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ABSTRACT. We propose to analyse the discretization of the Stokes problem
with nonconforming finite elements in light of the T-coercivity. First we ex-
plicit the stability constants with respect to the shape regularity parameter
for order 1 in 2 or 3 dimension, and order 2 in 2 dimension. In this last case,
we improve the result of the original Crouzeix-Raviart paper. Second, we il-
lustrate the importance of using a divergence-free velocity reconstruction on
some numerical experiments.
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1. INTRODUCTION

The Stokes problem describes the steady state of incompressible Newtonian
flows. They are derived from the Navier-Stokes equations [1]. With regard to
numerical analysis, the study of Stokes problem helps to build an appropriate ap-
proximation of the Navier—Stokes equations. We consider here a discretization with
nonconforming finite elements [2, 3]. We propose to state the discrete inf-sup condi-
tion in light of the T-coercivity (cf. [4] for Helmholtz-like problems, see [5], [6] and
[7] for the neutron diffusion equation), which allows to estimate the discrete error
constant. In Section 2, we recall the T-coercivity theory [4], which is known to be
an equivalent reformulation of the Banach—Nec¢as—Babuska Theorem. In Section 3
we apply it to the continuous Stokes Problem. We give details on the triangulation
in Section 4, and we apply the T-coercivity to the discretization of Stokes problem
with nonconforming mixed finite elements in Section 5. For the Stokes problem,
in the discrete case, this amounts to finding a Fortin operator. In Section 6 (resp.
7), we precise the proof of the well-posedness in the case of order 1 (resp. order 2)
nonconforming mixed finite elements. In Section 8, we illustrate the importance of
using a divergence-free velocity on some numerical experiments.

E-mail address: erell. jamelot@cea.fr.
Date: April 7, 2023.
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2. T-COERCIVITY

We recall here the T-coercivity theory as written in [4]. Consider first the vari-
ational problem, where V and W are two Hilbert spaces and f € V':

(2.1) Find w € V such that Vo € W, a(u,v) = (f,v)v.

Classically, we know that Problem (2.1) is well-posed if a(-,-) satisfies the stabil-
ity and the solvability conditions of the so-called Banach—Necas—Babuska (BNB)
Theorem (see a.e. [8, Thm. 25.9]). For some models, one can also prove the well-
posedness using the T-coercivity theory (cf. [4] for Helmholtz-like problems, see
[5], [6] and [7] for the neutron diffusion equation).

Definition 1. Let V and W be two Hilbert spaces and a(-,-) be a continuous and
bilinear form over V.x W. It is T-coercive if

(2.2) 3T € L(V,W), bijective, Ia > 0, Vv € V, |a(v, Tv)| > alv||}.

It is proved in [4, 9] that the T-coercivity condition is equivalent to the stability
and solvability conditions of the BNB Theorem. Whereas the BNB theorem relies
on an abstract inf-sup condition, T-coercivity uses explicit inf-sup operators, both
at the continuous and discrete levels.

Theorem 1. (well-posedness) Let a(-,-) be a continuous and bilinear form. Suppose
that the form a(-,-) is T-coercive. Then Problem (2.1) is well-posed.

3. STOKES PROBLEM

Let Q be a connected bounded domain of R?, d = 2, 3, with a polygonal (d = 2)
or Lipschitz polyhedral (d = 3) boundary 9. We consider Stokes problem:
—vAu+gradp = f,

divu = 0.
with Dirichlet boundary conditions for the velocity u and a normalization condition
for the pressure p:

(3.1) Find (u, p) such that {

u =0 on 09, /sz.
Q

The vector field u represents the velocity of the fluid and the scalar field p represents
its pressure divided by the fluid density which is supposed to be constant. The first
equation of (3.1) corresponds to the momentum balance equation and the second
one corresponds to the conservation of the mass. The constant parameter v > 0 is
the kinematic viscosity of the fluid. The vector field f € H™1() represents a body
forces divided by the fluid density.

Before stating the variational formulation of Problem (3.1), we provide some
definition and reminders. Let us set L%(Q) = (L%(Q))4, H{(Q) = (H(Q))4,
H~(Q) = (H*(Q))? its dual space and L2, ,(Q) = {q¢ € L*(Q)| [,q = 0}.
We recall that H(div; Q) = {v € L?(Q)|divv € L?*Q)}. Let us first recall
Poincaré-Steklov inequality:

(3.2) ICps > 0|Vv € H&(Q), ||’UHL2(Q) < Cps|| grad’U”LQ(Q).

Thanks to this result, in H}(Q), the semi-norm is equivalent to the natural norm,
so that the scalar product reads (v, w) g1 () = (grad v, grad w)rz (o) and the norm

is [olmi) = llgradvfLz(g). Let v, w € H{(©2). We denote by (v;)%_, (resp.
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(w;)%_,) the components of v (resp. w), and we set Grad v = ((%v,) _, €L%(Q),
where L2(Q) = [L?(22)]4*4. We have:

d
(Grad v, Grad w)r2(q) = (V, W)mi (o) = Z(vi7wi)Hé(Q)
i=1
and:
1/2
Vi) = Z lvilfa | = IIGradvilia).

Let us set V = {v € H}(Q)| divv =0}. The vector space V is a closed subset of
H{ (). We denote by V* the orthogonal of V in H}(Q2). Let v, > 0 be a kinematic
viscosity. We recall that [1, cor. 1.2.4]:

Proposition 1. The operator div : H}(Q) — L%(Q) is an isomorphism of V+
onto L2, (). We call Cqiy the constant such that:

zmuv

(3.3) Vpe L Q), v e V| divy =p and VIl @) < Caivllpllz2()-

zmv(

The constant Cy;, depends only on the domain 2. Notice that we have: Cy;, =
1/B8(Q) where B(€) is the inf-sup condition (or Ladyzhenskaya—Babuska—Brezzi
condition):

. (g, div V)LZ(Q)
inf
gLz, ()\{0} veHl(Q N\ {0} g/l L2(o) HV||H

(3-4) B) =

Generally, the value of B(2) is not known explicitly. In [10], Bernardi et al es-
tablished results on the discrete approximation of 5(2) using conforming finite
elements. Recently, Gallistl proposed in [11] a numerical scheme with adaptive
meshes for computing approximations to 8(€2). In the case of d = 2, Costabel and
Dauge [12] established the following bound:

Theorem 2. Let ) C R? be a domain contained in a ball of radius R, star-shaped
with respect to a concentric ball of radius p. Then

—1/2
P p? P

Let us detail the bound for some remarkable domains. If  is a ball, 5(Q2) > %

and if 2 is a square, 3(2) > ﬁ Suppose now that €2 is stretched in some direction
by a factor k, then 8(2) > s=. Finally, if Q is L-shaped (resp. cross-shaped) such

that L =k, where Lis the largest length and [ is the smallest length of an edge,
then B(12) > 32— (resp. B(Q) > £).

