components to replace superalloys to increase the performance while reducing the
weight [1–3]. SiC excellent behavior in a neutron environment at high temperatures [4,5] is
of particular interest for nuclear power plant core applications [6], where SiC/SiC could
improve the performance and safety of light water reactors (LWR) [7]. These materials are
also one of the best options for the development of generation IV high-temperature nuclear
reactor core materials [6].

For these applications, 3rd generation SiC fibers (Hi-Nicalon S, Tyranno SA3 or SA4
and Sylramic) reinforced SiC/SiC composites are considered because of their excellent
corrosion resistance. Up to now, Hi-Nicalon S (HNS) fibers seem to be more relevant for
nuclear applications [6,8], even if recent studies tend to demonstrate that neutron irradiation
leads to fiber degradation at a high dose and/or low irradiation temperature [9–11].

In these materials, the deposition of an interphase (small coating) between the fiber
and the matrix is required to ensure a specific fiber/matrix bonding. This fiber/matrix
bonding must be strong enough to guarantee load transfer from the matrix to the fibers but
not too strong to deflect matrix cracks at the interface (through interfacial debonding) [12].
Currently, for nuclear applications, thin pyrocarbon (PyC) deposits are used as an inter-
phase material due to their chemical compatibility with SiC up to high temperatures and
their ability to promote interfacial debonding [13,14].
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The pyrocarbon interphase microstructure processed by chemical vapor infiltration
(CVI) can vary from isotropic to graphitic. Most of these low-temperature CVI pyrocarbons
consist of rough laminar (RL) anisotropic pyrocarbon [15]. Many pyrocarbon microstruc-
tures with different textural organizations can be produced by changing the CVI parameters.
This textural organization is commonly used for PyC classification [15,16]. The influence
of the nature of a PyC interphase (thickness and/or texture) on the mechanical behaviors
of C/SiC was already studied [17–19], but these studies were only dedicated to carbon
fiber reinforcement. Although the influence of pyrocarbon interphase thickness is well
known in SiC/SiC composites [20–25], its textural organization influence has only been
studied recently on unidirectional model composites (minicomposites) [26]. Moreover, the
irradiation behavior of a carbon phase depends on its microstructure/texture [27], but the
consequence on fiber/matrix bonding in SiC/SiC composites is still unknown and needs to
be addressed.

In the present work, the influence of both pyrocarbon interphase thickness and texture
on mechanical behavior was investigated on HNS reinforced 2.5D SiC/SiC composites. Spe-
cific small SiC/SiC specimens were processed for further post-irradiation characterizations.
Two pyrocarbon thicknesses and textures were investigated using push-out and mechanical
tensile tests to determine the fiber/matrix bonding strength. Pyrocarbon thickness and
texture characterizations were assessed by transmission electron microscopy (TEM). Finally,
all mechanical characterizations are correlated to PyC microstructure/texture.

2. Materials and Methods
2.1. SiC/SiC Specimen Processing

Hi-Nicalon S (NGS Advanced Fibers Co, Toyama, Japan) fibers were used as reinforce-
ment. The fiber’s properties, provided by the supplier, are summarized in Table 1. Previous
studies were dedicated to specific characterizations of this fiber [28–30] and concluded that
the extreme fiber surface is composed of a thin carbon layer.

Table 1. Fiber’s main characteristics provided by supplier.

