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Abstract—In this paper, we study a meta-learning based neural
network (NN) model to enhance the energy-efficiency related to
power amplification in wireless communication systems. Specifi-
cally, we introduce a low-complexity adaptive solution to perform
digital predistortion (DPD) for power amplifiers (PAs) using
neural networks. Thus, we design a dedicated NN architecture
to derive predistortion functions using few neurons. Moreover,
we develop a meta-learning training approach that allows better
generalization and faster adaptation, over time-varying PAs,
compared to classical DPD architectures. Thereby, we propose
a new approach to realize an adaptive digital predisorter based
on meta-learning using few samples for online calibration. A
dedicated architecture allows to achieve low-complexity while
meta-learning permits adapting to most parameters change in the
system. Through the simulation results, we have shown that the
developed meta-learning based NN DPD can offer a meta-trained
DPD function, i.e., trained offline, that can provide satisfying
performance for different PA models. Contrary to classical DPD
architectures, the performance of our meta-trained DPD can be
improved through only few gradient steps and over few samples
during online calibration, achieving excellent performance with
moderate complexity.

Index Terms—Communication systems, Physical layer, Energy-
efficiency, Power amplifier, Digital pre-distortion, Machine learn-
ing, Neural networks, Meta Learning.

I. INTRODUCTION

In actual communication systems, high-power amplifiers
(PAs) are primordial in the transmitter side so that the signal
reaches its destination. Nevertheless, the PA is the most power-
hungry component at the RF transmitter, about 80% of the
total power consumed [1]. Thus, its power efficiency has
to be significantly improved in order to improve the global
energy-efficiency of radio frequency (RF) transmitters and
reducing the carbon footprint. However, a RF PA exhibits
nonlinear distortions when working close to its saturation
level, where its power efficiency is high [2]. Indeed the PA
presents amplitude-to-amplitude (AM/AM) and amplitude-to-
phase (AM/PM) distortions, generating severe in-band and
out-of-band (OOB) distortions on the wireless link affecting
the performance at the receiver. Note that PAs present higher
power efficiency when operating with lower back-off, i.e.,
closer to the saturation region. Hence, it is necessary to find
a compromise between linearity and power efficiency.

Digital predistorsion (DPD) has been widely studied in
literature [2] and has been shown to be the most promising PA
linearization technique. It consists in adding a module before
the PA such that the resulting system DPD and PA is linear.

However, estimating the DPD module, i.e., estimating the
inverse characteristic of the PA is very challenging especially
for time-varying PA. Besides, there has been a growing interest
in the use of machine learning techniques for physical layer
design of wireless systems [3] [4]. Indeed, neural networks
(NNs) are suited to solve non linear problems. Hence, it is
interesting to consider NNs for DPD. DPD based on NN has
been investigated in many works such as [5] and [6]. Latter
works present classic neural network architectures that do not
take the complexity aspect into account. In [5], adaptive DPD
is investigated but may require lot of data to calibrate the
model efficiently. In [7], authors propose a solution based on
NNs to avoid indirect learning algorithm. Although the good
performance provided by these solutions, their complexity is
still challenging when considering a time-varying PA. Indeed,
the updating of the DPD function is performed on a per-
PA model, and relearning is needed when the PA behavioral
changes. Furthermore, the updating process requires sufficient
amount of data and training time, which is not adequate with
real-time communication systems.

In order to mitigate the inefficiency in terms of data and
training time requirements, this paper introduces a meta-
learning based NN DPD model which can provide satisfying
performance whatever the PA characteristic. More importantly,
the online calibration of the NN DPD can be efficiently carried
out with reduced training data and computational complexity.

The main contributions of this work are twofold. First,
we propose a custom architecture specifically dedicated to
perform DPD in the polar domain, i.e. phase and amplitude
domain. This custom design allows to achieve low-complexity.
Second, we adopt meta-learning to provide an adaptive be-
haviour to our NN DPD relying on specific algorithm to
improve NN generalization and fast calibration. We realize
different tests of our solution on communication system inte-
grating orthogonal frequency division multiplexing (OFDM),
quadrature amplitude modulation (QAM) and a PA model
derived from 3GPP specification [8].