The variational formulation of Problem (3.1) reads:
Find (u,p) € H}(Q) x L2,,,(Q) such that

Zmuv

(3.6) v(w, Vg — (0, divv)e) = (£ v)mi) YV eH(Q);
’ (q,dIV u)LQ(Q) = 0 Vq € Lzmv<Q)

Classically, one proves that Problem (3.6) is well-posed using Poincaré-Steklov in-
equality (3.2) and Prop. 1. Check for instance the proof of [1, Thm. 1.5.1].
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Let us set X = H}(Q) x L2, () which is a Hilbert space which we endow with
the following norm:

B 1/2
(3.7) 1, Dl = (Vg + 2 lallEy) -
We consider now the following bilinear symmetric and continuous form:

33) as: XXX — R
’ (W', p) x(viq) = v, V)miq — (¢, divv)rz) — (¢, divu’) 2o

We can write Problem (3.1) in an equivalent way as follows:

(3.9) Find (u,p) € X such that ag ((u,p),(v,q)) = <f,v>H[1)(Q) Y(v,q) € X.
Let us prove that Problem (3.9) is well-posed using the T-coercivity theory.

Proposition 2. The bilinear form ag(-,-) is T-coercive:

AT € L(X), bijective , Ja > 0, V(u',p’) € X,
(3.10)
as ((0',p'), T((0',p'))) = al(u',p)[%-

Proof. We follow here the proof given in [13, 14]. Let us consider (u’,p’) € X and
let us build (v*,¢*) = T(u,p’) € X satistying (2.2) (with V' = X’). We need three
main steps.

1. According to Prop. 1, there exists v,, € H}(Q2) such that: divv, = p
in @ and [[Vp g ) < Caiv [[P'[|L2)- Let us set vy = v~1v, so that
divv, =v~'p and
(3.11) IV Iz ) < v Caiv I 20

/!

Let us set (v*,¢*) := (yu' — vy, —yp'), with v > 0. We obtain:
(3.12) as ((W,p), (v*,¢")) =vy ||u/||%15(9) + v P 2 0) — v (0 Ve ) m 0)-

2. In order to bound the last term of (3.12), we use Young inequality and then
inequality (3.11), so that for all > 0:

CYdiv 2 2
V (F2 HL2(Q)-

3. Using the bound (3.13) in (3.12) and choosing n = v, we get:

—1
n n
(3.13) (', vpmye) < 5l lyo) + 75 (

-1
* Y - Y
as ((ulvpl)a (V*,(] )) >v (2 ”uI”%—Ié(Q) tv ? (1 - 2(Cdiv)2> ||p/|%2(52)) .
Consider now v = (Cg;y)?. We obtain:

1 .
as ((W,p), (v*,4")) = v Couin [ (W, 1) 3 where Coniny = 5 min( (Caiv)*,1).
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We obtain (3.10) with o« = v Cipin. The operator T' such that T ((u’,p') ) = (v*, ¢*)
is linear and continuous:

IT((W,p) % = HV*H%{}J(Q) +v7? H(J*H2L2(Q)
< 297 Hu/H%—I})(Q) +2 ||Vp’||%1(g(g) 2 22 (),
< 297 Hu/H%—I})(Q) + (2(Cain)? + ) v 2 1P 1720
< (Cax)? (0, 9) 17

where Chax = Caiv (max(2 + (Cdiv)Qa 2 (Cdiv)2))
Remark that, given (v*,¢*) € X, choosing (u/,p') = (v 'v* — vy 2ve, —y 1¢*)
yields T((u',p’)) = (v*,¢*). Hence, the operator T € L(X) is bijective. O

1/2

1

We can now prove the

Theorem 3. Problem (3.9) is well-posed. It admits one and only one solution such
that:

- < v Hf[la-1 @
3.14 VE e H1(Q), { [l 0 < @,
( : ) Hp||L2(Q) < Caiv ||f||H—1(Q).

Proof. According to Prop. 2, the continuous bilinear form ag(-,-) is T-coercive.
Hence, according to Theorem 1, Problem (3.9) is well-posed. Let us prove (3.14).
Consider (u,p) the unique solution of Problem (3.9). Choosing v = 0, we ob-
tain that Vg € L2, (Q), (g, divu)z2() = 0, so that u € V. Now, choosing
v = u and using Cauchy-Schwarz inequality, we have: v ||u||%lé(9) = (£, W) <
[£llE-1(0) [allez (@), so that: [[ullgy @) < v ||f[[s-1(q)- Next, we choose in (3.9)
v =V, € V1, where divv, = —p (see Prop. 1). Since u € V and v, € V1, we
have (u, V,)p1(q) = 0. This gives:

—(p,div V) 12(0) = IPllZ2 () = (£ Vo)Eyi) < [flla-1(2) Vol o) < Caie [flla-1) [Pl L2 @),
so that: [|pllz2(q) < Caivllflla-1(0)- O

Remark 1. We recover the first Banach—Necéas—Babuska condition [8, Thm. 25.9,
(BNB1)]:

as ((0',p), (v*,4")) = ¥ Ciin (Crna) ™" 10, 2) 2 (v, ¢") ] -

Thus, the T-coercivity approach allows to give an estimate of the stability con-
stant Cstap := V Chin (C’max)*l. In our computations, it depends on the choice of
the parameters 1 and -y, so that it could be further optimized.

If we were using a conforming discretization to solve Problem (3.9) (a.e. Taylor-
Hood finite elements [15]), we would use the bilinear form ag(-,-) to state the
discrete variational formulation. Let us call the discrete spaces X, , C H}(Q2) and
Qe C L2,,,(2). Then to prove the discrete T-coercivity, we would need to state

the discrete counterpart to Proposition 1. To do so, we can build a linear operator
II. : X — X}, known as Fortin operator, such that (see a.e. [16, §8.4.1]):

(3.15) HCC | Vv € Hl(Q) || Grad HCVH]L?(Q) < CCH Grad VH]L?(Q)a
(3.16) vv e HY(Q) (divILv,qn)r2) = (divv,an)r2), Van € Qep.
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Using a nonconforming discretization, we will not use the bilinear form ag(-,-) to
exhibit the discrete variational formulation, but we will need a similar operator to
(3.15)-(3.16) to prove the discrete T-coercivity, which is stated in Theorem 4.

