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STABILITY ESTIMATES FOR SOLVING STOKES PROBLEM

WITH NONCONFORMING FINITE ELEMENTS

ERELL JAMELOT

Université Paris-Saclay, CEA, Service de Thermo-hydraulique et de Mécanique
des Fluides, 91191 Gif-sur-Yvette, France

Abstract. We propose to analyse the discretization of the Stokes problem
with nonconforming finite elements in light of the T-coercivity. First we ex-

hibit a family of operators to prove T-coercivity and we show that the stability

constant is equal to the classical one up to a constant which depends on the
Babuška-Aziz constant. Then we explicit the stability constants with respect

to the shape regularity parameter for order 1 in 2 or 3 dimension, and order 2
in 2 dimension. In this last case, we improve the result of the original Fortin-

Soulie paper. Second, we illustrate the importance of using a divergence-free

velocity reconstruction on some numerical experiments.
Keywords. Stokes problem, T-coercitivity, Fortin-Soulie finite elements, Fortin

operator
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1. Introduction

The Stokes problem describes the steady state of incompressible Newtonian
flows. It follows from the Navier–Stokes equations [1]. With regard to numerical
analysis, the study of Stokes problem helps to build an appropriate approximation
of the Navier–Stokes equations. We consider here a discretization with noncon-
forming finite elements [2, 3]. We propose to state the discrete inf-sup condition
in light of the T-coercivity (cf. [4] for Helmholtz-like problems, see [5], [6] and [7]
for the neutron diffusion equation), which allows to estimate the discrete error con-
stant. In Section 2.1, we recall the T-coercivity theory [4], which is known to be an
equivalent reformulation of the Banach–Nečas–Babuška Theorem and we apply it
to the continuous Stokes problem. We give details on the triangulation in Section
2.4, and we apply the T-coercivity to the discretization of Stokes problem with
nonconforming mixed finite elements in Section 2.5. For the Stokes problem, in the
discrete case, this amounts to finding a Fortin operator. In Section 3, we precise the
proof of the well-posedness in the case of order 1 and 2 nonconforming mixed finite
elements. In Section 4.2, we illustrate the importance of using a divergence-free
velocity on some numerical experiments.
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Date: March 27, 2024.
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2 STABILITY ESTIMATES NCFEM

2. Exact and discrete T-coercivity for Stokes problem

2.1. T-coercivity and application to Stokes problem. We recall here the T-
coercivity theory as written in [4]. Consider first the variational problem, where V
and W are two Hilbert spaces and f ∈ V ′:

(2.1) Find u ∈ V such that ∀v ∈W , a(u, v) = ⟨f, v⟩V .
Classically, we know that Problem (2.1) is well-posed if a(·, ·) satisfies the stabil-
ity and the solvability conditions of the so-called Banach–Nečas–Babuška (BNB)
Theorem (see e.g. [8, Thm. 25.9]). For some models, one can also prove the well-
posedness using the T-coercivity theory (cf. [4] for Helmholtz-like problems, see
[5], [6] and [7] for the neutron diffusion equation).

Definition 1. Let V and W be two Hilbert spaces and a(·, ·) be a continuous and
bilinear form over V ×W . It is T -coercive if

(2.2) ∃T ∈ L(V,W ), bijective, ∃αT > 0, ∀v ∈ V , |a(v, Tv)| ≥ αT ∥v∥2V .

It is proved in [4, 9] that the T-coercivity condition is equivalent to the stability
and solvability conditions of the BNB Theorem. Whereas the BNB theorem relies
on an abstract inf–sup condition, T-coercivity uses explicit inf–sup operators, both
at the continuous and discrete levels. Notice that if the pair (T, αT ) satisfies (2.2),
then for all λ > 0, the pair (Tλ, αTλ

) := (λT, λαT ) also satisfies (2.2). Thus, there
exist an infinity of pairs (T, αT ) and (Tλ, αTλ

)λ>0 satisfying (2.2).

Theorem 1. (well-posedness) Let a(·, ·) be a continuous and bilinear form. Suppose
that the form a(·, ·) is T -coercive. Then Problem (2.1) is well-posed.

Let Ω be a connected bounded domain of Rd, d = 2, 3, with a polygonal (d = 2)
or Lipschitz polyhedral (d = 3) boundary ∂Ω. We consider Stokes problem:

(2.3) Find (u, p) such that

{
−ν∆u+ grad p = f ,

divu = 0.

with Dirichlet boundary conditions for the velocity u and a normalization condition
for the pressure p:

u = 0 on ∂Ω,

∫
Ω

p = 0.

The vector field u represents the velocity of the fluid and the scalar field p represents
its pressure divided by the fluid density which is supposed to be constant. The first
equation of (2.3) corresponds to the momentum balance equation and the second
one corresponds to the conservation of the mass. The constant parameter ν > 0 is
the kinematic viscosity of the fluid. The vector field f ∈ H−1(Ω) represents a body
forces divided by the fluid density.

Before stating the variational formulation of Problem (2.3), we provide some
definition and reminders. Let us set L2(Ω) = (L2(Ω))d, H1

0(Ω) = (H1
0 (Ω))

d,
H−1(Ω) = (H−1(Ω))d its dual space and L2

zmv(Ω) = {q ∈ L2(Ω) |
∫
Ω
q = 0}.

We recall that H(div; Ω) = {v ∈ L2(Ω) | divv ∈ L2(Ω)}. Let hΩ be the diameter
of Ω. We recall Poincaré-Steklov inequality:

(2.4) ∃CPS > 0 | ∀v ∈ H1
0 (Ω), ∥v∥L2(Ω) ≤ CPS hΩ ∥grad v∥L2(Ω).

Thanks to this result, in H1
0 (Ω), the semi-norm is equivalent to the natural norm,

so that the scalar product reads (v, w)H1
0 (Ω) = (grad v,gradw)L2(Ω) and the norm
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is ∥v∥H1
0 (Ω) = ∥grad v∥L2(Ω). Let v, w ∈ H1

0(Ω). We denote by (vi)
d
i=1 (resp.

(wi)
d
i=1) the components of v (resp. w), and we set Gradv = (∂jvi)

d
i,j=1 ∈ L2(Ω),

where L2(Ω) = [L2(Ω)]d×d. We have:

(Gradv,Gradw)L2(Ω) = (v,w)H1
0(Ω) =

d∑
i=1

(vi, wi)H1
0 (Ω)

and:

∥v∥H1
0(Ω) =

 d∑
j=1

∥vj∥2H1
0 (Ω)

 1
2

= ∥Gradv∥L2(Ω).

Let us set V =
{
v ∈ H1

0(Ω) | divv = 0
}
. The vector space V is a closed subset of

H1
0(Ω). We denote by V⊥ the orthogonal of V in H1

0(Ω).
We recall that [1, cor. I.2.4]:

Proposition 1. The operator div : H1
0(Ω) → L2(Ω) is an isomorphism of V⊥

onto L2
zmv(Ω). We call Cdiv the constant such that:

(2.5) ∀p ∈ L2
zmv(Ω), ∃!v ∈ V⊥ | divv = p and ∥v∥H1

0(Ω) ≤ Cdiv∥p∥L2(Ω).

The constant Cdiv depends only on the domain Ω.
Recall that we have: ∥v∥2

H1
0(Ω)

= ∥ curl v∥2L2(Ω) + ∥ divv∥2L2(Ω) ≥ ∥p∥2L2(Ω). Hence

Cdiv ≥ 1. Actually, the constant Cdiv is such that Cdiv = 1/β(Ω) where β(Ω),
known as the Babuška-Aziz constant, is the inf-sup condition1:

(2.6) β(Ω) = inf
q∈L2

zmv(Ω)\{0}
sup

v∈H1
0(Ω)\{0}

(q,divv)L2(Ω)

∥q∥L2(Ω) ∥v∥H1
0(Ω)

.

Generally, the value of β(Ω) is not known explicitly. In [10], Bernardi et al es-
tablished results on the discrete approximation of β(Ω) using conforming finite
elements. Recently, Gallistl proposed in [11] a numerical scheme with adaptive
meshes for computing approximations to β(Ω). In the case of d = 2, Costabel and
Dauge [12] established the following bound:

Theorem 2. Let Ω ⊂ R2 be a domain contained in a ball of radius R, star-shaped
with respect to a concentric ball of radius ρ. Then

(2.7) β(Ω) ≥ ρ√
2R

(
1 +

√
1− ρ2

R2

)− 1
2

≥ ρ

2R
.

Let us detail the bound for some remarkable domains. If Ω is a ball, β(Ω) ≥ 1
2

and if Ω is a square, β(Ω) ≥ 1
2
√
2
. Suppose now that Ω is stretched in some direction

by a factor k, then β(Ω) ≥ 1
2 k . Finally, if Ω is L-shaped (resp. cross-shaped) such

that L = k l, where L is the largest length and l is the smallest length of an edge,
then β(Ω) ≥ 1

2
√
2 k

(resp. β(Ω) ≥ 1
4 k ).

The variational formulation of Problem (2.3) reads:
Find (u, p) ∈ H1

0(Ω)× L2
zmv(Ω) such that

(2.8)

{
ν(u,v)H1

0(Ω) − (p, divv)L2(Ω) = ⟨f ,v⟩H1
0(Ω) ∀v ∈ H1

0(Ω) ;

(q,divu)L2(Ω) = 0 ∀q ∈ L2
zmv(Ω).

1or Ladyzhenskaya–Babuška–Brezzi condition
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Classically, one proves that Problem (2.8) is well-posed using Poincaré-Steklov in-
equality (2.4) and Prop. 1. Check for instance the proof of [1, Thm. I.5.1].

Let us set X = H1
0(Ω)×L2

zmv(Ω) which is a Hilbert space which we endow with
the following norm:

(2.9) ∥(v, q)∥X =
(
∥v∥2H1

0(Ω) + ν−2 ∥q∥2L2(Ω)

) 1
2

.