The remainder of this paper is structured as follows.
Sec. II-A presents the communication system model. Then, we
present our NN DPD in Sec. II-B including NN architecture,
training and inference stages. While Sec. III focuses on the
chosen meta learning algorithm and its application, Sec. IV
presents the simulation results and discussions. Finally, a
conclusion is drawn in Sec. V with some future perspectives.



II. SYSTEM MODEL

A. OFDM signal and PA impairments

We consider a communication system integrating a QAM
modulation, an OFDM transmitter, a DPD based on NN
techniques and a PA . The communication system is pictured
on Fig. 1.
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Fig. 1. Sytem Model

The PA model is characterized by an amplitude distortion
function denoted fρ and a phase shift function denoted fΦ.
The output characteristics are given by:

|y| = fρ(|x|) (1)

arg(y) = fΦ(|x|) + arg(x) (2)

where x and y are the input and output signals respectively.
Assuming a PA derived from a 3GPP Rapp model for com-
munication above 6GHz [8], the two functions are defined as
follows:

fρ(u) =
Gu

(
1 + | GuVsat

|2p
) 1

2p

(3)

fΦ(u) =
Auq(

1 +
(
u
B

)q) (4)

where G the gain in linear region, p the “knee” factor and Vsat
the saturation voltage level. A, B and q are fitting parameters.
Thereafter, we consider the following input back-off (IBO)
definition :

IBO =
P1dB,in

Pavg,in
, (5)

where P1dB,in corresponds to the input power at the 1dB
compression point and Pavg,in the average input power.

Besides, we consider our model to be noise free.

B. Conventional Neural Network DPD (CNNDPD)

In this section, we present our solution to perform the NN
DPD function. It is based on the indirect learning architecture
(ILA), which has been shown to provide better performance
compared to the direct learning one. It is worth to mention
that the studied scheme is different compared to the ones
presented in the literature [5][7]. Indeed, instead of proposing
a “blackbox” architecture, i.e. some fully connected hidden
layers, we decide to design our neural network to specifically
tackle amplitude and phase impairments separately through a
polar decomposition of the signal. According to [9], tackling
AM/AM and AM/PM distortions gives better results which
motivates this choice. It results in a specific architecture.

The CNNDPD is composed of two neural networks. Each
neural network represents a function correcting respectively

the amplitude distortion (AM/AM) and the phase distortion
(AM/PM).

The architecture of both neural networks is presented in
Fig. 2. It must be emphasized that these neural networks
respectively use amplitude and phase information of the signal.
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Fig. 2. Architecture of the CNNDPD

1) Neural Network for AM/AM DPD: In this paragraph,
we present the architecture of the neural network allowing to
inverse the PA AM/AM characteristic represented on Fig. 2a.
First, it can be noticed that this architecture is fully customized
in order to resolve the specific issue of inverting the PA
AM/AM characteristic. Based on the system model presented
in Sec. II, the NN presented here takes the output amplitude of
the PA and predicts the input amplitude. This NN is optimized
to find the function f̂ -1

ρ such as,

(fρ ◦ f̂ -1
ρ )(|x|) = G|x|, (6)

f̂ -1
ρ (u) = g0(u) + g1(u),

g0(u) = γ0(u) + (1− γ0(u))u,

γ0(u) =
(
1 + e−α(u−ωρ)

)−1

,

g1(u) =

Nρn∑

j=1

ωρj [ReLu(Wρu+ bρ)]j ,

where α, ωρ, ω
ρ
j ∈ R, Wρ ∈ R1×Nρn and bρ ∈ R1×Nρn

are optimized during the learning phase. Nρ
n the number of

neurons. The function g0 allows to model the invert AM/AM
characteristic and the function g1 allows to refine the DPD



function estimated by g0. ReLu function is defined by f(xi) =
max(0, xi), xi = [x]i.