4. DISCRETIZATION

We call (O, (z4)%_,) the Cartesian coordinates system, of orthonormal basis
(ea)%_,. Consider (T); a simplicial triangulation sequence of {2, where h denotes
the mesh size. For a triangulation 7;, we use the following index sets:

e Tx denotes the index set of the elements, such that 7; := U K, is the

€Tk
set of elements.

e Zp denotes the index set of the facets', such that Fj, := U Fy is the set

f€ZIr
of facets.

Let Zp = T4 UZY%, where Vf € T4, Fy € Q and Vf € %, Fy € 0.
e Zg denotes the index set of the vertices, such that (S;);jez, is the set of
vertices.
Let Zg :Ig U Z%, where Vj € Ig, S; € QandVje 7b, S; € 00.
We also define the following index subsets:
o Ve Ty, IF75 = {f EIF|F}” S Kg}, Is)g = {j GIs|Sj S Kg}.
[ v.] €lg, IKJ‘ = {E €Ik | Sj € Kg}, Nj = card(IK,j).
For all ¢ € Tk, we call hy and py the diameters of K, and its inscribed sphere
respectively, and we let: oy = %. When the (73) is a shape-regular triangulation
sequence (see a.e. [17, def. 11.2]), there exists a constant o > 1, called the shape
regularity parameter, such that for all h, for all £ € Zg, oy < 0. For all f € I,
My denotes the barycentre of Fy, and by ny its unit normal (outward oriented if
F; € 09Q). For all j € Zg, for all £ € Ik ;, A; ¢ denotes the barycentric coordinate
of S; in Ky; Fj, denotes the face opposite to vertex S; in element K,, and x;,
denotes its barycentre. We call S, the outward normal vector of F} , and of norm
|Sj.el = [Fjel-
Let introduce spaces of piecewise regular elements:
We set PpH' = {v e L?(Q); V€ Ik, vk, € H(K;)}, endowed with the scalar
product :

(v,w)n ==Y _ (gradv,gradw)r2x,y  vlli = Y [lgrad |z k)
teTy =
We set P,H! = [P, H']¢, endowed with the scalar product :
(v, w)p, := Z (Gradv,Grad w)i2(r,) V| = Z I Gradv||]%2(K£).
el el

Let f € I}; such that Fy = 0K N 0Kp and ny is outward K oriented.

The jump (resp. average) of a function v € P, H' across the facet F is defined as
follows: [v]F, := vk, — VK, (resp. {v}p, == 3(v|K, +VK,))- For f € I%, we set:
[v]F; = vp, and {v}F, := v,

IThe term facet stands for face (resp. edge) when d = 3 (vesp. d = 2).
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We set P H(div) = {veL?(Q); Vle Ik, v, €H(iv; K;)}, and we define
the operator divy such that:

Vv € PuH(div), Vg € L*(Q), (divav,q) = Y (divv,q)r2(x,)-
LeT K
We recall classical finite elements estimates [17]. Let K be the reference simplex
and F be the reference facet. For ¢ € Ty (vesp. f € Zp), we denote by T : K — K,
(resp. Ty : F = F}) the geometric mapping such that Vx € K, Xk, = Te(X) =
Bex + by (vesp. xp, = Ty(%) = Byx + by), and we set J, = det(B,) (resp.
Jy = det(By)). There holds:

hg _ hpy
1) [l =d K, Bl =, B =5 gl = (d = DUy
Pr pe
For v € L?*(K,), we set 9y = v o Ty. For v € v?(Fy), we set: 9y = v oTy. Changing

the variable, we get:
(4.2) [l oy = [Jel 106l 7oy and ([0l = [Tl 071172 -

Let v € P,H'. By changing the variable, grad v g, = B, YT grad, iy, and it
holds:

(4.3) (@) llgradvlfagg,, < B Kol || gradg oo, 4.
' (i) |lgradsdelf, ) < IBell®[Ke| " [l grad of|s -

We recall the Poincaré-Steklov inequality in cells [17, Lemma 12.11]:
for all £ € Zye (K, is a convex set), Vv € H(K,):

fm”
| K|

For all D C R? and k € N*, we call P¥(D) the set of order k polynomials on D,
Pk(D) = (P*(D))?, and we consider the broken polynomial space:

szsc(ﬁl) = {q € LQ(Q)7 Ve € IK’ q|Ke € Pk(Kf)} ’ P];isc(n) = (Pj:zsc(ﬂl))d

We let P°(T},) be the space of piecewise constant functions on 7j,.

(4.4) lvellrz(x,) < 7 " hell gradvllrer,), Where v, = v, —

5. THE NONCONFORMING MIXED FINITE ELEMENT METHOD FOR STOKES

The nonconforming finite element method was introduced by Crouzeix and Raviart
in [2] to solve Stokes Problem (3.1). We approximate the vector space H(2) com-
ponent by component by piecewise polynomials of order k£ € N*. Let us consider X,
(resp. Xo,), the space of nonconforming approximation of H*() (resp. Hj(Q))
of order k:

Xp = {Uh € Py..(Th); Yf €Iy Vg, € PP1(Fy), / [vn] qn = 0} ;
Fy
(5.1)

Xon = {'Uh € Xp; VfeETI) Vg, € PPUEY), / Un qn = 0} :
Fy

The condition on the jumps of v;, on the inner facets is often called the patch-test
condition.
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Proposition 3. The broken norm v, — ||vg || is a norm over Xo .

Proof. Let vy € Xop, such that [[vg|[, = 0. Then for all £ € Tk, vy, is a constant.
For all f € Z% the jump [vn]F, vanishes, so that vy, is a constant over 2. We deduce
from the discrete boundary condition that vy = 0. (]

The space of nonconforming approximation of H!(Q) (resp. H(Q)) of order k
is Xp, = (Xp)? (vesp. Xon = (Xon)%). We set X), := Xo X Q) where Q) =
PEL(T)Nn L2, (). We deduce from Proposition 3 the

disc zZmuv

Proposition 4. The broken norm defined below is a norm on Xy :

X, — R
(5‘2) ||(7)||Xh : { (

1/2
vian) = (allE 4+
Thus, the product space &} endowed with the broken norm || - || x, is a Hilbert

space.