We consider now the following bilinear symmetric and continuous form:

(2.10)


aS : X × X → R

(u′, p′)× (v, q) 7→ ν(u′,v)H1
0(Ω)

−(p′,divv)L2(Ω) − (q,divu′)L2(Ω)

.

We can write Problem (2.3) in an equivalent way as follows:

(2.11) Find (u, p) ∈ X such that aS ((u, p), (v, q)) = ⟨f ,v⟩H1
0(Ω) ∀(v, q) ∈ X .

Let us prove that Problem (2.11) is well-posed using the T-coercivity theory.

Proposition 2. The bilinear form aS(·, ·) is T -coercive:

(2.12)
∃T ∈ L(X ), bijective , ∃αT > 0, ∀(u′, p′) ∈ X ,

aS ( (u′, p′), T ( (u′, p′) ) ) ≥ αT ∥(u′, p′)∥2X .

Proof. We follow here the proof given in [13, 14, 15]. Let us consider (u′, p′) ∈ X
and let us build (v⋆, q⋆) = T (u′, p′) ∈ X satisfying (2.2) (with V = X ). We need
three main steps.

1. According to Prop. 1, it exists ṽp′ ∈ H1
0(Ω) such that: div ṽp′ = p′ in Ω

and ∥ṽp′∥H1
0(Ω) ≤ Cdiv ∥p′∥L2(Ω). Let us set vp′ = ν−1ṽp′ so that divvp′ =

ν−1 p′ and

(2.13) ∥vp′∥H1
0(Ω) ≤ ν−1 Cdiv ∥p′∥L2(Ω).

Let us set (v⋆, q⋆) := (γ u′ − vp′ ,−γ p′), with γ > 0. We obtain:

(2.14) aS ( (u′, p′), (v⋆, q⋆) ) = ν γ ∥u′∥2H1
0(Ω) + ν−1 ∥p′∥2L2(Ω) − ν (u′,vp′)H1

0(Ω).

2. In order to bound the last term of (2.14), we use Young inequality and then
inequality (2.13), so that for all η > 0:

(2.15) (u′,vp′)H1
0(Ω) ≤

η

2
∥u′∥2H1

0(Ω) +
η−1

2

(
Cdiv

ν

)2

∥p′∥2L2(Ω).

3. Using the bound (2.15) in (2.14) and choosing η = γ, we get:

aS ( (u′, p′), (v⋆, q⋆) ) ≥ ν

(
γ

2
∥u′∥2H1

0(Ω) + ν−2

(
1− γ−1

2
(Cdiv)

2

)
∥p′∥2L2(Ω)

)
.

Consider now γ = (Cdiv)
2. We obtain:

aS ( (u′, p′), (v⋆, q⋆) ) ≥ 1

2
ν
(
(Cdiv)

2 ∥u′∥2H1
0(Ω) + ν−2 ∥p′∥2L2(Ω)

)
.

Reminding that Cdiv ≥ 1, it comes:

(2.16) aS ( (u′, p′), (v⋆, q⋆) ) ≥ ν

2
∥(u′, p′)∥2X .
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We obtain (2.12) with αT =
ν

2
.

The operator T such that T ( (u′, p′) ) = (v⋆, q⋆) is linear and continuous. We have
indeed:

∥T ( (u′, p′) ) ∥2X := ∥v⋆∥2H1
0(Ω) + ν−2 ∥q⋆∥2L2(Ω)

≤ 2 γ2 ∥u′∥2H1
0(Ω) + 2 ∥vp′∥2H1

0(Ω) + γ2 ν−2 ∥p′∥2L2(Ω),

≤ 2 γ2 ∥u′∥2H1
0(Ω) + ( 2 (Cdiv)

2 + γ2) ν−2 ∥p′∥2L2(Ω).

We deduce that:

(2.17) ∥T ( (u′, p′) ) ∥X ≤ Cmax ∥(u′, p′)∥X ,

where Cmax = Cdiv

(
max(2 + (Cdiv)

2, 2 (Cdiv)
2)
) 1

2 .

Remark that, given (v⋆, q⋆) ∈ X , choosing (u′, p′) = (γ−1v⋆ − γ−2vq⋆ ,−γ−1q⋆)
yields T ( (u′, p′) ) = (v⋆, q⋆). Hence, the operator T ∈ L(X ) is bijective. □

We can now prove the

Theorem 3. Problem (2.11) is well-posed. It admits one and only one solution
such that:

(2.18) ∀f ∈ H−1(Ω),

{
∥u∥H1

0(Ω) ≤ ν−1 ∥f∥H−1(Ω),

∥p∥L2(Ω) ≤ Cdiv ∥f∥H−1(Ω).

Proof. According to Prop. 2, the continuous bilinear form aS(·, ·) is T -coercive.
Hence, according to Theorem 1, Problem (2.11) is well-posed. Let us prove (2.18).
Consider (u, p) the unique solution of Problem (2.11). Choosing v = 0, we ob-
tain that ∀q ∈ L2

zmv(Ω), (q,divu)L2(Ω) = 0, so that u ∈ V. Now, choosing

v = u and using Cauchy-Schwarz inequality, we have: ν ∥u∥2
H1

0(Ω)
= ⟨f ,u⟩H1

0(Ω) ≤
∥f∥H−1(Ω) ∥u∥H1

0(Ω), so that: ∥u∥H1
0(Ω) ≤ ν−1 ∥f∥H−1(Ω). Next, we choose in (2.11)

v = ṽp ∈ V⊥, where div ṽp = −p (see Prop. 1). Since u ∈ V and ṽp ∈ V⊥, we
have (u, ṽp)H1

0(Ω) = 0. This gives:

−(p,div ṽp)L2(Ω) = ∥p∥2L2(Ω) = ⟨f , ṽp⟩H1
0(Ω)

≤ ∥f∥H−1(Ω) ∥ṽp∥H1
0(Ω) ≤ Cdiv ∥f∥H−1(Ω) ∥p∥L2(Ω),

so that: ∥p∥L2(Ω) ≤ Cdiv∥f∥H−1(Ω). □

2.2. Comments on the stability constant. Using (2.17) in (2.16), we have:

aS ( (u′, p′), (v⋆, q⋆) ) ≥ αT (Cmax)
−1∥(u′, p′)∥X ∥(v⋆, q⋆)∥X

Let us set |||T ||| := sup
(u′,p′)∈X\(0,0)

|T ( (u′, p′) ) |
∥(u′, p′)∥X

. According to (2.17), we have the

bound: |||T ||| ≤ Cmax.
Hence, we have:

aS ( (u′, p′), (v⋆, q⋆) ) ≥ αT

|||T |||
∥(u′, p′)∥X ∥(v⋆, q⋆)∥X

We recover the first Banach–Nečas–Babuška condition [8, Thm. 25.9, (BNB1)].
Thus, the T-coercivity approach gives an overestimate of the stability constant α
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given below:

αT

|||T |||
≥ α := inf

(v,q)∈X\(0,0)
sup

(u′,p′)∈X\(0,0)

aS ( (u′, p′), (v, q) )

∥(u′, p′)∥X ∥(v, q)∥X
.

It suggests that the stability constant α is proportional to the parameter ν and
depends on the constant Cdiv, therefore on the shape of the domain. More precisely,
our estimate gives:

α ≤ ν

2
×


(
Cdiv

√
2 + (Cdiv)2

)−1

if 1 ≤ Cdiv ≤
√
2,(√

2 (Cdiv)
2
)−1

if Cdiv ≥
√
2.

In our computations, αT depends on the choice of the parameters η and γ, so

that it could be further optimized to minimize
αT

|||T |||
. Studying the bilinear form

aS ( (u′, p′), T ( (v, q) ) ), leads to an alternative variational formulation of Stokes
problem, as proposed in [15]. It does not depend on the parameters η and γ because
it is coercive. However, the new variational formulation requires a specific treatment
of the right-hand side.

2.3. Conforming discretization and discrete well-posedness. If we were us-
ing a conforming discretization to solve Problem (2.11) (e.g. Taylor-Hood finite el-
ements [16]), we would use the bilinear form aS(·, ·) to state the discrete variational
formulation. Let us call the discrete spaces Xc,h ⊂ H1

0(Ω) and Qc,h ⊂ L2
zmv(Ω).

Then to prove the discrete T-coercivity, we would need to state the discrete coun-
terpart to Proposition 1. To do so, we can build a linear operator Πc : X → Xh,
known as Fortin operator, such that (see e.g. [17, §8.4.1]):

∃Cc | ∀v ∈ H1(Ω) ∥GradΠcv∥L2(Ω) ≤ Cc∥Gradv∥L2(Ω),(2.19)

∀v ∈ H1(Ω) (divΠcv, qh)L2(Ω) = (divv, qh)L2(Ω), ∀qh ∈ Qc,h.(2.20)

Using a nonconforming discretisation, we will not use the bilinear form aS(·, ·) to
exhibit the discrete variational formulation, but we will need a similar operator to
(2.19)-(2.20) to prove the discrete T-coercivity, which is stated in Theorem 4.

2.4. Discretization notations. We call (O, (xd′)dd′=1) the Cartesian coordinates
system, of orthonormal basis (ed′)dd′=1. Consider (Th)h a simplicial triangulation
sequence of Ω, where h denotes the mesh size. The traingulations are régular in
the sense of Ciarlet. For a triangulation Th, we use the following index sets:

• IK denotes the index set of the elements, such that Th :=
⋃

ℓ∈IK

Kℓ is the

set of elements.
• IF denotes the index set of the facets2, such that Fh :=

⋃
f∈IF

Ff is the set

of facets.
Let IF = Ii

F ∪ Ib
F , where ∀f ∈ Ii

F , Ff ⊂ Ω and ∀f ∈ Ib
F , Ff ∈ ∂Ω.

• IS denotes the index set of the vertices, such that (Sj)j∈IS
is the set of

vertices.
Let IS = Ii

S ∪ Ib
S , where ∀j ∈ Ii

S , Sj ∈ Ω and ∀j ∈ Ib
S , Sj ∈ ∂Ω.