Characteristic HNS Fiber

Lot number/Type 418206
Young Modulus E (GPa) 381

Strength (GPa) 2.7
Density (g/cm3) 3.0
Diameter (µm) 13

Sizing content (%) 0.5
Tex (g/km) 202

The final goal was the production of SiC/SiC specimens compatible with an experi-
mental sodium fast reactor irradiation (BOR-60 in Dimitrovgrad, Russia). To be irradiated,
samples need to be small enough to be enclosed in an 80 mm length and 30 mm diameter
capsule. In this aim, 2.5D thin woven architecture was produced. This texture improves
through-thickness strength, conductivity and delamination resistance in comparison with
2D architecture [31]. The fibrous textile produced is composed of 3 warp and 4 weft layers
with 10 yarn/cm density in both directions. PyC interphase and SiC matrix depositions
were processed by CVI at a temperature below 1100 ◦C with propane (C3H8) and methyl-
trichlorosilane (MTS) + H2 as PyC and SiC precursors, respectively. Two PyC thicknesses
and textures samples were produced to evaluate their influence. PyC thicknesses (30 nm
and 150 nm) were processed to respect nuclear applications recommendations of SiC/SiC
composites (ePyC ≤ 150 nm) [32–34]. As previous studies did not highlight a large differ-
ence in mechanical behavior within this thickness range, only two different thicknesses
were processed. Highly anisotropic (HA) and lowly anisotropic (LA) PyC textures were
targeted, as referenced in [26]. After complete CVI SiC matrix densification, plates were cut
into small specimens (length = 60 mm and width = 8 mm) for mechanical characterizations.
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Typical SiC/SiC specimens are presented in Figure 1a; details of specimen orientations for
tensile mechanical tests are presented Figure 1b.
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Figure 1. SiC/SiC composites specimens as processed: (a) global picture and (b) specimen orienta-
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As sample roughness is important in comparison with specimen thickness, porosity
and section measurements were assessed by image analysis of several optical microscopy
sections (Figure 2) rather than by dimensional measurements of samples thickness and
width. The resulting characteristics of the manufactured SiC/SiC composites are presented
in Table 2 for PyC thicknesses (no effect on PyC texture).
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Table 2. SiC/SiC specimen characteristics. () standard deviation.

Samples Vf (%) Vm (%) Vi (%) Vp (%) Section (mm2) Density (g/cm3)

HNS/PyC30nm/SiC 48.5 36.6 0.5 14.4
7.77 (0.28) 2.85 (0.09)HNS/PyC150nm/SiC (GPa) 47.3 35.7 2.6 14.4

2.2. Thermal Induced Residual Stresses

Thermal residual stresses are generated consecutively to the CVI process final cooling.
Detailed thermal-induced residual stresses calculation in each phase (i.e., fiber, interphase
and matrix) is detailed elsewhere [35]. Even if the model is based on a single fiber and
concentric cylinders of interphase and matrix, good correlations for minicomposites [19]
and 2D tubular composites [25,36] have already been reported. The thermomechanical
properties as a function of temperature were fitted with Equation (1) and the constants
used for the calculations are presented in Table 3.

Y = AT3 + BT2 + CT + D (1)
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Table 3. Coefficients used in the analytical model for Young’s modulus, Poisson’s ratio and coefficient
of thermal expansion (l for longitudinal direction and t for transverse direction).

Properties HNS Fiber CVI SiC Matrix PyCLA PyCHA

El (MPa)

A = −8.88 × 10−5 A = −9.85 × 10−5

D = 55 × 103 D = 115 × 103B = 1.23 × 10−1 B = 1.36 × 10−1

C = −6.41 × 101 C = −7.11 × 101

D = 3.76 × 105 D = 4.18 × 105

Et (MPa) =El =El D = 30 × 103 D = 30 × 103

ν12 = ν13 0.2 0.2 0.3 0.2

αl (◦C−1)
B = −2.25 × 10−12 B = −4.51 × 10−12 B = −1.22 × 10−12 B = −3.25 × 10−12

C = 4.75 × 10−9 C = 9.36 × 10−9 C = 3.97 × 10−9 C = 5.71 × 10−9

D = 2.91 × 10−6 D = 1.30 × 10−6 D = 1.58 × 10−6 D = 0.765 × 10−6

αt (◦C−1) =αl =αl
C = 2 × 10−9 C = 2 × 10−9

D = 5 × 10−6 D = 10 × 10−6

A, B, C and D are constants, T the temperature (◦C) and Y the thermomechanical property.
The calculated residual thermal stresses of all SiC/SiC samples are presented in