2) Neural Network for AM/PM DPD: We present here the
NN architecture used to correct phase shift due to the PA.
The NN takes the input amplitude and predict the opposite
of the phase shift. The architecture is different from the NN
dedicated to invert the AM/AM characteristic because here we
need to find an opposite which is likely simpler. Hence, fewer
operations are required resulting in lower complexity. This NN
is optimized to find the function f−Φ such as,

fΦ(|x|) + f−Φ(|x|) = 0, (7)
f−Φ(u) = γ1(u)g2(u),

γ1(u) =
(
1 + e−β(u−ωΦ)

)−1

,

g2(u) =

NΦ
n∑

j=1

ωΦ
j ReLu [(WΦu+ bΦ)]j ,

where β, ωΦ, ω
Φ
j ∈ R, WΦ ∈ R1×NΦ

n and bΦ ∈ R1×NΦ
n

are optimized during the training phase. NΦ
n the number of

neurons. In order to acquire the phase shift fΦ(|x|), we realize
a simple conjugate operation,

z = x∗y, (8)

z = |x|.|y| ei(arg(y)−arg(x)),

arg(z) = fΦ(|x|),
3) Training: The first approach to train our solution is

by using Indirect Learning Algorithm (ILA). It consists in
deriving a postdisorter and placing it before the PA to perform
DPD. Learning is performed by optimizing a mean squared
error (MSE) loss function using an Adam [10] optimizer.
This training approach is known as “conventional” because we
realize a simple gradient descent to update the NN parameters.

III. META LEARNING

In this section, we present the use of meta learning to enable
adaptive DPD.

A. Limitations of conventional approach

In this paragraph, we present the limitations of the approach
presented above. The goal of our work is to conceive an adap-
tive DPD solution with low-complexity. We also seek small
data usage in order to minimize global latency of the system
due to online calibration. Thereafter, we consider an adaptive
scenario where the parameter p of the PA model Eq. (3) is
varying. Fig. 3 presents the EVM performance considering that
p is varying and an IBOdB = 6dB. The x axis corresponds to
a range of DPD trained for p = 0.7 + 0.1k, k ∈ [0, 8] and the
y axis corresponds to the value of p during performance test
with p = 0.7+0.01k, k ∈ [0, 80]. Parameters of this simulation
can be found in Table I.

We can observe that the NN achieves its optimal on the
diagonal which correspond to a trained p for the same infered
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Fig. 3. EVM performance in [dB] with 0.7 ≤ p ≤ 1.5

p. Moreover, we can underline the fact that the performance
is severely degraded when a trained value of p is infered on
another value. Hence, the model is not able to adapt to a
model variation. However, it could be envisaged to retrain the
model online but it would consume a lot of symbols for online
training phase. Thus, in the following section, we investigate
meta learning as a solution to improve the robustness of our
NN DPD to misadpatations.

B. Meta learning at glance

Meta learning can be seen as a “learn to learn” method
meaning that we improve a global learning algorithm using
multiple trainings [11]. On the contrary, “conventional” learn-
ing improves predictions using a single training on batches
of data. Concretely, conventional learning is said to be task
specific meaning it will learn exclusively for one configu-
ration. This can be problematic if we have a system with
multiples configurations because adaptation will be slow and
data consuming. On the other hand, meta learning works by
learning on multiples configurations, called tasks, such that it
can quickly train on a configuration corresponding to the task.
The objective is to quickly train or adapt a model from few
data.

In wireless communication, systems configuration often
need to adapt due environment change or limitations. There-
fore, meta learning usage can help reducing data cost and
training complexity. The use of meta learning in wireless
communications is relatively new and few works are related to
its usage. In [12], authors claim that meta learning can reduce
training overhead and complexity by minimizing pilot symbols
usage. Related works [13] and [14] introduce meta learning
usage for end-to-end learning and few pilots demodulation.
These works show that meta learning significantly reduce data
usage and training time. However, to best author’s knowledge,
there is no investigation on the use of meta learning for
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adaptive DPD. Hence, in this section, we investigate meta
learning to perform DPD with few data.

C. Model-Agnostic Meta Learning (MAML)

In this paragraph, we present the MAML algorithm [15]
which is a meta learning algorithm enabling generalization
and fast adaptation of neural networks.

