
HAL Id: cea-03833616
https://cea.hal.science/cea-03833616v3

Preprint submitted on 7 Apr 2023 (v3), last revised 27 Mar 2024 (v4)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Improved stability estimates for solving Stokes problem
with Fortin-Soulie finite elements

Erell Jamelot

To cite this version:
Erell Jamelot. Improved stability estimates for solving Stokes problem with Fortin-Soulie finite ele-
ments. 2023. �cea-03833616v3�

https://cea.hal.science/cea-03833616v3
https://hal.archives-ouvertes.fr


IMPROVED STABILITY ESTIMATES FOR SOLVING STOKES

PROBLEM WITH FORTIN-SOULIE FINITE ELEMENTS

ERELL JAMELOT
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Abstract. We propose to analyse the discretization of the Stokes problem
with nonconforming finite elements in light of the T-coercivity. First we ex-

plicit the stability constants with respect to the shape regularity parameter

for order 1 in 2 or 3 dimension, and order 2 in 2 dimension. In this last case,
we improve the result of the original Crouzeix-Raviart paper. Second, we il-

lustrate the importance of using a divergence-free velocity reconstruction on

some numerical experiments.
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1. Introduction

The Stokes problem describes the steady state of incompressible Newtonian
flows. They are derived from the Navier–Stokes equations [1]. With regard to
numerical analysis, the study of Stokes problem helps to build an appropriate ap-
proximation of the Navier–Stokes equations. We consider here a discretization with
nonconforming finite elements [2, 3]. We propose to state the discrete inf-sup condi-
tion in light of the T-coercivity (cf. [4] for Helmholtz-like problems, see [5], [6] and
[7] for the neutron diffusion equation), which allows to estimate the discrete error
constant. In Section 2, we recall the T-coercivity theory [4], which is known to be
an equivalent reformulation of the Banach–Nečas–Babuška Theorem. In Section 3
we apply it to the continuous Stokes Problem. We give details on the triangulation
in Section 4, and we apply the T-coercivity to the discretization of Stokes problem
with nonconforming mixed finite elements in Section 5. For the Stokes problem,
in the discrete case, this amounts to finding a Fortin operator. In Section 6 (resp.
7), we precise the proof of the well-posedness in the case of order 1 (resp. order 2)
nonconforming mixed finite elements. In Section 8, we illustrate the importance of
using a divergence-free velocity on some numerical experiments.
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2. T-coercivity

We recall here the T-coercivity theory as written in [4]. Consider first the vari-
ational problem, where V and W are two Hilbert spaces and f ∈ V ′:

(2.1) Find u ∈ V such that ∀v ∈W , a(u, v) = ⟨f, v⟩V .
Classically, we know that Problem (2.1) is well-posed if a(·, ·) satisfies the stabil-
ity and the solvability conditions of the so-called Banach–Nečas–Babuška (BNB)
Theorem (see a.e. [8, Thm. 25.9]). For some models, one can also prove the well-
posedness using the T-coercivity theory (cf. [4] for Helmholtz-like problems, see
[5], [6] and [7] for the neutron diffusion equation).

Definition 1. Let V and W be two Hilbert spaces and a(·, ·) be a continuous and
bilinear form over V ×W . It is T -coercive if

(2.2) ∃T ∈ L(V,W ), bijective, ∃α > 0, ∀v ∈ V , |a(v, Tv)| ≥ α∥v∥2V .

It is proved in [4, 9] that the T-coercivity condition is equivalent to the stability
and solvability conditions of the BNB Theorem. Whereas the BNB theorem relies
on an abstract inf–sup condition, T-coercivity uses explicit inf–sup operators, both
at the continuous and discrete levels.

Theorem 1. (well-posedness) Let a(·, ·) be a continuous and bilinear form. Suppose
that the form a(·, ·) is T -coercive. Then Problem (2.1) is well-posed.