Figure 3. For all the composites, the level of residual thermal stresses in the fiber and matrix
are similar and sufficiently low to ensure that fibers and matrix are undamaged after CVI
processing (neither matrix cracks nor fiber failure). No effect of PyC thickness and texture is
observed on fiber and matrix residual thermal stresses. The interphase is under tension in
radial and circumferential directions and under compression in the longitudinal direction
for all SiC/SiC samples. Interphase stresses in longitudinal and circumferential directions
are quite high for the HA interphase.
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2.3. Characterization of PyC Texture

Due to the low thickness of processed interphases, PyC texture characterization is
assessed by transmission electron microscopy (TEM, JEOL, Tokyo, Japan). A JEOL 2011
microscope equipped with a LaB6 gun, operating at 200 kV with a 0.144 nm resolution
lattice fringe mode, was used. Sample cross-sections were cut and polished down to
100 µm thickness before final thinning by “ion slicer” apparatus (JEOL). Samples were
then deposited on a standard TEM copper grid. The (002) Lattice Fringe (002LF) high-
resolution mode was used to obtain the PyC structure and texture. As these pyrocarbon
interphases are very thin, it is not possible to employ Raman microspectroscopy (RMS)
and/or optical microscopy in the cross-polarization configuration characterizations to use
the PyC classification (ReL, RL and SL) used in [15]. That is why only the orientation
angle (OA) [15,26,37] was used to distinguish the PyC nature. The higher the OA, the more
isotropic the PyC texture is. For OA in the 20–40◦ range, PyC is highly anisotropic (HA); in
the 60–70◦ range, PyC is lowly anisotropic (LA). Fast Fourier transform (FFT) of 002 lattice
fringe was applied on several areas of 30 × 30 nm to determine OA; therefore, this area
includes sufficient basic structural units (BSU) for representative OA measurements [26].

2.4. Mechanical Tests
2.4.1. Push-Out Tests

A nano-indentation tester (Nanotest 550, Micro Materials, Wrexham, United Kingdom)
was used for single-fiber push-out tests with a maximal load of 500 mN. The same procedure
as the one in [26] was employed. The analysis of the load-displacement push-out test curves
allows the measurement of the decohesion normal stress (σd) and the interfacial shear stress
(τ). σd is the stress needed to break the F/M bond and to initiate the fiber/matrix exfoliation
and τ is the stress above which the F/M bonding is completely lost (followed by a free
sliding of fiber). σd and τ measurements by push-out tests are the only way to obtain a
quantitative evaluation of F/M bonding strength in composites.

To ensure reliable measurements, about 20 fibers were pushed out for each sample.
Post mortem SEM observations were conducted to see if the flat punch indenter was cen-
tered on the fiber during the push-out test. Otherwise, results were not taken into account.

2.4.2. Tensile Mechanical Tests

Uniaxial tensile tests were performed on an Instron 2404 device (10 kN load cell,
Instron, Norwood, United States) using the procedure described in the ISO 20,323 stan-
dard [38] on a minimum of 3 samples for each type of material. Samples are glued on
end collars on the mechanical testing device with 3M scotch-WeldTM 9323 B/A epoxide
structural glue. The crosshead displacement rate was 0.05 mm/min. The strain was mea-
sured with a 25 mm gauge length Instron 2620-603 extensometer (±1 mm course) calibrated
with a high-resolution numeric calibrator (0.1 µm). Uniaxial tensile tests were performed
along the warp direction as described in § 2.1 and Figure 1. An acoustic emission system
fixed on the upper-end collar was used for matrix multicracking detection. The measured
signal accounts for events over 50 dB (10 dB over background noise) and is presented as a
cumulated signal corresponding to events.