Proposition 5. The following discrete Poincaré—Steklov inequality holds: there
exists a constant CBS independent of Ty, such that

(5.3) Vi € Xon,  [VallLzie) < CB5 valln,
where C3% is independent of Ty, and is proportional to the diameter of 2.

Proof. Inequality (5.3) is stated in [8, Lemma 36.6] for k& = 1, but one can check
that the proof holds true for higher-order, thanks to the patch-test condition. An
alternative proof is given in [18, Theorem C.1]. O

We consider the discrete continuous bilinear form ag (-, ) such that :

CLS,}L:XhXXh — R
(up,p) X (Vi,qn) = v(uy, ve)p — (divy v, ph,) — (divy u), gn)

Let ¢¢ € L(X),R) be such that :

Vi )L2 i 2
Yo € Bt ((m)) = { g (e EEERET

where 7y, : X07h — Y07h, with Y07h = {Vh € H(l)(Q), VYl e Tk, Vh|K, € Pk(Kg)},
is the averaging operator described in [17, §22.4.1]. There exists a constant Cze >0
independent of 7j such that :

(5.4) |Zovrllay @) < Oz [Velln,  Yvi € Xop.

The nonconforming discretization of Problem (3.9) reads:
Find (up,pp) € & such that

(5.5) as,n (Wh,pn)s (Vhan)) =6 ((Vhoan))  Y(Vi,qn) € X,
Let us prove that Problem (5.5) is well-posed using the T-coercivity theory.

Theorem 4. Suppose that there exists a Fortin operator I1,,. : HY(Q) — X, such
that

(5.6) AChe Vv € HY(Q) L,V < Cre| Grad v||iz(),
(57) Vv e Hl(ﬂ) (dth anvv Qh) = (diVV, Qh)LQ(Q)a Vq € Qha
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where the constant Cy. does not depend on h. Then Problem (5.5) is well-posed.
Moreover, it admits one and only one solution (uy,py) such that:

lunlln < CBGvHfllLe()

itf e L2(Q) : ,
Iprllrz) < 2085 CHS Ifllz
(5.8)
[unlln < CEvtflla-1(0)
itf ¢ L2(Q) : ,
[Pnllzz) < 207 Cgs lIfla-1 ()

where CYS, = Caiv Che.

Proof. Let us consider (uj},,p},) € & and let us build (v}, g}) € &), satisfying (2.2)
(with V' = A},). We follow the three main steps of the proof of Theorem 1.

1. According to Proposition 1, there exists ffp;l € V< such that div {’PL =

P in Q@ and [V lai) < Caivl[Phllze). Let us set vy, = R

Consider vy, = IL,evyy , for all g, € Qpn, we have: (divy, Vi, qn) =
v (Pl an) r2(0) and
(5.9) [Vap lln < v CES 1Pll20) where CFf, = Cne Caiv-
Let us set (v}, q}) == (Yneut), — \( —Yne Ph)s With vpe > 0. We obtain:
(5.10) asn (W ph)s (Vi 7)) = vamellwy |17 + v Iphll7 ) — v(Wh, Vi a-

2. In order to bound the last term of (5.10), we use Young inequality and then
inequality (5.9) so that for all 7, > 0:

—1 ne \ 2
U e (Cdi
<+ %o ()

3. Using the bound (5.11) in (5.10) and choosing Nnc = Yne, We get:

g - (me) ™" e
o (oot (vi0i)) = v (% I 072 (1= 05— (€3 ) Ikl )

Consider now v, = (C15)?. We obtain:

(5.11) (Whs Vi Jn <

v
asp ((W,p1), (Vo)) = 5Ot [l (i, PRI,

1
where C7)5, = 3 min( (CF5)2,1).

min

The operator T}, such that Tj(uj},,p},) = (v}, p}) is linear and continuous:

T (s i) 1%, = VAR + 272 @ llz2 () < (Chis)® 1 (uh, 2,
where C16, = C1% (max (2 + (C1%)?, 2(CH5)?) )1/2. Remark that the operator

Ty, € L(X4) is bijective. The discrete continuous bilinear form ag (-, -) is then
Th-coercive and according to Theorem 1, Problem (5.5) is well posed. Consider
(up, pr) the unique solution of Problem (5.5). Choosing v, = 0, we obtain that
divy, up, = 0. Now, choosing v, = uy, in (5.5) and using Cauchy-Schwarz inequality,
we get that:

luplln, < v 1CRS IfllL2 iffe L%(Q), using (5.3) ;
(5.12)

laplln < vt CHflla-1 iff¢g L2(Q), using (5.4).
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Consider (vi,qn) = (Vhp,,0) in (5.5), where vy, = Il,cvp, is built as vy, in
point 1, setting p}, = ps. Suppose that f € L?(Q2). Using the triangular inequal-
ity, Cauchy-Schwarz inequality, Poincaré-Steklov inequality (5.3), Theorem 4, and
estimate (5.12), we have:

IpallZey = v (h Vip,)w = (£ Vap )L @),
< vlaalln [Vaps e + [1€llLz@) Ve, 2@
< 208 Iz Vhpn ln < 2C3% Cne If 2o || Grad vy, [lL20) ,
< 2035 O3 Ifllez) lpnll2)-

Applying the same reasoning when f € H=1(Q), we get that:
Ipnllcz) < 2CBGCHS fllee)  if £ € L?(Q), using (5.3) ;

(5.13)

IN

Pl 20 202¢ O |Ifll-1(0y  if £ ¢ L?(Q), using (5.4).

O
Remark 2. Again, we recover the first Banach—Necas—Babuska condition [8, Thm.
25.9, (BNB1)]:
asp ((Wh,ph), (Vieah)) = v CRfy (CRi) ™ 1wk i) L 1V a) L, -
As a corollary of Theorem 4, the following a priori error estimate follows |2,

Theorem 4]:

Corollary 1. Under the assumption of Theorem J, suppose that (u,p) € H*¥(Q)x
H¥(Q), we then have the estimate:

(5.14) [u—upllLz(q) < Co' hF! (|U|Hk+1(9) +uv! |P|Hk(sz)) )

where the constant C > 0 is independent of h, o is the shape regularity parameter
and the exponent { € N* depends on k.

The main issue with nonconforming mixed finite elements is the construction
the basis functions. In a recent paper, Sauter explains such a construction in two
dimensions [18, Corollary 2.4], and gives a bound to the discrete counterpart 37 (2)
of () defined in (3.4):

(5.15) Br(Q) = inf (diva vi, qn)

sup —_— >cr k%
0 €Qu\{0} v, eXo \{0} 1anllz2(0) IVhlln

This bound is in ¢ k™%, where the parameter « is explicit and depends on k and
on the mesh topology; and the constant ¢y depends only on the shape-regularity
of the mesh.