3. Stokes problem

Let Ω be a connected bounded domain of Rd, d = 2, 3, with a polygonal (d = 2)
or Lipschitz polyhedral (d = 3) boundary ∂Ω. We consider Stokes problem:

(3.1) Find (u, p) such that

{
−ν∆u+ grad p = f ,

divu = 0.

with Dirichlet boundary conditions for the velocity u and a normalization condition
for the pressure p:

u = 0 on ∂Ω,

∫
Ω

p = 0.

The vector field u represents the velocity of the fluid and the scalar field p represents
its pressure divided by the fluid density which is supposed to be constant. The first
equation of (3.1) corresponds to the momentum balance equation and the second
one corresponds to the conservation of the mass. The constant parameter ν > 0 is
the kinematic viscosity of the fluid. The vector field f ∈ H−1(Ω) represents a body
forces divided by the fluid density.

Before stating the variational formulation of Problem (3.1), we provide some
definition and reminders. Let us set L2(Ω) = (L2(Ω))d, H1

0(Ω) = (H1
0 (Ω))

d,
H−1(Ω) = (H−1(Ω))d its dual space and L2

zmv(Ω) = {q ∈ L2(Ω) |
∫
Ω
q = 0}.

We recall that H(div; Ω) = {v ∈ L2(Ω) | divv ∈ L2(Ω)}. Let us first recall
Poincaré-Steklov inequality:

(3.2) ∃CPS > 0 | ∀v ∈ H1
0 (Ω), ∥v∥L2(Ω) ≤ CPS∥grad v∥L2(Ω).

Thanks to this result, in H1
0 (Ω), the semi-norm is equivalent to the natural norm,

so that the scalar product reads (v, w)H1
0 (Ω) = (grad v,gradw)L2(Ω) and the norm

is ∥v∥H1
0 (Ω) = ∥grad v∥L2(Ω). Let v, w ∈ H1

0(Ω). We denote by (vi)
d
i=1 (resp.
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(wi)
d
i=1) the components of v (resp. w), and we set Gradv = (∂jvi)

d
i,j=1 ∈ L2(Ω),

where L2(Ω) = [L2(Ω)]d×d. We have:

(Gradv,Gradw)L2(Ω) = (v,w)H1
0(Ω) =

d∑
i=1

(vi, wi)H1
0 (Ω)

and:

∥v∥H1
0(Ω) =

 d∑
j=1

∥vj∥2H1
0 (Ω)

1/2

= ∥Gradv∥L2(Ω).

Let us set V =
{
v ∈ H1

0(Ω) | divv = 0
}
. The vector space V is a closed subset of

H1
0(Ω). We denote by V⊥ the orthogonal of V in H1

0(Ω). Let νp > 0 be a kinematic
viscosity. We recall that [1, cor. I.2.4]:

Proposition 1. The operator div : H1
0(Ω) → L2(Ω) is an isomorphism of V⊥

onto L2
zmv(Ω). We call Cdiv the constant such that:

(3.3) ∀p ∈ L2
zmv(Ω), ∃!v ∈ V⊥ | divv = p and ∥v∥H1

0(Ω) ≤ Cdiv∥p∥L2(Ω).

The constant Cdiv depends only on the domain Ω. Notice that we have: Cdiv =
1/β(Ω) where β(Ω) is the inf-sup condition (or Ladyzhenskaya–Babuška–Brezzi
condition):

(3.4) β(Ω) = inf
q∈L2

zmv(Ω)\{0}
sup

v∈H1
0(Ω)\{0}

(q,divv)L2(Ω)

∥q∥L2(Ω) ∥v∥H1
0(Ω)

.

Generally, the value of β(Ω) is not known explicitly. In [10], Bernardi et al es-
tablished results on the discrete approximation of β(Ω) using conforming finite
elements. Recently, Gallistl proposed in [11] a numerical scheme with adaptive
meshes for computing approximations to β(Ω). In the case of d = 2, Costabel and
Dauge [12] established the following bound:

Theorem 2. Let Ω ⊂ R2 be a domain contained in a ball of radius R, star-shaped
with respect to a concentric ball of radius ρ. Then

(3.5) β(Ω) ≥ ρ√
2R

(
1 +

√
1− ρ2

R2

)−1/2

≥ ρ

2R
.