To gain information on damage evolution (matrix multicracking) within the composite
during tensile mechanical loading, up to 6 unloading–reloading sequences were conducted.
Details about this testing procedure are available in [36]. E0 is the initial Young’s modulus
(before matrix cracking) and is measured by the slope of the initial linear part of the stress–
strain curve. Unloading–reloading cycles lead to the determination of reduced modulus
(E/E0), area of the cycles (∆W) and anelastic residual strains after unloading (εr) [39,40].
The longitudinal elastic modulus (E) is determined by measuring the slope of the line
passing through the summit of cycle (σmax, emax) and the median point of the cycle for
a σmax/2 stress [36,41]. Reduced modulus decreases as a function of applied stress due
to matrix multicracking occurring with raising stress. At high stress, if complete matrix
multicracking occurs, the reduced modulus reaches an asymptotic behavior related to the
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fiber fraction in the mechanical solicitation direction and Young’s modulus as expressed
in Equation (2). Ef and Vf are the tow Young’s modulus and the fiber volume fraction in
composite, respectively. X is the volume fraction of fiber oriented in the tensile mechanical
load direction (i.e., warp direction). In this study, X = 0.429 for the specific 2.5D woven
architecture described in § 2.1.

lim
ε→εmax

E
E0

= X
EfVf
E0

(2)

3. Results
3.1. Pyrocarbon Texture Characterization

The pyrocarbon microstructures were observed by HRTEM analysis of the (002) lattice
fringes (Figure 4) on 150 nm interphase thickness samples. The OA values measured
are presented in Table 4. Results confirmed that there is a strong difference in textural
organization between the two kinds of processed pyrocarbon. As expected, LA (OA = 61◦)
and HA (OA = 44◦) textures are confirmed. Even if only OA is not sufficient to thoroughly
classify pyrocarbon [15], the detailed analysis of the HRTEM (002) lattice fringes micrograph
of the two pyrocarbon tends to demonstrate that PyCLA is probably a smooth laminar (SL)
pyrocarbon and PyCHA a rough laminar (RL) pyrocarbon [15]. As RMS and/or polarized
optical microscopy analysis of such thin pyrocarbon is not possible to confirm this standard
classification of processed pyrocarbon, the LA and HA denomination is retained here.
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(b) PyCHA.

Table 4. OA of processed pyrocarbon. () standard deviation.

Samples PyCLA PyCHA

OA 61 (5) 44 (4)

3.2. Push-Out Tests

At least 20 push-out tests were performed on each type of material to assess the
effect of pyrocarbon thickness and texture on the fiber/matrix bonding in HNS/PyC/SiC
composites. Figure 5 shows typical push-out test curves for each PyC interphase specimen.
The consecutive mean values of σd and τ for all materials are reported in Table 5. σd is
three times higher for PyCHA than for PyCLA for a given thickness and decreases when
the PyC thickness increases. τ follows the same trends but differences are less pronounced.
These results highlight the influence of PyC texture and PyC thickness on F/M bonding
in HNS/PyC/SiC composites. PyC thickness reduces the F/M bonding, as previously
demonstrated [25,42,43], but to a greater extent for PyCLA interphase than for PyCHA
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interphase. Finally, the original result is that PyCLA leads to lower F/M bonding strength
compared to PyCHA for a similar thickness.
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Table 5. Results of push-out tests on HNS reinforced composites. () standard deviation.

Samples HNS/PyCHA30nm/SiC HNS/PyCHA150nm/SiC HNS/PyCLA30nm/SiC HNS/PyCLA150nm/SiC

σd (MPa) 1276 (295) 989 (185) 470 (130) 270 (80)
τ (MPa) 63 (16) 55 (8) 50 (14) 7 (2)

3.3. Tensile Tests
3.3.1. Tensile Mechanical Behavior

Typical stress–strain curves with cumulated AE signals are presented in Figure 6
for each type of SiC/SiC specimen and summarized in Figure 7 for easier comparison.
Mechanical properties are given in Table 6. Mechanical behaviors of all specimens are
similar and correspond to intermediate/high interfacial shear stress (ISS) mechanical
behavior [44,45]. Composites made of PyCLA have lower moduli and higher failure strain
than PyCHA composites. No influence of interphase thickness is highlighted. For the same
PyC interphase texture (LA or HA), modulus and failure characteristics are similar for 50
and 150 nm PyC thicknesses.