We also define the following index subsets:

2The term facet stands for face (resp. edge) when d = 3 (resp. d = 2).
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• ∀ℓ ∈ IK , I(i,b)
F,ℓ = {f ∈ I(i,b)

F |Ff ∈ Kℓ}, IS,ℓ = {j ∈ IS |Sj ∈ Kℓ}.
• ∀j ∈ IS , IK,j = {ℓ ∈ IK |Sj ∈ Kℓ}, Nj := card(IK,j).

For all ℓ ∈ IK , we call hℓ and ρℓ the diameters of Kℓ and its inscribed sphere
respectively, and we let: σℓ =

hℓ

ρℓ
, h = max

ℓ∈IK

hℓ. When the (Th)h is a shape-regular

triangulation sequence (see e.g. [18, def. 11.2]), it exists a constant σ > 1, called
the shape regularity parameter, such that for all h, for all ℓ ∈ IK , σℓ ≤ σ. For
all f ∈ IF , Mf denotes the barycentre of Ff , and by nf its unit normal (outward
oriented if Ff ∈ ∂Ω). For all j ∈ IS , for all ℓ ∈ IK,j , λj,ℓ denotes the barycentric
coordinate of Sj in Kℓ; Fj,ℓ denotes the face opposite to vertex Sj in element Kℓ,
and xj,ℓ denotes its barycentre. We call Sj,ℓ the outward normal vector of Fj,ℓ and
of norm |Sj,ℓ| = |Fj,ℓ|.

Let introduce spaces of piecewise regular elements:
We set PhH

1 =
{
v ∈ L2(Ω) ; ∀ℓ ∈ IK , v|Kℓ

∈ H1(Kℓ)
}
, endowed with the scalar

product :

(v, w)h :=
∑
ℓ∈IK

(grad v,gradw)L2(Kℓ) ∥v∥2h =
∑
ℓ∈IK

∥grad v∥2L2(Kℓ)
.

We set PhH
1 = [PhH

1]d, endowed with the scalar product :

(v,w)h :=
∑
ℓ∈IK

(Gradv,Gradw)L2(Kℓ) ∥v∥2h =
∑
ℓ∈IK

∥Gradv∥2L2(Kℓ)
.

Let f ∈ Ii
F such that Ff = ∂KL ∩ ∂KR and nf is outward KL oriented. The jump

of v ∈ PhH
1 across the facet Ff is defined as follows: [v]Ff

:= v|KL
− v|KR

. For

f ∈ Ib
F , we set: [v]Ff

:= v|Ff
.

We set PhH(div) =
{
v ∈ L2(Ω) ; ∀ℓ ∈ IK , v|Kℓ

∈ H(div; Kℓ)
}
, and we define

the operator divh such that for all v ∈ PhH(div), divh v ∈ L2(Ω) is such that:

∀q ∈ L2(Ω), (divh v, q)L2(Ω) =
∑
ℓ∈IK

(divv, q)L2(Kℓ).

We recall classical finite elements estimates [18]. Let K̂ be the reference simplex.

For ℓ ∈ IK , we denote by Tℓ : K̂ → Kℓ an affine invertible mapping such that
Tℓ(K̂) = Kℓ, Tℓ(∂K̂) = ∂Kℓ. We set Tℓ(x̂) = Bℓx̂ + bℓ, where Bℓ ∈ Rd×d and
bℓ ∈ Rd. Let Jℓ = det(Bℓ). There holds:

(2.21) |Jℓ| = d! |Kℓ|, ∥Bℓ∥ =
hℓ
ρK̂

, ∥Bℓ
−1∥ =

hK̂
ρℓ
.

Let f ∈ IF,ℓ. According to [2, equation (2.17)], we have:

(2.22) |Ff | |Kℓ|−1 ≤ (ρℓ)
−1.

For v ∈ L2(Kℓ), we set v̂ℓ = v ◦ Tℓ. Let v ∈ PhH
1. By changing the variable,

grad v|Kℓ
= (Bℓ

−1)T gradx̂ v̂ℓ, and it holds:

(2.23)
(i) ∥grad v∥2L2(Kℓ)

≤ ∥Bℓ
−1∥2 |Kℓ| ∥gradx̂ v̂ℓ∥2L2(K̂)

,

(ii) ∥gradx̂ v̂ℓ∥2L2(K̂)
≤ ∥Bℓ∥2 |Kℓ|−1 ∥grad v∥2L2(Kℓ)

.

We will use the following notations :

∀ℓ ∈ IK , ∀v ∈ L2(Kℓ), vℓ =
∫
Kℓ
v/|Kℓ|,(2.24)

∀f ∈ IF , ∀v ∈ L2(Ff ), where vf =
∫
Ff
v/|Ff |.(2.25)
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We recall the Poincaré-Steklov inequality in cells:

Proposition 3. For all ℓ ∈ IK (Kℓ is a convex set), for all v ∈ H1(Kℓ):

(2.26) ∥v − vℓ∥L2(Kℓ) ≤ π−1hℓ∥grad v∥L2(Kℓ), [18, Lemma 12.11].

We will need the following Poincaré-Steklov inequality on faces [8, Lemma 36.8]:

Proposition 4. For all ℓ ∈ IK , for all v ∈ H1(Kℓ) and for all f ∈ IF,ℓ, we have:

(2.27)
∥v − vf∥L2(Ff ) ≲

(
|Ff |
|Kℓ|

) 1
2

hℓ ∥grad v∥L2(Kℓ),

≲ (σℓ)
1
2 (hℓ)

1
2 ∥grad v∥L2(Kℓ).

Proof. We have: v − vf = (v − vℓ) − |F |−1
∫
Ff

(v − vℓ). Hence: ∥v − vf∥L2(Ff ) ≤
2∥v − vℓ∥L2(Ff ). Changing the variable, using the continuity of the trace operator,

we have: ∥v − vℓ∥L2(Ff ) ≲ |Ff |
1
2 ∥v̂ℓ − v̂ℓ∥H1(K̂). Using (2.26) in K̂, changing the

variable again, we get (2.27), applying (2.22). □

For all D ⊂ Rd, and k ∈ N, we call P k(D) the set of order k polynomials on D,
Pk(D) = (P k(D))d, and we consider the broken polynomial space:

P k
disc(Th) =

{
q ∈ L2(Ω); ∀ℓ ∈ IK , q|Kℓ

∈ P k(Kℓ)
}
, Pk

disc(Th) := (P k
disc(Th))d.

2.5. Non-conforming discretization and discrete well-posedness. The non-
conforming finite element method was introduced by Crouzeix and Raviart in [2]
to solve Stokes problem (2.3). We approximate the vector space H1(Ω) component
by component by piecewise polynomials of order k ∈ N⋆.
Let us consider Xh (resp. X0,h), the space of nonconforming approximation of
H1(Ω) (resp. H1

0 (Ω)) of order k:

(2.28)

Xh =

{
vh ∈ P k

disc(Th) ; ∀f ∈ Ii
F , ∀qh ∈ P k−1(Ff ),

∫
Ff

[vh]Ff
qh = 0

}
;

X0,h =

{
vh ∈ Xh ; ∀f ∈ Ib

F , ∀qh ∈ P k−1(Ff ),

∫
Ff

vh qh = 0

}
.

The condition on the jumps of vh on the inner facets is often called the patch-
test condition. It allows to prove a discrete Poincaré-Steklov inequality, using the
following Lemma:

Lemma 1. For all v ∈ L2(Ω), it exists s ∈ H1(Ω) such that:

(2.29) div s = v and ∥s∥L2(Ω) + hΩ∥Grad s∥L2(Ω) ≤ CΩ hΩ∥v∥L2(Ω),

where the dimensionless constant CΩ depends on Cdiv and CPS.

Proof. Let v =
∫
Ω
v/|Ω|, and s0 ∈ H1

0(Ω) be such that div s0 = v − v and
∥Grad s0∥L2(Ω) ≤ Cdiv∥v∥L2(Ω) (cf. Prop. 1). Let d′ ∈ {1, · · · , d}. We consider

s := s0 + v(xd′ − xd′)ed′ ∈ H1(Ω), where xd′ =
∫
Ω
xd′/|Ω|. We have: div s = v and

∥Grad s∥L2(Ω) ≤ C̃div∥v∥L2(Ω), where (C̃div)
2 = (Cdiv)

2+1. Using inequality (2.4),

one can prove that ∥s∥L2(Ω) ≤ hΩ C̃Ω∥v∥L2(Ω), where (C̃Ω)
2 = 2

(
(CPS Cdiv)

2 + 1
)
.

Setting CΩ = C̃Ω + C̃div, we obtain (2.29). □
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To prove the next discrete Poincaré-Steklov inequality, we follow the proof of [19,
Theorem D.1]. The proof of [8, Lemma 36.6] is similar, but the vector s defined in
Lemma 1 is constructed in [8, Lemma 36.6] as the gradient of a scalar function, so
that it gives a lower estimate when Ω is non-convex. Alternative proofs are given
in [20, 21].

Proposition 5. The following discrete Poincaré–Steklov inequality holds:

(2.30) ∀vh ∈ X0,h, ∥vh∥L2(Ω) ≲ σ CΩ hΩ ∥vh∥h.

Proof. Let vh ∈ X0,h. According to According to Lemma 1, it exists s ∈ H1(Ω)
such that:

(2.31) div s = vh and ∥s∥L2(Ω) + hΩ∥Grad s∥L2(Ω) ≤ CΩ hΩ∥vh∥L2(Ω)

We have, by integration by parts:

(2.32)

∥vh∥2L2(Ω) = (vh,div s)L2(Ω),

= −
∑
ℓ∈IK

(grad vh, s)L2(Kℓ) +
∑
ℓ∈IK

∑
f∈IF,ℓ

(vh, s · nf,ℓ)L2(Ff ).

The first term can be bounded as follows:

(2.33) (grad vh, s)L2(Kℓ) ≤ ∥grad vh∥L2(Kℓ) ∥s∥L2(Kℓ).