6. NONCONFORMING CROUZEIX-RAVIART MIXED FINITE ELEMENTS

We study the lowest order nonconforming Crouzeix-Raviart mixed finite elements
[2]. Let us consider X¢r (resp. Xo,cr), the space of nonconforming approximation
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of H(Q) (resp. H}(Q)) of order 1:

Xcr = {Uh € Piioe(Th); Vf EIfm/ [U] 20} ;
Fy
(6.1)

Xocr = {UhEXCR; erI%,/ Uh—0}~
Fy

The space of nonconforming approximation of of H*(2) (resp. H}(Q2)) of order 1
is XCR = (XCR)d (resp. XO,CR = (X07CR)d). We set XCR = X(),CR X QCR where
Qcr = Po(ﬂl) n Lgmv(Q)

We can endow X¢r with the basis (¢¢) rez, such that: V¢ € Tk,

’(/J N 1—d>\i7g lff EIR@,
FIKe = 0 otherwise,

where S; is the vertex opposite to F¢ in K,. We then have ¢y p, = 1, so that
[flp, =0if f € Th (ie. FreQ), and Vf' # f, fFf/ Yp=0.

We have: XCR = vect ((wf)fGIp) and XO,CR = vect <(¢Jf)f€z%>.
The Crouzeix-Raviart interpolation operator m¢ g for scalar functions is defined by:
H! (Q) — Xcr 1
TCR : v T , where mpv = —— V.
2 vy 751 Jr,
fEZr
Notice that Vf € Zp, [ F; TORV = /. F, V- Moreover, the Crouzeix-Raviart interpo-
lation operator preserves the constants, so that Tcrvg = v where vy = [, v/[9Q].
We recall the following result [19, Lemma 2]):

Lemma 1. The Crouzeiz-Raviart interpolation operator mog is such that:

(62) Yo € Hl(Q), H7TCRUHh < || gradeL2(Q).
Proof. We have, integrating by parts twice and using Cauchy-Schwarz inequality:
gradﬂ'CRmKe = |Kg|71/ gradﬂ'CRv = |K@|71 Z / TCRVNf,
Ke fE€Lp, Fy
= K0S [ emp =K [ grade,
fe€zp i Ke

|grad Torv|k,| < |K4|_1/2||gradv\|Lz(K[)

IN

lgradvli: k,)-

Summing these local estimates over ¢ € Ty, we obtain (6.2). O

= | gradﬂCRUHiQ(KZ)

For a vector v € H'(2) of components (vg)%,_,, the Crouzeix-Raviart interpo-
lation operator is such that: Ilorv = (WCRUd/)g,:l. Let us set ITyv = (vad/)g,zl.
Lemma 2. The Crouzeiz-Raviart interpolation operator llcg can play the role of
the Fortin operator:

(6.3) vv e HY(Q) |Tcrv|s < || Grad viz(q),

(64) Vv € Hl(Q) (divh HCRV,qh) = (le V,qh)L2(Q)7 Yq € Qp,
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Moreover, for all v € PY(Q), llcgrv = v.

Proof. We obtain (6.3) applying Lemma 1 component by component. By integrat-
ing by parts, we have Vv € HY (), V/ € Tg:

divllggv = Z / Ilcgpv -ny = Z / II¢v-nyg,
Fy Fy

Ke f€Lr. fE€LR,.

vV-ny = divv,
fE€TR. Fy K

so that (6.4) is satisfied. O
We can apply the T-coercivity theory to show the next following result:

Theorem 5. Let Xj, = Xcg. Then the continuous bilinear form agp(-,-) is Th-
coercive and Problem (5.5) is well-posed.

Proof. Using estimates (6.3) and (5.3), we apply the proof of Theorem 4. O

Since the constant of the interpolation operator Ilog is equal to 1, we have
CCR — Cpin and CCE = (), the stability constant of the nonconforming

min max

Crouzeix-Raviart mixed finite elements is independent of the mesh. This is not the
case for higher-order (see [20, Theorem 2.2]).

For higher-order, we cannot built the interpolation operator component by compo-
nent, since higher-order divergence moments must be preserved. Thus, for k£ > 1,
we must build IT,,. so that for all v € HY(Q), for all £ € T, for all ¢ € P*=1(K,):

/ q divIl,.v :/ q divv.
Ky Ky

We recall that by integration by parts, we have:

(65) / q div anv + / gradq . anv = / ancV : n\(’)K('
Ky Ky 0K,

Hence, to obtain a local estimate of || Grad I1,,.v||r2(x,), we will need the following
Lemma:

Lemma 3. Let v € HY(Q) and ¢ € P*1(K,). We set v, i= vy — “~t—

vy = Vg, We have:

(6.6) ’/ qV, -k,
0K,

Proof. We have by integration by parts, and then using Cauchy-Schwarz inequality:

/ qVv,-ny / q divy, —l—‘/ gradq - v,
aKg Kg Kl

< llgllz2(x,) I| Grad v, [lL2 (k) + || grad qllLz(x,) [1VellLe (&)

< |Ko|*? || Grad vz,

<

)

< |K*?| Grad vl i, + 1Kol *02 vy llz o)

< |Ko|*?|| Grad ve||2(x,) using (4.4).
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In the next section, we will see that for k = 2, we will need Lemma 3. For k > 3,
it could be necessary to bound the tangential components of v,. To do so, we would
need to preserve curl integrals on K. Indeed, by integration by parts, we have:

e Ford=2,veHYQ), qec P 1K)):
(6.7) / q(curlq-v—curlvq):/ qV X npg,.
Ko oK,
e Ford=3,veHY(Q),weP:1(K):

(6.8) / (w-curlv —curlw-v) = / (njor, X v Xnjpk,) - (W X njpg, ).
Ky 8Kg

7. FORTIN-SOULIE MIXED FINITE ELEMENTS

We consider here the case d = 2 and we study Fortin-Soulie mixed finite elements
[3]. We consider a shape-regular triangulation sequence (7p)p.
Let us consider Xpg (resp. Xo rg), the space of nonconforming approximation of
H(Q) (resp. H}(2)) of order 2:

XFS:{UhEPd%sc(,ﬁ); VfEI},thepl(Ff%/ [Uh]Qh:O} 3
Fy
(7.1)