The debonding lengths (fiber pull-out) observed on SEM fracture surface micrographs
(Figure 8) tend to confirm push-out results. Debonding lengths seem shorter for PyCHA
composites than for PyCLA-based, which could confirm the higher F/M bonding strength
for PyCHA interphase. Moreover, the influence of PyC interphase thickness is not clearly
visible on PyCHA. This effect seems more visible for PyCLA, with longer debonding
lengths for the thickest PyC. At this scale (above the tow scale) and for processed materials,
differences between samples are small and only qualitative analysis of fracture surfaces
is possible.
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Figure 6. Typical tensile stress–strain curves.
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Figure 7. Influence of PyC texture and thickness on the tensile stress–strain behavior.



Coatings 2022, 12, 573 9 of 15

Table 6. Mechanical characteristics mean values of all SiC/SiC specimen types. () standard deviation.

Samples HNS/PyCHA30nm/SiC HNS/PyCHA150nm/SiC HNS/PyCLA30nm/SiC HNS/PyCLA150nm/SiC

E (GPa) 365 (14) 355 (6) 291 (3) 302 (21)
σr (MPa) 319 (6) 297 (7) 337 (3) 325 (7)
εr (%) 0.497 (0.01) 0.465 (0.051) 0.582 (0.018) 0.641 (0.016)
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3.3.2. Unloading–Reloading Cycles Analysis

Typical stress–strain curves (with unloading–reloading sequences) are presented in
Figure 9 for each type of SiC/SiC specimen. The evolution of reduced modulus (E/E0),
area of cycles (∆W) and residual strain (εr) as a function of the maximum stress applied
before unloading sequences is presented in Figure 10 for all composites.

The evolution of reduced modulus (Figure 10a) is similar for all materials, with a
rapid decrease above 50 MPa consecutive to the beginning of the matrix multicracking
phenomenon. The saturation value of matrix cracking (Equation (2)) is reached in the
200–250 MPa range, before the ultimate failure, as observed in previous studies on HNS-
based composites [25,36]. This tends to demonstrate that ISS is not strong, but intermediate
for these materials. No significant influence of interphase texture and/or thickness is
observed on reduced modulus. The analyses of the area of cycles (Figure 10b) and residual
strains (Figure 10c) evolution led to the same conclusions; therefore, PyC texture and/or
thickness (within the studied range) have no significant influence on the composite damage
resistance (matrix cracking and/or opening of existing cracks).
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Figure 9. Typical tensile stress–strain behaviors with unloading–reloading sequences with
evolution of cumulated AE signal for (a) HNS/PyCHA30nm/SiC, (b) HNS/PyCHA150nm/SiC,
(c) HNS/PyCLA30nm/SiC and (d) HNS/PyCLA150nm/SiC.
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Figure 10. Evolution of (a) reduced modulus (E/E0), (b) the area of cycles (∆W) and (c) the residual
strain (εr) as a function of the maximum applied stress before unloading for all composites.

4. Discussion

Tensile mechanical behaviors do not clearly put into evidence any effect of PyC texture
and thickness. For each PyC texture, PyC thickness (in the 30–150 nm range) has no signifi-
cant influence on the tensile mechanical behavior, unlike previously observed [20,25,42]. It
is possible that the PyC thickness range explored in this study is not sufficient. PyC texture
only influences the failure strain, which is higher for a more isotropic PyC texture (PyCLA).
Fracture surface analysis (Figure 8) after tensile tests is more interesting to highlight the
qualitative effect of PyC texture and thickness. Fiber pull-out is higher for PyCLA than for
PyCHA. Moreover, for each kind of texture, thicker PyC interphase leads to longer fiber
pull-out. As longer fiber pull-out is related to weaker ISS, it can be deduced that F/M
bonding strength is higher for PyCHA and that thicker PyC reduces the ISS.