Due to the patch-test, the second term reads:
(2.34)∑

ℓ∈IK

∑
f∈IF,ℓ

(vh, s · nf,ℓ)L2(Ff ) =
∑
ℓ∈IK

∑
f∈IF,ℓ

(vh − vh,f , (s− sf ) · nf,ℓ)L2(Ff ),

≤
∑
ℓ∈IK

∑
f∈IF,ℓ

∥vh − vh,f∥L2(Ff ) ∥(s− sf ) · nf,ℓ∥L2(Ff ).

Using inequality (2.27), we have:

(2.35)
∥vh − vh,f∥L2(Ff ) ∥(s− sf ) · nf,ℓ∥L2(Ff )

≲ σℓ hℓ ∥grad vh∥L2(Kℓ) ∥Grad s∥L2(Kℓ).

Using (2.35) in (2.34), combining the result with (2.33), inequality (2.32) now reads:

∥vh∥2L2(Ω) ≲
∑
ℓ∈IK

∥grad vh∥L2(Kℓ)

(
∥s∥L2(Kℓ) + σℓ hℓ ∥Grad s∥L2(Kℓ)

)
≲ σ

∑
ℓ∈IK

∥grad vh∥L2(Kℓ)

(
∥s∥L2(Kℓ) + hΩ ∥Grad s∥L2(Kℓ)

)
.

We obtain (2.30) using the discrete Cauchy-Schwarz inequality and (2.31). □

As a consequence of Proposition 5, we have the

Proposition 6. The broken norm vh → ∥vh∥h is a norm over X0,h.

The space of nonconforming approximation of H1(Ω) (resp. H1
0(Ω)) of order k

is Xh = (Xh)
d (resp. X0,h = (X0,h)

d). We set Xh := X0,h × Qh where Qh =

P k−1
disc (Th) ∩ L2

zmv(Ω). We deduce from Proposition 6 the

Proposition 7. The broken norm defined below is a norm on Xh:

(2.36) ∥(·, ·)∥Xh
:

 Xh 7→ R

(vh, qh) →
(
∥vh∥2h + ν−2 ∥qh∥2L2(Ω)

) 1
2 .
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Thus, the product space Xh endowed with the broken norm ∥ · ∥Xh
is a Hilbert

space. We consider the discrete continuous bilinear form aS,h(·, ·) such that :{
aS,h : Xh ×Xh → R

(u′
h, p

′
h)× (vh, qh) 7→ ν(u′

h,vh)h − (divh vh, p
′
h)L2(Ω) − (divh u

′
h, qh)L2(Ω)

.

Let us set Vh the discrete space of discrete divergence-free velocities :

(2.37) Vh :=
{
vh ∈ X0,h | ∀qh ∈ Qh, (divh vh, qh)L2(Ω) = 0

}
.

We recall that [22, Lemma 3.1]:

Proposition 8. For all vh ∈ Vh, for all ℓ ∈ IK , divvh|Kℓ
= 0.

Proof. Let vh ∈ Vh. Integrating by parts and using the patch-test, we have:

(divh vh, 1)L2(Ω) =
∑
ℓ∈IK

∫
Kℓ

divvh =
∑
f∈IF

∫
Ff

[vh]Ff
· nf = 0.

Let qh ∈ P k−1
disc (Th) and qh =

∫
Ω
qh/|Ω|. Then qh − q

h
∈ Qh so that: (divh vh, qh −

q
h
)L2(Ω) = 0. Hence, we have: (divh vh, qh)L2(Ω) = (divh vh, qh)L2(Ω) = 0. Let

ℓ ∈ IK . Let qh ∈ P k−1
disc (Th) such that qh|Kℓ

= divvh|Kℓ
and for all ℓ′ ∈ IK ,

ℓ′ ̸= ℓ, qh|Kℓ′
= 0. We have: (divh vh, qh)L2(Ω) = 0 and (divh vh, qh)L2(Ω) =

(divvh, qh)L2(Kℓ) = ∥divvh∥2L2(Kℓ)
. Hence ∥divvh∥2L2(Kℓ)

= 0. □

Let Ih : X0,h → Y0,h, with Y0,h = {vh ∈ H1
0(Ω) ; ∀ℓ ∈ IK , vh|Kℓ

∈ P k(Kℓ)}
be the averaging operator described in [18, §22.4.1]. It exists a constant Cnc

Ih
> 0

independent of Th such that :

(2.38) ∀vh ∈ X0,h, ∥Ihvh∥H1
0 (Ω) ≤ Cnc

Ih
∥vh∥h.

Let ℓf ∈ L(Xh,R) be such that for all (vh, qh) ∈ Xh:

If f ∈ L2(Ω) : ℓf ( (vh, qh) ) = (f ,vh)L2(Ω).
If f ∈ H−1(Ω) : ℓf ( (vh, qh) ) = ⟨f , Ih(vh)⟩H1

0(Ω).

The nonconforming discretization of Problem (2.11) reads:
Find (uh, ph) ∈ Xh such that

(2.39) aS,h ((uh, ph), (vh, qh)) = ℓf ( (vh, qh) ) ∀(vh, qh) ∈ Xh.

To prove that Problem (2.39) is well-posed, we will also use the T-coercivity theory.
We do not need the well-posedness of the continuous problem, i.e. Prop. 2, but we
will follow its proof, using a Fortin operator. This operator will be explained latter,
using the discrete basis functions. We will see that the discrete stability constant
depends on this operator (hence polynomial order k).

Proposition 9. Suppose that it exists a Fortin operator Πnc : H1(Ω) → Xh such
that

∃Cnc | ∀v ∈ H1(Ω) ∥Πncv∥h ≤ Cnc∥Gradv∥L2(Ω),(2.40)

∀v ∈ H1(Ω) (divh Πncv, qh)L2(Ω) = (divv, qh)L2(Ω), ∀q ∈ Qh,(2.41)

where the constant Cnc does not depend on h. Then, the bilinear form aS,h(·, ·) is
T -coercive:

(2.42)
∃Th ∈ L(Xh), bijective , ∃αTh

> 0, ∀(u′
h, p

′
h) ∈ Xh,

aS,h ( (u′
h, p

′
h), Th ( (u

′
h, p

′
h) ) ) ≥ αTh

∥(u′
h, p

′
h)∥2Xh

.
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We will exhibit Cnc for k = 1, d = 2, 3 in §3.1, obtaining Cnc = 1; and then for
k = 2, d = 2 in §3.3, obtaining Cnc = σ2 + 1. Let us prove Proposition 9.

Proof. We follow the proof of Proposition 2. Let us consider (u′
h, p

′
h) ∈ Xh and let

us build (v⋆
h, q

⋆
h) ∈ Xh satisfying (2.2) (with V = Xh). We need three main steps.

1. According to Prop. 1, it exists ṽp′
h
∈ V⊥ such that div ṽp′

h
= p′h in Ω and

∥ṽp′
h
∥H1

0(Ω) ≤ Cdiv∥p′h∥L2(Ω). Let us set vp′
h
= ν−1ṽp′

h
. Consider vh,p′

h
=

Πncvp′
h
, for all qh ∈ Qh, we have: (divh vh,p′

h
, qh)L2(Ω) = ν−1 (p′h, qh)L2(Ω)

and

(2.43) ∥vh,p′
h
∥h ≤ ν−1 Cnc

div ∥p′h∥L2(Ω) where C
nc
div = Cnc Cdiv.

Let us set (v⋆
h, q

⋆
h) := (γncu

′
h − vh,p′

h
,−γnc p′h), with γnc > 0. We obtain:

(2.44) aS,h ( (u′
h, p

′
h), (v

⋆
h, q

⋆
h) ) = ν γnc∥u′

h∥2h + ν−1∥p′h∥2L2(Ω) − ν(u′
h,vh,p′

h
)h.

2. In order to bound the last term of (2.44), we use Young inequality and then
inequality (2.43) so that for all ηnc > 0:

(2.45) (u′
h,vh,p′

h
)h ≤ ηnc

2
∥u′

h∥2h +
η−1
nc

2

(
Cnc

div

ν

)2

∥p′h∥2L2(Ω).

3. Using the bound (2.45) in (2.44) and choosing ηnc = γnc, we get:

aS,h ( (u′
h, p

′
h), (v

⋆
h, q

⋆
h) ) ≥ ν

(
γnc
2

∥u′
h∥2h + ν−2

(
1− (γnc)

−1

2
(Cnc

div)
2

)
∥p′h∥2L2(Ω)

)
.

Consider now γnc = (Cnc
div)

2. We obtain:

aS,h ( (u′
h, p

′
h), (v

⋆
h, q

⋆
h) ) ≥ αTC

nc
min ∥(u′

h, p
′
h)∥2Xh

, where Cnc
min = min( (Cnc

div)
2, 1 ).

We obtain (2.42) with αTh
= αT C

nc
min. Suppose that Cnc ≥ 1. Then

αTh
= αT = ν

2 .

The operator Th such that Th(u
′
h, p

′
h) = (v⋆

h, p
⋆
h) is linear and continuous. We have

indeed:

∥Th(u′
h, p

′
h)∥2Xh

= ∥v⋆
h∥2h + ν−2 ∥q⋆h∥L2(Ω) ≤ (Cnc

max)
2 ∥(u′

h, p
′
h)∥2Xh

where Cnc
max = Cnc

div

(
max

(
2 + (Cnc

div)
2 , 2 (Cnc

div)
2
) ) 1

2 .

Remark that, given (v⋆
h, q

⋆
h) ∈ Xh, choosing (u′

h, p
′
h) = (γ−1

nc v
⋆
h−γ−2

nc vh,q⋆h
,−γ−1

nc q
⋆
h)

yields Th ( (u
′
h, p

′
h) ) = (v⋆

h, q
⋆
h). Hence, the operator Th ∈ L(Xh) is bijective. □

Remark 1. We recover the first Banach–Nečas–Babuška condition [8, Thm. 25.9,
(BNB1)]:

aS,h ( (u′
h, p

′
h), (v

⋆
h, q

⋆
h) ) ≥ αTh

(Cnc
max)

−1 ∥(u′
h, p

′
h)∥Xh

∥(v⋆
h, q

⋆
h)∥Xh

.