The goal of this algorithm is to find the best weights to
initialize the neural network for later inference on a dataset.
Given that objective, this algorithm could be seen as an
optimized initializer. In “conventional” learning, we often
randomly initialize neural network weights which can slow
the convergence and lead to poor generalization. MAML
algorithm can be divided in two major steps, finding the best
weights to initialize our NN model and converging to adapted
weights.

1) Learning weights initialization: This step represents the
core of the MAML algorithm. Indeed, the goal of MAML
is to quickly train a NN model for a specific configuration.
This objective is mainly achieved by finding the weights θ to
initialize our NN model. This stage is called meta training.

The weights θ are infered using data from multiple config-
urations/tasks Ti, belonging to the same distribution p(Ti). A
task Ti is characterized by two datasets a training dataset Dtri
and a test dataset Dtei . More concretely, a task depends on the
variation of one or multiples parameters. As a toy example, we
want to derive the function y = A sinx+ ϕ where A and ϕ
are respectively the amplitude and the phase. Using MAML,
we would learn on multiples tasks parametrized by A and
ϕ. Each task consists in retrieving y from x with different
amplitude and phase.

MAML algorithm is represented on Fig. 4. The first step
consists in sampling a batch of tasks Ti from p(Ti). Each
task is composed of datasets Dtri and Dtei . Then, we derive
optimal weights φi foreach task Ti using gradient descent. If
we consider one gradient step, φi is given by,

φi = θ − α∇θL(θ,Dtri ), (9)

where α is the inner learning rate. This step is called meta-
update or inner loop and can be seen as a “conventional”
learning on each task Ti.

Next, from the optimal weights φi, MAML infers the
weights θ solving the following optimization problem:

min
θ

∑

i

L(φi,Dtei ). (10)

This problem is solved by performing a gradient descent
leading to,

θ = θ − β∇θ
∑

i

L(φi,Dtei ), (11)

with β the outer leaning rate. This phase is called the meta-
optimization or the outer loop update.

2) Learning adapted weights: Once general weights θ are
infered, an adaptation stage must be done to find optimal
weights φ. This step is straightforward because it represents
a “conventional” learning using previously infered θ weights
as initialization for our NN instead of random initialization.
Thus, we get φ using gradient descent,

φk = φk−1 −∇φk−1L(φk−1,Dtr), (12)

with k = 1, . . . , N the number of gradient steps, φ0 = θ and
Dtr the samples to update the model to optimal solution.

To fasten this stage, one may consider using an Adam
optimizer [10] to find the optimal weights.

3) Improvements to MAML algorithm: First, MAML can
be improved to fasten and ensure convergence using loss
optimizers instead of regular Stochastic Gradient Descent
(SGD) as presented in Eq. (9) and Eq. (11). Some optimizers
such as Adam [10] or Rectified Adam [16] greatly improve
the convergence by adapting the learning rate of the algorithm.

Then, some core optimizations about the MAML algorithm
could be made to improve its convergence. In [17], authors
have investigated some improvements that can be done in
order to enhance generalization and convergence. Specifically,
instead of optimizing the outer loss after doing all the inner
steps, it can be envisaged to optimize the outer loss after every
inner step. Doing so allows to improve gradient stability of
MAML according to the authors. Other improvements made
in this paper are not that much relevant for our case because
we use small architectures and benefits would be lesser.



D. MAML based Adaptive DPD

Regarding the meta learning techniques and state-of-the-art,
MAML can help to perform an adaptive DPD using less data.
To comply with the MAML algorithm, tasks must be chosen
carefully. Thus, we propose an adaptive DPD to the variation
of parameter p in Eq. (3) to illustrate the benefits of using meta
learning. Thereafter, we consider a task Ti being characterized
by a value of the parameter p denoted pi. Thus, a task consist
in deriving |xi| from |yi| – refer to Sec. II – leading to derive
optimal DPD for parameter pi.

IV. NUMERICAL SIMULATIONS

In this section, we present numerical results to underline the
benefits of meta learning approach compared to “conventional”
learning. Thus, we first detail the “conventional” learning
performance and limitations in order to promote meta learning
algorithm.