Xo,FSZ{UhEXFs; VfGI%,VQhepl(Ff),/ UthZO}-
Fy

The space of nonconforming approximation of H(Q) (resp. H}(2)) of order 2 is
Xpg = (XF5)2 (resp. Xo,Frs = (XQFS)Q). We set Xpg = Xo,rg X Qrs where
QFS = Pdlzsc(ﬁ) N Lzmv(Q)

The building of a basis for Xy g is more involved than for X cr since we cannot
use two points per facet as degrees of freedom. Indeed, for all £ € K, there exists
a polynomial of order 2 vanishing on the Gauss-Legendre points of the facets of the
boundary 0K,. Let f € Tr. The barycentric coordinates of the two Gauss-Legendre
points (p4,f,p—,¢) on Fy are such that:

Py = (crc),p_p=(c_,cy), where cx = (14+1/v3)/2.
These points can be used to integrate exactly order three polynomials:
F
voe Py, [ o= T 0twen) + oo,
¥
For all ¢ € T, we define the quadratic function ¢, that vanishes on the six
Gauss-Legendre points of the facets of Ky (see Fig. 1):

(7.2) ¢x,:=2-3 A}, suchthat VfE€Zp, Yqe P (F), b, q=0.
1€Ls¢ Fy
We also define the spaces of P2-Lagrange functions:

X = {on€ H(Q); V€ Ik, vyx, € P*(Ky)},
Xore = {vn€Xra; wvhoo=0}.

The Proposition below proved in [3, Prop. 1] allows to build a basis for Xy rg:
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2

Pr___ .- D2

F1GURE 1. The six Gauss-Legendre points of an element K, and
the elliptic function ¢g,.

Proposition 6. We have the following decomposition: Xps = Xpg + ®n with
dim(XpeN®p) = 1. Any function of Xps can be written as the sum of a function
of Xra and a function of ®p,. This representation can be made unique by specifying
one degree of freedom.

Notice that ®, N Xpg = vect(ve), where for all £ € Tg, vg|x, = ¢x,. Then,
counting the degrees of freedom, one can show that dim(Xpg) = dim(Xpq) +
dim(®p) 4+ 1. For problems involving Dirichlet boundary conditions we can prove
thus that for Xy ps the representation is unique and Xo rs = Xo,rg ® ®,. We
have X o = vect (((bsi)iels, (¢Ff)feIF) where the basis functions are such that:

Vi,j € Zg,Vf,g € Ip:
0s,(Sj) = 0ij, s, (M) =0, dary (M) = 659, G11,(Si) = 0.
For all £ € g, we will denote by (¢,;)%_, the local nodal basis such that:

(¢fvj)?:1 = (¢Si|K@)i€IS,IZ and (¢Z,j)?:4 = (¢Ff|Kz)f€IF,z'

The spaces Xrgs and Xy rg are such that:

Xrg = vect ((¢s,)iczs, (0F,) fezr (PK,)ecTi )
(7.3)
XO,FS = vect ( (d)Si)iEIg? (d)Ff)fEI;';’ (QSKZ)ZGIK ) .

We propose here an alternative definition of the Fortin interpolation operator pro-
posed in [3]. Let us first recall the Scott-Zhang interpolation operator [21, 22]. For
all i € Zg, we choose some ¢; € Tk ;, and we build the L?(K,,)-dual basis (q’;gi,j)?:l
of the local nodal basis such that:

VJ, jle{lv"' 76}’ éfi,j ¢Zi,j’ :5j,j"
Ko,
Let us define the Fortin-Soulie interpolation operator for scalar functions by:
H! (Q) — XFS

TFS v o= T+ Z VK, DK,
(74) LeTk

with 7v = Z vs, Ps; + Z VR PRy -

i€ls fETR
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e The coefficients (vs,);c7, are fixed so that: Vi € Zg, vs, = / v bu, s
Ky;

where j; is the index such that / g?)g“ji bs, 1k, = 1.
Kq, :
e The coefficients (vpf)feIF are fixed so that: Vf € Zp, /Ff T = /Ff .

For all ¢ € Tk, the coeflicient vk, is fixed so that: / TESU = / .
Ky K

The definition (7.4) is more general than the one given in [3], Which holds for
v e H?(Q).

We set vs, := (7v1(S;), 7v2(S;))" and vp, == (Fv1(Ff), 7va(Fy))"

We can define two different Fortin-Soulie interpolation operators for vector func-
tions. First, let

i {Hl(Q — XFrs
FS - v = (mrs(V)1,mrs(v)2)T.

We remind that the coefficients (Vg,)eez, are such that:

(75) VWl e Tk, / ﬁpsv = / V.
K, K

The interpolation operator Hps preserves the local averages, but it doesn’t preserve
the divergence. We then define a second interpolation operator which preserves the
divergence in a weak sense:
Hl(Q) — XFS
Hps v o Y ves,+ Y Vebr + Y VKK,

i€Ls fEZIr lely

For all £ € Tk, the vector coefficient v, € R? is now fixed so that condition (5.7)
is satisfied. We can impose for example that the projection IIpgv satisfies:

(7.6) / T, (x) divIlpgv = / T, ' (x) divv.
K[ KZ
Notice that due to (7.2), the patch-test condition is still satisfied.

Proposition 7. Let op > 0. The Fortin-Soulie interpolation operator llpg is such
for allv € ﬂ H'*(Q) we have:

0<s<op
(7.1)Vs €]0,0p[, Yl € Ik, | Grad(Ilpsv — V) |lL2(x,) S (00)? (he)® [V]14s, 5,5
(7.8) Vs €]0,0p], I0ps = O(0?), |psv —v|n < Crsh® |[V]11s.0-

Remark 3. Albeit we are inspired by the proof of [2, Lemma 4], we changed the
transition from equation (4.27) to (4.29) there by using only the properties related to
the normal component of the velocity, cf (6.6). As a matter of fact, in the original
proof, one ends up with either Cpg = O(c®) with the help of the multiple trace
inequality or with Crs = O(c?) at the cost of imposing a stronger assumption on
the regularity of v (namely, op > 1/2). Finally, because we do not split the integral
over the boundaries of elements into the sum of d + 1 integrals over the facets, we
obtain purely local estimates, which appear to be new for the Fortin-Soulie element
in the case of low-reqularity fields v.
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Proof. Let v € H'(Q). By construction, we have:

(79) / (ﬁpsv - V) = 0 and for all f € IFJ, / (ﬁpsv - V)|K@ =0.
K Fy

We have:

| Grad (Ilpsv — V)||12(k,) < || Grad (ITpsv — ﬁFSV)']]_}(Ke)
(7.10) )
+H Grad (HFsv - V)H]L“’(Kg)~

Notice that for all £ € T, (IIpsv — IZIFSV)‘K,Z = (Vk, — Vk,) OK,-
Using (4.3)-(4), we obtain that:
| Grad (psv — Opsv) |2k, S Vi, — Vil grad ¢, L2,
(7.11) S BTN Vi, = Vi,
S oelvi, — Vi,

Let us estimate |vi, — Vi,|. On the one hand, we have:

/ (Mpsv — fIFSv) = / (Ilpgv — v) from (7.5),
Ky Ky

x (IIpsv —v) -njpk, by IBP,
0K,

X (1:IF5V — V) - npg, from (7.2).
K,

Since (7.9) holds, we can use Lemma 3. We obtain:

(712) S |Kz| || Grad(ﬁpsv — V)”L?(Kg)'

/ (Hpsv — ﬁpsv)
Ky

On the other hand, it holds:

K|

(13 [ (eev = Trsv) = (vie — i) [ i =50 (i, - ).
K, Ky

Hence, combining (7.12) and (7.13), we have:
(714) |VK£ — \~/'K2| < 4 || Grad(ﬁpsv — V)”I[F(Kg)

Using this results in (7.11), we deduce from (7.10) that for all v € H!(Q), for all
{ € T we have:

(7.15) | Grad(Ilpsv — v)||x, < o¢ || Grad(Ilpgv — V) |2 (k) -
For all v € P2(K;) we have ﬁps(v) = v and I:IFSW = v¢. Hence, using Bramble-
Hilbert/Deny-Lions Lemma [17, Lemma 11.9], we have:
Vv e Hl(Q) || Gl‘ad(ﬁpsv — V)”ILP(KZ) S oy |V|1,K[,
Vv e H3(Q) | Grad(Ilpgv — V)llLzx,y S oehe Vo k, -
We deduce that:
(716) Vv € Hl(Q) H Grad(Hpsv — V)H]LQ(KZ) S (O’g)z ‘V|1’K[,
(717) Vv S HZ(Q) H Grad(HpSv — V)H]L2(Kg) S (0'4)2 hg |V|27K2.

Using interpolation property [23, Lemma 22.2], we obtain (7.7). By summation, we
get (7.8). O
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We recall that the discrete Poincaré—Steklov inequality (5.3) holds.

Theorem 6. Let X}, = Xpg. Then the continuous bilinear form agp(-,-) is Th-
coercive and Problem (5.5) is well-posed.

Proof. According to Proposition 7, the Fortin-Soulie interpolation operator Ilgg
satisfies (5.6)-(5.7), so that we can apply the proof of Theorem 4. O

Notice that in the recent paper [24], the inf-sup condition of the mixed Fortin-

Soulie finite element is proven directly on a triangle and then using the macro-
element technique [25], but it seems difficult to use this technique to build a Fortin
operator, which is needed to compute error estimates.
The study can be extended to higher orders for d = 2 using the following papers:
[26] for k > 4, k even, [27] for k = 3 and [20] for k& > 5, k odd. In [28], the authors
propose a local Fortin operator for the lowest order Taylor-Hood finite element [15]
for d = 3.

8. NUMERICAL RESULTS

Consider Problem (3.1) with data f = — grad ¢, where ¢ € H'(Q) N L2, ().
The unique solution is then (u,p) := (0,¢). By integrating by parts, the source
term in (3.6) reads:

(8.1) vv € HY (), /Qf-v:/ngdivv.

Recall that the nonconforming space X, defined in (5.1) is a subset of P, H': using
a nonconforming finite element method, the integration by parts must be done on
each element of the triangulation, and we have:
[ wenge
Fy

(8.2) vv € P, H, / f-v=(divpv,¢)+ Z

@ fETr
When we apply this result to the right-hand-side of (5.5), we notice that the term
with the jumps acts as a numerical source, which numerical influence is proportional
to 1/v. Thus, we cannot obtain exactly u, = 0 (see also (5.14)). Linke proposed
in [29] to project the test function vy, € X, on a discrete subspace of H(div; ),
like Raviart-Thomas or Brezzi-Douglas-Marini finite elements (see [30, 31], or the
monograph [16]). Let Haiy : Xo.n — P_.(Tn) N Ho(div; Q) be some interpolation
operator built so that for all v;, € Xq p, for all £ € T, (divIlaivvn)|x, = div vy x,-
Integrating by parts, we have for all v, € Xg j:

[tnav = [odviav =Y [ odviaw,
Q Q2 leKy K,
= Z ¢ divvy, = (divy, vy, @).

terc, 7/ Ke
The projection Ilg;, allows to eliminate the terms of the integrals of the jumps in
(8.2).
Let us write Problem (5.5) as:
Find (up, pp) € A, such that

(8.3) as.h (W, pn)s (Vs gn)) = le ((Maivva,gn))  Y(Vh, qn) € X
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In the case of &}, = X g and a projection on Brezzi-Douglas-Marini finite elements,
the following error estimate holds if (u,p) € H2(Q2) x H'(Q):

(8.4) [u—uplL2) < Ch? [ulez (),

where the constant C' if independent of h. The proof is detailed in [32] for shape-
regular meshes and [33] for anisotropic meshes. We remark that the error doesn’t
depend on the norm of the pressure nor on the v parameter. We will provide
some numerical results to illustrate the effectiveness of this formulation, even with
a projection on the Raviart-Thomas finite elements, which, for a fixed polynomial
order, are less precise than the Brezzi-Douglas-Marini finite elements.

For all ¢ € Ir, we let Pk (K;) be the set of homogeneous polynomials of order k
on K@.

For k € N*, the space of Raviart-Thomas finite elements can be defined as:

Xpr, = {v € H(div; Q); V¢ € Ty, Vi, = a¢ + bex | (ar,be) € PF(K,)* x Pl (K)} .