We can now prove the discrete counterpart of Theorem 3.

Theorem 4. Suppose that it exists a Fortin operator Πnc : H
1(Ω) → Xh satifying

(2.40)-(2.41). Then Problem (2.39) is well-posed. It admits one and only one
solution (uh, ph) such that:

(2.46)

if f ∈ L2(Ω) :

{
∥uh∥h ≲ ν−1 Cnc

0 ∥f∥L2(Ω)

∥ph∥L2(Ω) ≲ 2Cnc
0 Cnc

div ∥f∥L2(Ω)

if f ∈ H−1(Ω) :

{
∥uh∥h ≲ ν−1 Cnc

−1 ∥f∥H−1(Ω)

∥ph∥L2(Ω) ≲ 2Cnc
−1 C

nc
div ∥f∥H−1(Ω)

,
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where Cnc
0 = σ CΩ hΩ and Cnc

−1 = Cnc
Ih
CPS hΩ.

Proof. Consider (uh, ph) the unique solution of Problem (2.39). Choosing vh = 0,
we obtain that divh uh = 0. Let f ∈ L2(Ω). Now, choosing vh = uh in (2.39),
using Cauchy-Schwarz inequality, we get that: ∥uh∥h ≤ ν−1 σ CΩ hΩ ∥f∥L2(Ω) using
inequality (2.30). Consider (vh, qh) = (vh,ph

, 0) in (2.39), where vh,ph
= Πncvph

is
built as vh,p′

h
in point 1, setting p′h = ph. Suppose that f ∈ L2(Ω). Notice that

ν−1 ∥ph∥2L2(Ω) = ν (uh,vh,ph
)h − (f ,vh,ph

)L2(Ω). Using Cauchy-Schwarz inequal-

ity, we have: ν−1 ∥ph∥2L2(Ω) ≤ ν ∥uh∥h ∥vh,ph
∥h + ∥f∥L2(Ω) ∥vh,ph

∥L2(Ω). Using

Poincaré-Steklov inequality (2.30), Hypothesis (2.40), and the previous estimate on
∥uh∥h, we have:

∥ph∥2L2(Ω) ≲ 2σ CΩ hΩ ∥f∥L2(Ω) ∥vh,ph
∥h ≲ 2σ CΩ hΩ C

nc
div ∥f∥L2(Ω) ∥ph∥L2(Ω).

Let f ∈ H−1(Ω). We apply the same reasoning, using inequalities (2.38) and
(2.30). □

As a corollary of Theorem 4, the following a priori error estimate follows [2,
Theorems 3, 4, 6] and [3, Eq. (47)]:

Corollary 1. Under the assumption of Theorem 4, suppose that (u, p) ∈ (H1+k(Ω)∩
H1

0(Ω))× (Hk(Ω) ∩ L2
zmv(Ω)), we have the estimates:

∥u− uh∥h ≲ σl hk
(
|u|Hk+1(Ω) + ν−1 |p|Hk(Ω)

)
,(2.47)

ν−1 ∥p− ph∥L2(Ω) ≲ σl hk
(
|u|Hk+1(Ω) + ν−1 |p|Hk(Ω)

)
,(2.48)

Suppose moreover that the domain Ω is convex. Then we have:

(2.49) ∥u− uh∥L2(Ω) ≲ σ2 l hk+1
(
|u|Hk+1(Ω) + ν−1 |p|Hk(Ω)

)
,

The hidden constants depend on k but they don’t dependent on mesh. The parameter
σ is the shape regularity parameter and the exponent l ∈ N⋆ depends on k. When
k = 1, d = 2, 3, we have: l = 1 and when k = 2, d = 2, we have: l = 2.

When Ω is not convex, the exponent on h in Equation (2.49) is equal to k + s
where s ∈]0, 1[ depends on Ω (cf. [8, Theorem 31.33]).
The main issue with nonconforming mixed finite elements is the construction the
basis functions. In a recent paper, Sauter explains such a construction in two
dimensions [23, Theorem 1.3], and gives a bound to the discrete counterpart βT (Ω)
of β(Ω) defined in (2.6):

(2.50) βT (Ω) = inf
qh∈Qh\{0}

sup
vh∈X0,h\{0}

(divh vh, qh)L2(Ω)

∥qh∥L2(Ω) ∥vh∥h
≥ cT (log(k + 1))−α,

where the parameter α is explicit and depends on k and on the mesh topology; and
the constant cT depends only on the shape-regularity of the mesh.

3. Examples of non conforming discretization for Stokes problem

3.1. Nonconforming Crouzeix-Raviart mixed finite elements for k = 1.
We study the lowest order nonconforming Crouzeix-Raviart mixed finite elements
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[2]. Let us consider XCR (resp. X0,CR), the space of nonconforming approximation
of H1(Ω) (resp. H1

0 (Ω)) of order 1:

(3.1)

XCR =

{
vh ∈ P 1

disc(Th) ; ∀f ∈ Ii
F ,

∫
Ff

[vh]Ff
= 0

}
;

X0,CR =

{
vh ∈ XCR ; ∀f ∈ Ib

F ,

∫
Ff

vh = 0

}
.

The space of nonconforming approximation of of H1(Ω) (resp. H1
0(Ω)) of order 1

is XCR = (XCR)
d (resp. X0,CR = (X0,CR)

d). We set XCR := X0,CR ×QCR where
QCR = P 0

disc(Th) ∩ L2
zmv(Ω).

We can endow XCR with the basis (ψf )f∈IF
such that: ∀ℓ ∈ IK ,

ψf |Kℓ
=

{
1− dλi,ℓ if f ∈ IF,ℓ,

0 otherwise,

where Si is the vertex opposite to Ff in Kℓ. We then have ψf |Ff
= 1, so that

[ψf ]Ff
= 0 if f ∈ Ii

F , and for all f, f ′ ∈ IF , f ′ ̸= f ,
∫
Ff′

ψf = 0.

We have: XCR = vect ((ψf )f∈IF
) and X0,CR = vect

(
(ψf )f∈Ii

F

)
.

The Crouzeix-Raviart interpolation operator πCR for scalar functions is defined by:

πCR :


H1(Ω) → XCR

v 7→
∑
f∈IF

πfv ψf , where πfv =
1

|Ff |

∫
Ff

v.

Notice that ∀f ∈ IF ,
∫
Ff
πCRv =

∫
Ff
v. Moreover, the Crouzeix-Raviart interpo-

lation operator preserves the constants, so that πCRvΩ = vΩ where vΩ =
∫
Ω
v/|Ω|.

We recall that for k = 1, the coefficient Cnc in (2.40) is equal to 1, as proven in [24,
Lemma 2]:

Lemma 2. The Crouzeix-Raviart interpolation operator πCR is such that:

(3.2) ∀v ∈ H1(Ω), ∥πCRv∥h ≤ ∥grad v∥L2(Ω).

Proof. We have, integrating by parts twice and using Cauchy-Schwarz inequality:

gradπCRv|Kℓ
= |Kℓ|−1

∫
Kℓ

gradπCRv = |Kℓ|−1
∑

f∈IF,ℓ

∫
Ff

πCRv nf ,

= |Kℓ|−1
∑

f∈IF,ℓ

∫
Ff

v nf = |Kℓ|−1

∫
Kℓ

grad v,

|gradπCRv|Kℓ
| ≤ |Kℓ|−

1
2 ∥grad v∥L2(Kℓ)

⇒ ∥gradπCRv∥2L2(Kℓ)
≤ ∥grad v∥2L2(Kℓ)

.

Summing these local estimates over ℓ ∈ IK , we obtain (3.2). □

For a vector v ∈ H1(Ω) of components (vd′)dd′=1, the Crouzeix-Raviart interpo-

lation operator is such that: ΠCRv = (πCRvd′)
d
d′=1. Let us set Πfv = (πfvd′)

d
d′=1.
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Lemma 3. The Crouzeix-Raviart interpolation operator ΠCR can play the role of
the Fortin operator:

∀v ∈ H1(Ω) ∥ΠCRv∥h ≤ ∥Gradv∥L2(Ω),(3.3)

∀v ∈ H1(Ω) (divh ΠCRv, qh)L2(Ω) = (divv, qh)L2(Ω), ∀q ∈ Qh,(3.4)

Moreover, for all v ∈ P1(Ω), ΠCRv = v.

Proof. We obtain (3.3) applying Lemma 2 component by component. By integrat-
ing by parts, we have ∀v ∈ H1(Ω), ∀ℓ ∈ IK :∫

Kℓ

divΠCRv =
∑

f∈IF,ℓ

∫
Ff

ΠCRv · nf =
∑

f∈IF,ℓ

∫
Ff

Πfv · nf

=
∑

f∈IF,ℓ

∫
Ff

v · nf =

∫
Kℓ

divv
,

so that (3.4) is satisfied. □

We can apply the T-coercivity theory to show the following result:

Theorem 5. Let Xh = XCR. Then the continuous bilinear form aS,h(·, ·) is Th-
coercive and Problem (2.39) is well-posed.

Proof. Using estimates (3.3) and (2.30), we apply the proof of Theorem 4. □

Since the constant of the interpolation operator ΠCR is equal to 1, we have
Cnc

min = min( (Cdiv)
2, 1) = 1 and Cnc

max = Cmax: the stability constant of the non-
conforming Crouzeix-Raviart mixed finite elements is independent of the mesh.
This is not the case for higher-order (see [25, Theorem 2.2]).

3.2. Comments on higher-order methods. For higher-order, we cannot built
the interpolation operator component by component, since higher-order divergence
moments must be preserved. Thus, for k > 1, we must build Πnc so that for all
v ∈ H1(Ω), for all ℓ ∈ IK , for all q ∈ P k−1(Kℓ):∫

Kℓ

q divΠncv =

∫
Kℓ

q divv.

We recall that by integration by parts, we have:

(3.5)

∫
Kℓ

q divΠncv +

∫
Kℓ

grad q ·Πncv =

∫
∂Kℓ

qΠncv · n|∂Kℓ
.