We begin considering a varying PA model version of
the characteristics presented in Sec. II. To demonstrate the
benefits of meta learning algorithm for DPD, we compare
“conventional” learning and meta learning for adaptation to
the parameter p. Thereafter, we consider that p ∈ [0.7, 1.5].
This choice allows to cover a range of PA with few and lots
of non linearities to bring diversity to the simulations. For
both “conventional” learning and meta learning algorithms,
we consider having working on the system model presented
in Sec. II with a 64-QAM, a FFT size of 1024 for OFDM
modulation.

A. Conventional learning

In this paragraph, we present the performance of “conven-
tional” learning on static and varying PA model based on
Eq. (3) and Eq. (4). For simulation purpose, we consider
that parameters of the PA model are fixed according to [8],
i.e. p = 1.1, Vsat = 1.9V , G = 16, A = −345, B = 0.17
and q = 4. The PA characteristics, AM/AM and AM/PM
distorsions are presented on Fig. 5.

Fig. 6 presents the Error Vector Magnitude (EVM) in
function of the Input Back-Off (IBO) using a PA which
presents AM/AM and AM/PM distorsions. The “Limit” curve
corresponds to a PA linear until its saturation characterized
by min(G|x|, Vsat). The performance of our solution is al-
most optimal using only 10 neurons which justify the low-
complexity aspect. It must be emphasized that such a solution
requires a large amount of data for a single state of our PA,
about 105 OFDM symbols which represents a cumbersome
database. The parameters of the CNNDPD are given in Table I.

Sec. III-A presents the limitations of CNNDPD regarding
an adaptive scenario where p is varying. The main issue
encountered is that the model is not suited to a PA model
variation. One may consider using transfer learning and online
retraining but this solution is not viable for high date rate
wireless communications because we need to much gradient
steps to obtain well performance.

0 0.5 1 1.5 2
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

|x|

f ρ
(|x
|)

0 0.5 1 1.5 2
−0.3

−0.25

−0.2

−0.15

−0.1

−0.05

0

|x|

f Φ
(|x
|)

Fig. 5. AM/AM and AM/PM characteristics of Rapp PA [8]

TABLE I
IMPLEMENTATION PARAMETERS OF CNNDPD

Parameters Values

Nρ
n 8

Nφ
n 4

Batch size 128

Total data 105

Epochs 50

Optimizer Adam
Learning rate 0.001
Loss function Mean Squared Error
Activation function ReLu

B. Meta Learning: From training to numerical results

We give here some detailed practical implementation as-
pects regarding training and inference of our solution to
perform efficient DPD. First, meta learning parameters are
summarized in Table II. Next, about the training phase, it
must be underlined that the range of tasks must be chosen
carefully. Indeed, increasing the parameter p will lead to a
more linear model of the PA. Hence, having a range of to
many linear PAs will decrease the MAML performance for
correcting non linearities. Thus, we choose to train our model
with p ∈ [0.7, 1.5]. This range ensures to have sufficient non
linearities to perform DPD. Moreover, the number of tasks
shall also be discussed. In our case, we are trying to minimize
the required amount of data to train and infer the algorithm.
We have noticed that a total number of 17 tasks is sufficient
to have optimal convergence. Increasing this number will not
offer a significant gain in terms of performance and will also
increase training time.

Besides, building the database is a crucial step to ensure
convergence and performance of the solution. Concerning
MAML usage, we must build two datasets, Dtri and Dtei with
the same amount of data – refer to Sec. III. Both datasets are
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TABLE II
META LEARNING PARAMETERS