Let £k < 1.
The Raviart-Thomas interpolation operator Ilgr, : HY(Q)UX,, — X g7, is defined
by: Vv € HY(Q) U Xy,

Vfelp, /HRTkv~nfq:/ v-nyq, VqEPk(Ff)
Ey Fy

for k=1,Vl e Ik, /HRT1V=/ v
Ky Ky

Note that the Raviart—Thomas interpolation operator preserves the constants. Let
v, € Xjp. In order to compute the left-hand-side of (8.2), we must evaluate
(Hgr,vi) |k, for all £ € Zg. Calculations are performed using the proposition
below, which corresponds to [34, Lemma 3.11]:

(8.5)

Proposition 8. Let k < 1. Let Ilgy, : H'(K) — P*(K) be the Raviart-Thomas
interpolation operator restricted to the reference element, so that: Vv € HY(K),

VFG@IA(, /AﬂRTk\Af-nF(j:/

(8.6) ) g
for k:]., HRTk\A’:/ v
K K

F
We then have: Yl € Tg,

V-npq, V§jePrE)

(87) (HRTkV)|K4 (X) =B, (ﬁRTkBgil\A/g> o Tgil(X) where vy =vo Tg(f()

The proof is based on the equality of the £ and K-moments of (Og7,v) |k, 0Te(X)
and By (ﬁRTkBgflw) (X). For k = 0, setting for d’ € {1,--- ,d}: v 4 == Vs eq,
we obtain that:

(88) VLeTx,Vf€Tre, (Mnntpaix, = (@K™ (x—0850) Speea,
where St is the vertex opposite to Fr in K.
For k = 1, the vector (Ilrr, v1) |k, is described by eight unknowns:

(Mrr, Vi) |k, = Aex + (b - x)x + dy, where Ay € R2*2 b, € R?, d, € R%

We compute only once the inverse of the matrix of the linear system (8.6), in R8>8,
In the Tables 1, 2 and 3, we call f(u) = ||[u—up||L2(q)/[|(a,p)||x the velocity error
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in L2(Q)-norm, where uy, is the solution to Problem (5.5) (columns Xcr and Xpg)
or (8.3) (columns X¢opg + g, and Xpgs + g, ) and A is the mesh size.

We first consider Stokes Problem (3.1) in Q = (0,1)? with u =0, p = (z1)>+(22)>—
0.5, f = gradp = 3 ((21)?, (22)%)" . We report in Table 1 £4(u) for h = 5.00¢ — 2
and for different values of v.

v Xcr Xcr + Hrr, XFs Xrs + lgr,
1.00e—4 7.96e—4 4.59e—17 88le—7 1.b4e—16
1.00e—5 7.96e—4 4.59e—17 88le—7 1.b4e—16
1.00e—6 7.96e—4 459e—17 88le—7 1.54e—16

TABLE 1. Values of f(u) for h =5.00e — 2

Here we have [|(u, p)||x = v||p[|2(0)- Hence, the L?(€2)-norm of the discrete velocity
[[unllLz(q) is proportional to »~!. Using the projection, we obtain gf(u) = 0 close
to machine precision.

We now consider Stokes Problem (3.1) in Q = (0,1)? with:

_ [((1—cos(2mx1)) sin(2 7 x2) p = sin(2wxy) sin(27 ),
“ \(cos(2mxg) —1) sin(2mwxy) )’ f = —vAu+gradp.

We report in Table 2 (resp. 3) the values of € (u) in the case v = 1.00e — 3 (resp.
v =1.00e — 4) for mesh sizes. We observe that when there is no projection, €f(u)
is independent of v, whereas using the projection, €f(u) is proportional to v.

h Xcr Xcr + g, XFs Xrs + gt
5.00e—2 1.32e—3 2.74e—5 4.73e—6 5.0be —7
250e—2 3.30e—4 6.93e —6 5.06e —7 6.42¢ — 8
1.25¢—2 825e—5 1.7Tde—6 6.3le—8 810e—9
6.25e—3 2.04e—5 4.35e—7 7.44e—9 1.03e—9

Rate hQ.OO h1.99 h3.08 h2.97
TABLE 2. Values of €ff(u) for v =1.00e — 3

h Xcr  Xep+Upn, — Xps  Xpg+Hgp
5.00e -2 1.32e—-3 2.74e—-6 4.70e -6 5.06e—8
2.50e—-2 3.30e—4 6.93e -7 5.10e -7 6.43e—9
1.25e—-2 825e—-5 1.74e -7 6.37e—8 8.1le—10
6.25e—3 2.04e—-5 4.36e —8 75le—9 9.77e—-11

Rate £,2:00 R1-99 1,3-08 },2-99
TABLE 3. Values of ef(u) for v =1.00e — 4

Let us consider Stokes Problem (3.1) with a low-regular velocity. Let Q = (0,1)2,
So = (0.5,0.5), and (r,0) be the polar coordinates centred on Sy. We set:

a—2

u=r% g, p=r sothat f:= —vAu+gradp=v(l —a?)r* ?ey+e,.

We report in Table 4 the values of £ff (u) for v = 1.00 e—4, and for different for mesh
sizes, with @ = 1 and @ = 0.49. For a = 1, u = (—y,z)T € H3(Q2). For a = 0.49,
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ue ﬂ H'"*(Q), hence u ¢ H?(Q). It seems that the Raviart-Thomas projec-

0<s<a
tion is less efficient in that last case.

In order to enhance the numerical results, one could also use a posteriori error esti-

a=1 a=0.45
h XFs Xrs + Hrp Xrs Xrs + Hrp
1.00e—1 3.03e—5 2.8le—6 3.05e—5 3.94e -6
5.00e—2 4.34e—6 1.54e —6 4.57e — 6 2.15e—6
250e—2 4.72e¢—7 241e—8 9.70e -7 8.52e—7
Rate hS.OO h3‘43 h2.48 hl.ll
TABLE 4. Values of ¢f(u), v =1.00e — 4.

mators to adapt the mesh near point Sy (see [35, 36] for k = 1 and [37] for k = 2).
Alternatively, using the nonconforming Crouzeix-Raviart mixed finite element method,
one can build a divergence-free basis, as described in [38]. Notice that using con-
forming finite elements, the Scott-Vogelius finite elements [39, 40, 41] produce ve-
locity approximations that are exactly divergence free.

The code used to get the numerical results can be downloaded on GitHub [42].

9. CONCLUSION

We analysed the discretization of Stokes problem with nonconforming finite el-
ements in light of the T-coercivity theory, we obtained local stability estimates for
order 1 in 2 or 3 dimension without mesh regularity assumption; and for order 1 in
2 dimension in the case of a shape-regular triangulation sequence. This local ap-
proach, splitting the normal and the tangential components could help to generalize
our results to order k > 3 (using maybe also other internal moment conservation).
This is ongoing work.We then provided numerical results to illustrate the impor-
tance of using H(div)-conforming projection. Further, we intend to extend the
study to other mixed finite element methods.
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