Hence, to obtain a local estimate of ∥GradΠncv∥L2(Kℓ), we will need the following
Lemma:

Lemma 4. Let v ∈ H1(Kℓ) and q ∈ P k−1(Kℓ) ∩ L2
zmv(Kℓ). We have:

(3.6)

∣∣∣∣∫
∂Kℓ

q (v − vℓ) · n|∂Kℓ

∣∣∣∣ ≤ (
√
d+ 1)π−1 hℓ ∥grad q∥L2(Kℓ) ∥Gradv∥L2(Kℓ)
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Proof. We have by integration by parts, and then using Cauchy-Schwarz inequality:∣∣∣∣∫
∂Kℓ

q (v − vℓ) · n|∂Kℓ

∣∣∣∣ ≤ ∣∣∣∣∫
Kℓ

q div(v − vℓ)

∣∣∣∣+ ∣∣∣∣∫
Kℓ

grad q · (v − vℓ)

∣∣∣∣ ,
≤

√
d ∥q∥L2(Kℓ) ∥Grad(v − vℓ)∥L2(Kℓ) + ∥grad q∥L2(Kℓ) ∥(v − vℓ)∥L2(Kℓ),

≤ (
√
d+ 1)π−1 hℓ ∥grad q∥L2(Kℓ) ∥Gradv∥L2(Kℓ), using (2.26) twice.

□

In the next section, we will see that for k = 2, d = 2, we will need Lemma 4.
For k ≥ 3, it could be necessary to bound the tangential components of v−vℓ. To
do so, we would need to preserve curl integrals on Kℓ. Indeed, by integration by
parts, we have:

• For d = 2, v ∈ H1(Ω) and q ∈ P k−1(Kℓ):∫
Kℓ

q (curl q · v − curlv q) =

∫
∂Kℓ

q v × n|∂Kℓ
.

• For d = 3, v ∈ H1(Ω) and w ∈ Pk−1(Kℓ):∫
Kℓ

(w · curl v − curlw · v) =
∫
∂Kℓ

(n|∂Kℓ
× v × n|∂Kℓ

) · (w × n|∂Kℓ
).

3.3. Fortin-Soulie mixed finite elements. We consider here the case k = 2,
d = 2 and we study the so-called Fortin-Soulie mixed finite elements [3]. We
consider a shape-regular triangulation sequence (Th)h.
Let us consider XFS (resp. X0,FS), the space of nonconforming approximation of
H1(Ω) (resp. H1

0 (Ω)) of order 2:

(3.7)

XFS =

{
vh ∈ P 2

disc(Th) ; ∀f ∈ Ii
F , ∀qh ∈ P 1(Ff ),

∫
Ff

[vh]Ff
qh = 0

}
;

X0,FS =

{
vh ∈ XFS ; ∀f ∈ Ib

F , ∀qh ∈ P 1(Ff ),

∫
Ff

vh qh = 0

}
.

The space of nonconforming approximation of H1(Ω) (resp. H1
0(Ω)) of order 2 is

XFS = (XFS)
2 (resp. X0,FS = (X0,FS)

2). We set XFS = X0,FS × QFS where
QFS := P 1

disc(Th) ∩ L2
zmv(Ω).

The building of a basis for X0,FS is more involved than for X0,CR since we cannot
use two points per facet as degrees of freedom. Indeed, for all ℓ ∈ Kℓ, it exists a
polynomial of order 2 vanishing on the Gauss-Legendre points of the facets of the
boundary ∂Kℓ. Let f ∈ IF . The barycentric coordinates of the two Gauss-Legendre
points (p+,f , p−,f ) on Ff are such that:

p+,f = (c+, c−), p−,f = (c−, c+), where c± = (1± 1/
√
3)/2.

These points can be used to integrate exactly order three polynomials:

∀g ∈ P 3(Ff ),

∫
Ff

g =
|Ff |
2

(g(p+,f ) + g(p−,f )) .
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For all ℓ ∈ IK , we define the quadratic function ϕKℓ
that vanishes on the six

Gauss-Legendre points of the facets of Kℓ (see Fig. 1):

(3.8) ϕKℓ
:= 2− 3

∑
i∈IS,ℓ

λ2i,ℓ such that ∀f ∈ IF,ℓ, ∀q ∈ P 1(Ff ),

∫
Ff

ϕKℓ
q = 0.

p1 p2

p3

p4

p5

p6

Figure 1. The six Gauss-Legendre points of an element Kℓ and
the elliptic function ϕKℓ

.

We consider the set of the elliptic functions ϕKℓ
:

(3.9) Φh := {ϕh ∈ L2(Ω); ∀ℓ ∈ IK , ϕh|Kℓ
= vKℓ

ϕKℓ
, vKℓ

∈ R}.

We also define the spaces of P 2-Lagrange functions:

XLG :=
{
vh ∈ H1(Ω); ∀ℓ ∈ IK , vh|Kℓ

∈ P 2(Kℓ)
}
,

X0,LG :=
{
vh ∈ XLG; vh|∂Ω = 0

}
.

The Proposition below proved in [3, Prop. 1] allows to build a basis for X0,FS :

Proposition 10. We have the following decomposition: XFS = XLG + Φh with
dim(XLG ∩Φh) = 1. Any function of XFS can be written as the sum of a function
of XLG and a function of Φh. This representation can be made unique by specifying
one degree of freedom.

Notice that Φh ∩ XLG = vect(vΦ), where for all ℓ ∈ IK , vΦ|Kℓ
= ϕKℓ

. Then,
counting the degrees of freedom, one can show that dim(XFS) = dim(XLG) +
dim(Φh) + 1. For problems involving Dirichlet boundary conditions we can prove
thus that for X0,FS the representation is unique and X0,FS = X0,LG ⊕ Φh. We
have XLG = vect

(
(ϕSi

)i∈IS
, (ϕFf

)f∈IF

)
where the basis functions are such that:

∀i, j ∈ IS , ∀f, f ′ ∈ IF

 ϕSi(Sj) = δi,j , ϕSi(Mf ) = 0

ϕMf
(Mf ′) = δf,f ′ , ϕMf

(Si) = 0
.

For all ℓ ∈ IK , we will denote by (ϕℓ,j)
6
j=1 the local nodal basis such that:

(ϕℓ,j)
3
j=1 = (ϕSi|Kℓ

)i∈IS,ℓ
and (ϕℓ,j)

6
j=4 = (ϕFf |Kℓ

)f∈IF,ℓ
.

The spaces XFS and X0,FS are such that:

(3.10)


XFS = vect

(
(ϕSi)i∈IS

, (ϕFf
)f∈IF

, (ϕKℓ
)ℓ∈IK

)
X0,FS = vect

(
(ϕSi)i∈Ii

S
, (ϕFf

)f∈Ii
F
(ϕKℓ

)ℓ∈IK

) .
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We propose here an alternative definition of the Fortin interpolation operator pro-
posed in [3]. Let us first recall the Scott-Zhang interpolation operator [26, 27]. For

all i ∈ IS , we choose some ℓi ∈ IK,i, and we build the L2(Kℓi)-dual basis (ϕ̃ℓi,j)
6
j=1

of the local nodal basis such that:

∀j, j′ ∈ {1, · · · , 6},
∫
Kℓi

ϕ̃ℓi,j ϕℓi,j′ = δj,j′ .

Let us define the Fortin-Soulie interpolation operator for scalar functions by:

(3.11) πFS :


H1(Ω) → XFS

v 7→
∑
i∈IS

vSi
ϕSi

+
∑
f∈IF

vFf
ϕFf

+
∑
ℓ∈IK

vKℓ
ϕKℓ

.

• The coefficients (vSi
)i∈IS

are fixed so that: ∀i ∈ IS , vSi
=

∫
Kℓ,i

v ϕ̃ℓi,ji ,

where ji is the index such that

∫
Kℓi

ϕ̃ℓi,ji ϕSi|Kℓi
= 1.

• The coefficients
(
vFf

)
f∈IF

are fixed so that: ∀f ∈ IF ,
∫
Ff

π̃v =

∫
Ff

v.

• The coefficients vKℓ
are fixed so that:

∫
Kℓ

πFSv =

∫
Kℓ

v.

The definition (3.11) is more general than the one given in [3], which holds for
v ∈ H2(Ω).

We set vSi
:= ( π̃v1(Si), π̃v2(Si))

T
and vFf

:= ( π̃v1(Ff ), π̃v2(Ff ) )
T
.

We can define two different Fortin-Soulie interpolation operators for vector func-
tions. First, let

Π̃FS :


H1(Ω) → XFS

v 7→
∑
i∈IS

vSi
ϕSi

+
∑
f∈IF

vFf
ϕFf

+
∑
ℓ∈IK

ṽKℓ
ϕKℓ

,

where the coefficients (ṽKℓ
)ℓ∈IK

are such that:

(3.12) ∀ℓ ∈ IK ,
∫
Kℓ

Π̃FSv =

∫
Kℓ

v.

The interpolation operator Π̃FS preserves the local averages, but it doesn’t preserve
the divergence. We then define a second interpolation operator which preserves the
divergence in a weak sense:

ΠFS :


H1(Ω) → XFS

v 7→
∑
i∈IS

vSi
ϕSi

+
∑
f∈IF

vFf
ϕFf

+
∑
ℓ∈IK

vKℓ
ϕKℓ

.

For all ℓ ∈ IK , the vector coefficient vKℓ
∈ R2 is now fixed so that condition (2.41)

is satisfied. We can impose for example that the projection ΠFSv satisfies:

(3.13)

∫
Kℓ

T−1
ℓ (x) div ΠFSv =

∫
Kℓ

T−1
ℓ (x) divv.