Parameters Values

Tasks number 17

Inner steps 3

Total data 51000

Epochs 250

Optimizer Rectified Adam
α 10−3

β 5.10−4

Loss function Mean Squared Error
Activation function ReLu

composed of PA output and input OFDM symbols amplitudes.
We then have Dtri = (|ytr|, |xtr|) and Dtei = (|yte|, |xte|)
with xtr, ytr ∈ R1×Btr and xte, yte ∈ R1×Bte . Btr and Bte
denote the datasets sizes. We consider having for our training
Btr = Bte = B. Choosing the value of B is important for
well generalization of the model. However, choosing a high
number of data would significantly impact convergence due
to the gradient iteration over multiple tasks. Therefore, we
consider having a training batch with B = 1000k, k ∈ [1, 10].
Empirically, we found that using 2000 < B < 5000 gives
the best convergence considering that we use multiple inner
gradients steps k, i.e. the number of inner loop updates in
MAML. Thereby, for each inner step k, we perform a gradient
descent over 1000 OFDM symbols for our batch B. Thus,
using B = 3000, we would have 3 inner steps. Using different
symbols for each inner step allow to bring more diversity and
better convergence. For each task, choosing B < 1000 OFDM
symbols may cause an issue because the statistical distribution
of the data will not fully cover the PA model leading to non
optimal DPD.

Finally, inference stage is also important. We initialize our
CNNDPD with the learned weights in MAML phase. For any
variation of the PA model, an online training will be performed
with small gradient updates to improve system latency. In our
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Fig. 7. EVM performance in [dB] with 0.7 ≤ p ≤ 1.5

case, a single batch of 1000 OFDM symbols is used perform
to perform online learning for inference.

Fig. 7 presents the performance of MAML based DPD over
a range of PA with p = 0.7+0.01k, k ∈ [0, 80] in function of
gradient steps. First, we can observe that without retraining,
i.e. gradient steps equals 0, MAML achieve an average of
−25dB which is fair compared to conventional learning where
we can reach only −10dB in some cases.

Increasing the gradient steps will notably improve the
performance. Using 13 gradients steps, we achieve an average
of −35dB EVM which is a descent performance considering
the wide range of PAs. It shall be reminded that we only used
17 tasks for training. However, here inference is conducted
over 80 PA models. It shows that MAML can adapt to unseen
tasks but still belonging to the same training task distribution.

C. Discussion

The conducted simulations allow us to state over the benefits
of meta learning use for adaptive DPD issue. Considering fixed
PA parameters, the “conventional” learning will achieve near
optimal performance, around −60dB EVM for an IBOdB =
6dB. However, if we consider adapting our DPD to another PA
model, meta learning outperforms the conventional learning
in terms of data usage and gradients steps. Indeed, with only
13 gradients steps we can have up to 20dB gain compared
to “conventional” learning on the whole range of PA, except
when the DPD is infered for the same trained p value.

Thus, it can be said that MAML brings advantages such as
generalization, few data usage and fast convergence to propose
an adaptive DPD. However, we still have a performance gap
due to the generalized meta model. An expert model will
always be better for a specific task but meta learning is better
for multiple tasks problems.

V. CONCLUSION

In this paper, we propose a new approach to perform both
low-complexity and adaptive DPD based on neural networks



to cancel non-linear effects caused by PAs in a wireless
transmission chain. To achieve these goals, we first designed
two custom neural networks that are specially dedicated to
correct respectively AM/AM and AM/PM distortions of PAs.
This particular design allows to achieve low-complexity, about
12 neurons for both NNs. The benefit of this architecture is
also to enable fully parallelized operations which drastically
reduce computational time compared to classic architecture
with many hidden layers. In addition, to answer the adaptive
concern of the DPD, we propose to use a meta learning
approach for training and inferring our low-complexity neural
networks. Meta learning and specifically MAML allow to
find the best parameters initialization for the NNs. Based on
learning over multiple tasks, we are able to find weights close
to the optimal achievable DPD. Next, an online retraining with
few samples and few training steps permits achieving fair
performance compared to conventional learning. Numerical
results show that meta learning gives descent performance
even for cases unseen during training stage. This implies that
our solution is able to adapt easily to a variation of the PA.

Thus, we truly believe that our proposed solution brings the
key to provide low-complexity, adaptive and efficient DPD for
PAs. Further investigation is on going to test our approach on a
more realistic system model including a real power amplifier,
analog-to-digital and digital-to-analog converters. We intend
to correct effects of all these components both in terms of
performance and spectral efficiency.
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