If mechanical tensile tests and consecutive fracture surfaces only allow assessing the
qualitative effect of PyC texture or thickness, push-out tests allow quantitative evaluation of
F/M bonding strength by the determination of debonding shear stress (σd) and interfacial
shear stress (τ). It is clear that PyCHA induces higher F/M bonding than PyCLA in HNS-
reinforced composites, σd being three times higher for PyCHA (Table 5). The influence
of PyC thickness is also highlighted for both types of PyC. PyC tends to decrease F/M
bonding, as already observed in previous studies [29,30]. It is demonstrated in this study
that the influence of PyC thickness is more pronounced for PyCLA. This confirms qualitative
observations based on fracture surfaces analysis. To understand the rupture mode of F/M
bonding in all materials, high magnification SEM micrographs of typical F/M debonding
zone for all specimens after the tensile test are presented in Figure 11.

On all specimens, PyC always remains bonded to the SiC matrix, revealing that the
PyC/Matrix (PyC/M) interface is the strongest one, where debonding is never observed.
The original result is that PyCLA and PyCHA lead to different failure modes. For PyCLA,
interfacial failure occurs between the PyC interphase and the fiber (Figure 11c,d), leading
to an adhesive failure as observed in other studies on HNS-reinforced composites [23,46].
The surface of HNS fiber is known to be composed of amorphous carbon resulting from the
decomposition of the polymer sizing that is employed to improve weaving and handling
capability. Indeed, the amorphous carbon layer/PyC interface is believed to be the weakest
region of HNS-reinforced CVI composites, as observed in this case for PyCLA; however,
PyCHA leads to a cohesive failure, with part of the PyC interphase remaining on both the
matrix and fiber surfaces after fracture (Figure 11a,b), whatever the PyC thickness. This
clearly demonstrates that the Fiber/PyCHA (F/PyC) interface is stronger than F/PyCLA one
in HNS-reinforced composites. This is the consequence of the stronger adhesion of PyCHA
on the fiber surface amorphous carbon. Moreover, PyCHA has the weakest bonds between
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its basal planes (more graphite-like structure) than PyCLA; therefore, crack deflection
between basal planes is more likely to occur in PyCHA. The main difference between PyCHA
and PyCLA are CVI processing parameters that pilot the gas phase composition during
deposition. As explained in previous studies for RL and SL PyC [16,47], the mechanism of
deposition is quite different between PyCHA (i.e., RL PyC) and PyCLA (i.e., SL PyC). On
the basis of the contact angle determined in [47], PyCHA leads to an almost 0◦ contact angle
with the substrate. For this type of PyC, a total wetting is believed to occur, leading to
a pyrocarbon adhesion energy on the substrate at least equal to its cohesive energy. The
contact angle for PyCLA was wider; as a consequence, adhesion energy on the substrate is
lower than the cohesive energy within the pyrocarbon. In this previous study, the substrate
was pyrographite (HOPG), which is a pure carbon material; similar results can be hinted
for the adhesion of PyC on the amorphous carbon on the HNS fiber surface in this study.
This analysis tends to confirm experimental results observed by push-out tests and fracture
analysis after tensile mechanical tests of processed materials. F/PyC interface bonding is
stronger for PyCHA (cohesive failure) than for PyCLA (adhesive failure). This is mainly the
consequence of the different deposition mechanisms for both PyCs.

Coatings 2022, 12, x FOR PEER REVIEW 13 of 16 
 

 