Notice that due to (3.8), the patch-test condition is still satisfied.
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Proposition 11. The Fortin-Soulie interpolation operator ΠFS is such for all 0 ≤
s ≤ 1, for all v ∈ H1+s(Ω), we have:

∀ℓ ∈ IK , ∥Grad(ΠFSv − v)∥L2(Kℓ) ≲ (σℓ)
2 (hℓ)

s |v|H1+s(Kℓ),(3.14)

∥ΠFSv − v∥h ≲ σ2 hs |v|H1+s(Ω).(3.15)

Remark 2. Albeit we are inspired by the proof of [2, Lemma 4], we changed the
transition from equation (4.27) to (4.29) there by using only the properties related
to the normal component of the velocity, cf (3.6). In the original proof, one needs a

stronger assumption on the regularity of v (namely, v ∈
⋂

0<s<sΩ

H1+s(Ω) with sΩ >

1
2). Finally, because we do not split the integral over the boundaries of elements
into the sum of d + 1 integrals over the facets, we obtain purely local estimates,
which appear to be new for the Fortin-Soulie element in the case of low-regularity
fields v.

Proof. Let v ∈ H1(Ω). We have:

(3.16)
∥Grad (ΠFSv − v)∥L2(Kℓ) ≤ ∥Grad (ΠFSv − Π̃FSv)∥L2(Kℓ)

+∥Grad (Π̃FSv − v)∥L2(Kℓ).

Notice that for all ℓ ∈ IK , (ΠFSv − Π̃FSv)|Kℓ
= (vKℓ

− ṽKℓ
)ϕKℓ

.
Using (2.23)-(i), we obtain that:

(3.17)
∥Grad (ΠFSv − Π̃FSv)∥L2(Kℓ) ≲ |vKℓ

− ṽKℓ
| ∥grad ϕKℓ

∥L2(Kℓ)

≲ ∥Bℓ
−1∥ |Kℓ|

1
2 |vKℓ

− ṽKℓ
|.

Let us estimate |vKℓ
− ṽKℓ

|. On the one hand, we have3:∫
Kℓ

(ΠFSv − Π̃FSv) =

∫
Kℓ

(ΠFSv − v) from (3.12),

=

∫
∂Kℓ

x (ΠFSv − v) · n|∂Kℓ
by IBP and using (3.13),

=

∫
∂Kℓ

(x− x) (ΠFSv − v) · n|∂Kℓ

since
∫
∂Kℓ

(ΠFSv − v) · n|∂Kℓ
= 0,

=

∫
∂Kℓ

(x− x) (Π̃FSv − v) · n|∂Kℓ
from (3.8).

On the other hand, it holds:∫
Kℓ

(ΠFSv − Π̃FSv) = (vKℓ
− ṽKℓ

)

∫
Kℓ

ϕKℓ
=

|Kℓ|
4

(vKℓ
− ṽKℓ

).

Hence we have:

(3.18) |vKℓ
− ṽKℓ

| ≤ 4 |Kℓ|−1

∣∣∣∣∫
∂Kℓ

(x− x) (Π̃FSv − v) · n|∂Kℓ

∣∣∣∣ .
3Let set w = ΠFSv − v = (w1, w2)T and x := (x1, x2)T . By IBP, we have for d′ = 1, 2:∫

∂Kℓ
xd′ w · n|∂Kℓ

=
∫
Kℓ

xd′ divw +
∫
Kℓ

w · ed′ . Due to (3.13),
∫
Kℓ

xd′ divw = 0, so that for

d′ = 1, 2:
∫
Kℓ

wd′ =
∫
∂Kℓ

xd′ w · n|∂Kℓ
.
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In order to bound the right-hand-side of (3.18) component by component, we can
use Lemma 4, with q = xd′ −

∫
Kℓ
xd′/|Kℓ| (d′ = 1, 2), so that ∥grad q∥L2(Kℓ) =

|Kℓ|
1
2 . We obtain:

(3.19) |vKℓ
− ṽKℓ

| ≤ 4 d× (
√
d+ 1) |Kℓ|−

1
2 π−1 hℓ ∥Grad(Π̃FSv − v)∥L2(Kℓ).

Combining (3.17) and (3.19), we have:

∥Grad (ΠFSv − Π̃FSv)∥L2(Kℓ) ≲ ∥Bℓ
−1∥hℓ ∥Grad(Π̃FSv − v)∥L2(Kℓ),

≲ σℓ ∥Grad(Π̃FSv − v)∥L2(Kℓ).

For all v ∈ P2(Kℓ) we have Π̃FS(v) = v and ˆ̃ΠFSv̂ℓ = v̂ℓ. Hence, using Bramble-
Hilbert/Deny-Lions Lemma [18, Lemma 11.9], we have for m = 0, 1, for all v ∈
H1+m(Ω):

∀ℓ ∈ IK , ∥Grad(Π̃FSv − v)∥L2(Kℓ) ≲ σℓ (hℓ)
m |v|H1+m(Kℓ).

We deduce that for m = 0, 1, for all v ∈ H1+m(Ω), for all ℓ ∈ IK :

∥Grad(ΠFSv − v)∥L2(Kℓ) ≲ (σℓ)
2 (hℓ)

m |v|H1+m(Kℓ).

Hence, by summation, we get that for m = 0, 1, for all v ∈ H1+m(Ω):

∥Grad(ΠFSv − v)∥L2(Ω) ≲ σ2 hm |v|H1+m(Ω).

Using interpolation property [28, Lemma 22.2], we obtain (3.14) and (3.15). □

Hence, using the triangular inequality, we have:

∥GradΠFSv∥L2(Kℓ) ≤ ∥Grad(ΠFSv − v)∥L2(Kℓ) + ∥Gradv∥L2(Kℓ),
≲ ((σℓ)

2 + 1)∥v∥H1(Kℓ).

By summation over ℓ, we deduce that the coefficient Cnc in (2.40) is here equal
σ2 + 1. We recall that the discrete Poincaré–Steklov inequality (2.30) holds.

Theorem 6. Let Xh = XFS. Then the continuous bilinear form aS,h(·, ·) is Th-
coercive and Problem (2.39) is well-posed.

Proof. According to Proposition 11, the Fortin-Soulie interpolation operator ΠFS

satisfies (2.40)-(2.41), so that we can apply the proof of Theorem 4. □

Notice that in the recent paper [29], the inf-sup condition of the mixed Fortin-
Soulie finite element is proven directly on a triangle and then using the macro-
element technique [30], but it seems difficult to use this technique to build a Fortin
operator, which is needed to compute error estimates.
The study can be extended to higher orders for d = 2 using the following papers:
[31] for k ≥ 4, k even, [32] for k = 3 and [25] for k ≥ 5, k odd. In [33], the authors
propose a local Fortin operator for the lowest order Taylor-Hood finite element [16]
for d = 3.

4. Numerical results improving consistency

4.1. H(div)-conforming velocity reconstruction. Consider Problem (2.3) with
data f = −gradϕ, where ϕ ∈ H1(Ω) ∩ L2

zmv(Ω). The unique solution is then
(u, p) := (0, ϕ). By integrating by parts, the source term in (2.8) reads:

(4.1) ∀v ∈ H1
0(Ω),

∫
Ω

f · v =

∫
Ω

ϕ divv.
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Recall that the nonconforming space Xh defined in (2.28) is a subset of PhH
1:

using a nonconforming finite element method, the integration by parts must be
done on each element of the triangulation, and we have:

(4.2) ∀v ∈ PhH
1,

∫
Ω

f · v = (divh v, ϕ)L2(Ω) +
∑
f∈IF

∫
Ff

[v]Ff
· nf ϕ.

Using Lemma 4, we have:
∑
f∈IF

∫
Ff

[v]Ff
·nf ϕ ≲ h ∥vh∥h ∥gradϕ∥L2(Ω). Applying

(4.2) to the right-hand-side of (2.39) and choosing vh = uh, it holds: ν ∥uh∥h ≲
h∥gradϕ∥L2(Ω) (as expected by (2.47)). Hence, the term with the jumps acts as a
numerical source for the discrete velocity, which numerical influence is proportional
to h/ν. Thus, we cannot obtain exactly uh = 0. Linke proposed in [34] to project
the test function vh ∈ Xh on a discrete subspace of H(div; Ω), like Raviart-Thomas
or Brezzi-Douglas-Marini finite elements (see [35, 36], or the monograph [17]). Let
Πdiv : X0,h → P k

disc(Th) ∩H0(div; Ω) be some interpolation operator built so that
for all vh ∈ X0,h, for all ℓ ∈ IK , (div Πdivvh)|Kℓ

= divvh|Kℓ
. Integrating by parts,

we have for all vh ∈ X0,h:∫
Ω

f ·Πdivvh =

∫
Ω

ϕ divΠdivvh =
∑
ℓ∈Kℓ

∫
Kℓ

ϕ divΠdivvh,

=
∑
ℓ∈Kℓ

∫
Kℓ

ϕ divvh = (divh vh, ϕ)L2(Ω).

The projection Πdiv allows to eliminate in Equation (4.2) the last term of the right-
hand-side.
Let us write Problem (2.39) as: Find (uh, ph) ∈ Xh such that

(4.3) aS,h ((uh, ph), (vh, qh)) = ℓf ( (Πdivvh, qh) ) ∀(vh, qh) ∈ Xh.

In the case of Xh = XCR and a projection on Brezzi-Douglas-Marini finite elements,
the following error estimate holds if (u, p) ∈ H2(Ω)×H1(Ω):

(4.4) ∥u− uh∥L2(Ω) ≤ C̃ h2 |u|H2(Ω),

where the constant C̃ if independent of h. The proof is detailed in [37] for shape-
regular meshes and [38] for anisotropic meshes. We remark that the error doesn’t
depend on the norm of the pressure nor on the ν parameter. We will provide
some numerical results to illustrate the effectiveness of this formulation, even with
a projection on the Raviart-Thomas finite elements, which, for a fixed polynomial
order, are less precise than the Brezzi-Douglas-Marini finite elements.
For all ℓ ∈ IK , we let P k

H(Kℓ) be the set of homogeneous polynomials of order k
on Kℓ.
For k ∈ N⋆, the space of Raviart-Thomas finite elements can be defined as:

XRTk
:=
{
v ∈ H(div; Ω); ∀ℓ ∈ Ik, v|Kℓ

= aℓ + bℓx | (aℓ, bℓ) ∈ P k(Kℓ)
d × P k

H(Kℓ)
}
.

Let k ≤ 1. The Raviart–Thomas interpolation operator ΠRTk
: H1(Ω) ∪ Xh →

XRTk
is defined by: ∀v ∈ H1(Ω) ∪Xh,

(4.5)


∀f ∈ IF ,

∫
Ff

ΠRTk
v · nf q =

∫
Ff

v · nf q, ∀q ∈ P k(Ff )

for k = 1, ∀ℓ ∈ IK ,
∫
Kℓ

ΠRT1
v =

∫
Kℓ

v
.
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Note that the Raviart–Thomas interpolation operator preserves the constants. Let
vh ∈ Xh. In order to compute the left-hand-side of (4.2), we must evaluate
(ΠRTk

vh)|Kℓ
for all ℓ ∈ IK . Calculations are performed using the proposition

below, which corresponds to [39, Lemma 3.11]:

Proposition 12. Let k ≤ 1. Let Π̂RTk
: H1(K̂) → Pk(K̂) be the Raviart–Thomas

interpolation operator restricted to the reference element, so that: ∀v̂ ∈ H1(K̂),

(4.6)


∀F̂ ∈ ∂K̂,

∫
F̂

Π̂RTk
v̂ · nF̂ q̂ =

∫
F̂

v̂ · nF̂ q̂, ∀q̂ ∈ P k(F̂ )

for k = 1,

∫
K̂

Π̂RTk
v̂ =

∫
K̂

v̂
.

We then have: ∀ℓ ∈ IK ,

(4.7) (ΠRTk
v)|Kℓ

(x) = Bℓ

(
Π̂RTk

Bℓ
−1v̂ℓ

)
◦ Tℓ−1(x) where v̂ℓ = v ◦ Tℓ(x̂).

The proof is based on the equality of the F̂ and K̂-moments of (ΠRTk
v)|Kℓ

◦Tℓ(x̂)
and Bℓ

(
Π̂RTk

Bℓ
−1v̂ℓ

)
(x̂). For k = 0, setting for d′ ∈ {1, · · · , d}: ψf,d′ := ψf ed′ ,

we obtain that:

(4.8) ∀ℓ ∈ IK , ∀f ∈ IF,ℓ , (ΠRT0
ψf,d′)|Kℓ

= (d |Kℓ|)−1
(
x− O⃗Sf,ℓ

)
Sf,ℓ · ed′ ,

where Sf,ℓ is the vertex opposite to Ff in Kℓ.
For k = 1, the vector (ΠRT1

vh)|Kℓ
is described by eight unknowns:

(ΠRT1vh)|Kℓ
= Aℓ x+ (bℓ · x)x+ dℓ, where Aℓ ∈ R2×2, bℓ ∈ R2, dℓ ∈ R2.

We compute only once the inverse of the matrix of the linear system (4.6), in R8×8.

4.2. Application with manufactured solutions. In the Tables 1, 2 and 3, we
call εν0(u) = ∥u − uh∥L2(Ω)/∥(u, p)∥X the velocity error in L2(Ω)-norm, where
uh is the solution to Problem (2.39) (columns XCR and XFS) or (4.3) (columns
XCR +ΠRT0

and XFS +ΠRT1
) and h is the mesh size.

We first consider Stokes problem (2.3) in Ω = (0, 1)2 with u = 0, p = (x1)
3+(x2)

3−
0.5, f = grad p = 3

(
(x1)

2, (x2)
2
)T

. We report in Table 1 εν0(u) for h = 5.00 e− 2
and for different values of ν.

ν XCR XCR +ΠRT0 XFS XFS +ΠRT1

1.00 e− 4 7.96 e− 4 4.59 e− 17 8.81 e− 7 1.54 e− 16
1.00 e− 5 7.96 e− 4 4.59 e− 17 8.81 e− 7 1.54 e− 16
1.00 e− 6 7.96 e− 4 4.59 e− 17 8.81 e− 7 1.54 e− 16

Table 1. Values of εν0(u) for h = 5.00 e− 2

Here we have ∥(u, p)∥X = ν∥p∥L2(Ω). Hence, the L2(Ω)-norm of the discrete velocity

∥uh∥L2(Ω) is proportional to ν
−1. Using the projection, we obtain εν0(u) = 0 close

to machine precision.
We now consider Stokes problem (2.3) in Ω = (0, 1)2 with:

u =

(
(1− cos(2π x1)) sin(2π x2)
(cos(2π x2)− 1) sin(2π x1)

)
, p = sin(2π x1) and f = −ν∆u+ grad p.
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We report in Table 2 (resp. 3) the values of εν0(u) in the case ν = 1.00 e− 3 (resp.
ν = 1.00 e− 4) for mesh sizes. We observe that when there is no projection, εν0(u)
is independent of ν, whereas using the projection, εν0(u) is proportional to ν.

h XCR XCR +ΠRT0
XFS XFS +ΠRT1

5.00 e− 2 1.32 e− 3 2.74 e− 5 4.73 e− 6 5.05 e− 7
2.50 e− 2 3.30 e− 4 6.93 e− 6 5.06 e− 7 6.42 e− 8
1.25 e− 2 8.25 e− 5 1.74 e− 6 6.31 e− 8 8.10 e− 9
6.25 e− 3 2.04 e− 5 4.35 e− 7 7.44 e− 9 1.03 e− 9

Rate h2.00 h1.99 h3.08 h2.97

Table 2. Values of εν0(u) for ν = 1.00 e− 3

h XCR XCR +ΠRT0
XFS XFS +ΠRT1

5.00 e− 2 1.32 e− 3 2.74 e− 6 4.70 e− 6 5.05 e− 8
2.50 e− 2 3.30 e− 4 6.93 e− 7 5.10 e− 7 6.43 e− 9
1.25 e− 2 8.25 e− 5 1.74 e− 7 6.37 e− 8 8.11 e− 10
6.25 e− 3 2.04 e− 5 4.36 e− 8 7.51 e− 9 9.77 e− 11

Rate h2.00 h1.99 h3.08 h2.99

Table 3. Values of εν0(u) for ν = 1.00 e− 4

Let us consider Stokes problem (2.3) with a low-regular velocity. Let Ω = (0, 1)2,
S0 = (0.5, 0.5), and (r, θ) be the polar coordinates centred on S0. We set:

u = rαeθ, p = r so that f := −ν∆u+ grad p = ν (1− α2) rα−2 eθ + er.

We report in Table 4 the values of εν0(u) for ν = 1.00 e−4, and for different for mesh
sizes, with α = 1 and α = 0.49. For α = 1, u = (−y, x)T ∈ H2(Ω). For α = 0.49,

u ∈
⋂

0<s<α

H1+s(Ω), hence u /∈ H2(Ω). It seems that the Raviart-Thomas projec-

tion is less efficient in that last case.
In order to enhance the numerical results, one could also use a posteriori error esti-

α = 1 α = 0.45
h XFS XFS +ΠRT1 XFS XFS +ΠRT1

1.00 e− 1 3.03 e− 5 2.81 e− 6 3.05 e− 5 3.94 e− 6
5.00 e− 2 4.34 e− 6 1.54 e− 6 4.57 e− 6 2.15 e− 6
2.50 e− 2 4.72 e− 7 2.41 e− 8 9.70 e− 7 8.52 e− 7

Rate h3.00 h3.43 h2.48 h1.11

Table 4. Values of εν0(u), regular and low-regular velocity, ν =
1.00 e− 4.

mators to adapt the mesh near point S0 (see [40, 41] for k = 1 and [42] for k = 2).
Alternatively, using the nonconforming Crouzeix-Raviart mixed finite element method,
one can build a divergence-free basis, as described in [43] for k = 1. When k = 1,
following the initial work of [44], one can also add P 1-Lagrange basis functions to
the space of the discrete pressures as explained in [45]. The discrete velocity is
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then such that uh ∈ H(div 0; Ω). Notice that using conforming finite elements, the
Scott-Vogelius finite elements [46, 47, 48] produce velocity approximations that are
exactly divergence free.
The code used to get the numerical results can be downloaded on GitHub [49].

5. Conclusion

We analysed the discretization of Stokes problem with nonconforming finite ele-
ments in light of the T-coercivity theory. Furthermore, we obtained local stability
estimates for order 1 in 2 or 3 dimension without mesh regularity assumption; and
for order 2 in 2 dimension in the case of a shape-regular triangulation sequence.
This local approach, splitting the normal and the tangential components could help
to generalize our results to order k ≥ 3 (using maybe also other internal moment
conservation). This is ongoing work. We then provided numerical results to illus-
trate the importance of using H(div)-conforming projection. Further, we intend to
extend the study to other mixed finite element methods.
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[31] À. Baran and G. Stoyan. Gauss-Legendre elements: a stable, higher order non-conforming

finite element family. Computing, 79(1):1–21, 2007.

[32] C. Carstensen and S. Sauter. Crouzeix-Raviart triangular elements are inf-sup stable, 2022.
[33] L. Diening, J. Storn, and T. Tscherpel. Fortin operator for Taylor-Hood element. Numerische

Mathematik, 150(2):671–689, 2022.
[34] A. Linke. On the Role of the Helmholtz-Decomposition in Mixed Methods for Incompressible

Flows and a New Variational Crime. Comput. Methods Appl. Mech. Engrg., 268:782–800,

2014.
[35] P.-A. Raviart and J.-M. Thomas. A mixed finite element method for second order elliptic

problems. In Mathematical aspects of finite element methods, volume 606 of Lecture Notes

in Mathematics, pages 292–315. Springer, 1977.
[36] F. Brezzi, J. Douglas, and L. D. Marini. Two families of mixed finite elements for second

order elliptic problems. Numerische Mathematik, 47(2):217–235, 1985.
[37] C. Brennecke, A. Linke, C. Merdon, and J. Schöberl. Optimal and pressure independent L2
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