F/PyCLA one in HNS-reinforced composites. This is the consequence of the stronger adhe-
sion of PyCHA on the fiber surface amorphous carbon. Moreover, PyCHA has the weakest 
bonds between its basal planes (more graphite-like structure) than PyCLA; therefore, crack 
deflection between basal planes is more likely to occur in PyCHA. The main difference be-
tween PyCHA and PyCLA are CVI processing parameters that pilot the gas phase composi-
tion during deposition. As explained in previous studies for RL and SL PyC [16,47], the 
mechanism of deposition is quite different between PyCHA (i.e., RL PyC) and PyCLA (i.e., 
SL PyC). On the basis of the contact angle determined in [47], PyCHA leads to an almost 0° 
contact angle with the substrate. For this type of PyC, a total wetting is believed to occur, 
leading to a pyrocarbon adhesion energy on the substrate at least equal to its cohesive 
energy. The contact angle for PyCLA was wider; as a consequence, adhesion energy on the 
substrate is lower than the cohesive energy within the pyrocarbon. In this previous study, 
the substrate was pyrographite (HOPG), which is a pure carbon material; similar results 
can be hinted for the adhesion of PyC on the amorphous carbon on the HNS fiber surface 
in this study. This analysis tends to confirm experimental results observed by push-out 
tests and fracture analysis after tensile mechanical tests of processed materials. F/PyC in-
terface bonding is stronger for PyCHA (cohesive failure) than for PyCLA (adhesive failure). 
This is mainly the consequence of the different deposition mechanisms for both PyCs. 

  
(a) (b) 

  
(c) (d) 

Figure 11. High magnification SEM micrographs of typical F/M debonding zone after failure for 
each type of composites specimen: (a) HNS/PyCHA30nm/SiC, (b) HNS/PyCHA150nm/SiC, (c) 
HNS/PyCLA30nm/SiC and (d) HNS/PyCLA150nm/SiC. 

5. Conclusions 
The influence of PyC interphase thickness (in the 50–150 nm range) and PyC nature in 

SiC/SiC composites was studied in detail by tensile mechanical tests and push-out tests. The 
influence of PyC thickness and PyC nature was minor on tensile behaviors and properties. 
Only the tensile strain was slightly higher for PyCLA. Fracture surfaces analysis after tensile 
tests allows a qualitative evaluation of the F/M bonding in composites and brings us to the 

Figure 11. High magnification SEM micrographs of typical F/M debonding zone after failure
for each type of composites specimen: (a) HNS/PyCHA30nm/SiC, (b) HNS/PyCHA150nm/SiC,
(c) HNS/PyCLA30nm/SiC and (d) HNS/PyCLA150nm/SiC.

5. Conclusions

The influence of PyC interphase thickness (in the 50–150 nm range) and PyC nature
in SiC/SiC composites was studied in detail by tensile mechanical tests and push-out
tests. The influence of PyC thickness and PyC nature was minor on tensile behaviors and
properties. Only the tensile strain was slightly higher for PyCLA. Fracture surfaces analysis
after tensile tests allows a qualitative evaluation of the F/M bonding in composites and
brings us to the same conclusion made after the push tests (quantitative measurements of
F/M bonding strength). Thicker PyC reduces the F/M bonding strength. This trend is more
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pronounced for PyCLA than for PyCHA. In all materials, the weakest interface of the PyC
interphase domain is the F/PyC interface. PyCHA leads to a cohesive failure with high ISS,
whereas PyCLA leads to an adhesive failure with lower ISS. This is the consequence of the
CVI deposition mechanisms between these two kinds of pyrocarbon, leading to different
adhesion energy.

It has clearly been highlighted that the PyC microstructure/texture is the best pro-
cessing parameter to control the nature of F/M bonding in SiC/SiC composites reinforced
with HNS fibers. This is especially true when a thin PyC interphase is required, such as in
nuclear applications, where PyC thickness cannot be significantly modified.

These new results are interesting for the nuclear application of HNS reinforced SiC/SiC
composites, for which ISS is known to decrease following irradiation [32,33,48]. The use of
PyCHA as an interphase in these composites could be a way to reduce the degradation of
F/M bonding following neutron irradiation. The next step will be the characterizations
of these composites after a high dose of neutron irradiation to clearly identify the role of
PyC interphase nature and thickness on their post-irradiation mechanical behavior. As
post-irradiation experiments are quite difficult (experiments need to be conducted in glove
boxes or in hot cells), SEM analysis after tensile mechanical tests could be the easiest way
to understand the qualitative effect of irradiation on F/M bonding.
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