Let us detail the bound for some remarkable domains. If Ω is a ball, β(Ω) ≥ 1
2

and if Ω is a square, β(Ω) ≥ 1
2
√
2
. Suppose now that Ω is stretched in some direction

by a factor k, then β(Ω) ≥ 1
2 k . Finally, if Ω is L-shaped (resp. cross-shaped) such

that L = k l, where L is the largest length and l is the smallest length of an edge,
then β(Ω) ≥ 1

2
√
2 k

(resp. β(Ω) ≥ 1
4 k ).

The variational formulation of Problem (3.1) reads:
Find (u, p) ∈ H1

0(Ω)× L2
zmv(Ω) such that

(3.6)

{
ν(u,v)H1

0(Ω) − (p, divv)L2(Ω) = ⟨f ,v⟩H1
0(Ω) ∀v ∈ H1

0(Ω) ;

(q,divu)L2(Ω) = 0 ∀q ∈ L2
zmv(Ω).

Classically, one proves that Problem (3.6) is well-posed using Poincaré-Steklov in-
equality (3.2) and Prop. 1. Check for instance the proof of [1, Thm. I.5.1].
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Let us set X = H1
0(Ω)×L2

zmv(Ω) which is a Hilbert space which we endow with
the following norm:

(3.7) ∥(v, q)∥X =
(
∥v∥2H1

0(Ω) + ν−2 ∥q∥2L2(Ω)

)1/2
.

We consider now the following bilinear symmetric and continuous form:

(3.8)

{
aS : X × X → R

(u′, p′)× (v, q) 7→ ν(u′,v)H1
0(Ω) − (p′,divv)L2(Ω) − (q,divu′)L2(Ω)

.

We can write Problem (3.1) in an equivalent way as follows:

(3.9) Find (u, p) ∈ X such that aS ((u, p), (v, q)) = ⟨f ,v⟩H1
0(Ω) ∀(v, q) ∈ X .

Let us prove that Problem (3.9) is well-posed using the T-coercivity theory.

Proposition 2. The bilinear form aS(·, ·) is T -coercive:

(3.10)
∃T ∈ L(X ), bijective , ∃α > 0, ∀(u′, p′) ∈ X ,

aS ( (u′, p′), T ( (u′, p′) ) ) ≥ α ∥(u′, p′)∥2X .

Proof. We follow here the proof given in [13, 14]. Let us consider (u′, p′) ∈ X and
let us build (v⋆, q⋆) = T (u′, p′) ∈ X satisfying (2.2) (with V = X ). We need three
main steps.

1. According to Prop. 1, there exists ṽp′ ∈ H1
0(Ω) such that: div ṽp′ = p′

in Ω and ∥ṽp′∥H1
0(Ω) ≤ Cdiv ∥p′∥L2(Ω). Let us set vp′ = ν−1ṽp′ so that

divvp′ = ν−1 p′ and

(3.11) ∥vp′∥H1
0(Ω) ≤ ν−1 Cdiv ∥p′∥L2(Ω).

Let us set (v⋆, q⋆) := (γ u′ − vp′ ,−γ p′), with γ > 0. We obtain:

(3.12) aS ( (u′, p′), (v⋆, q⋆) ) = ν γ ∥u′∥2H1
0(Ω) + ν−1 ∥p′∥2L2(Ω) − ν (u′,vp′)H1

0(Ω).

2. In order to bound the last term of (3.12), we use Young inequality and then
inequality (3.11), so that for all η > 0:

(3.13) (u′,vp′)H1
0(Ω) ≤

η

2
∥u′∥2H1

0(Ω) +
η−1

2

(
Cdiv

ν

)2

∥p′∥2L2(Ω).

3. Using the bound (3.13) in (3.12) and choosing η = γ, we get:

aS ( (u′, p′), (v⋆, q⋆) ) ≥ ν

(
γ

2
∥u′∥2H1

0(Ω) + ν−2

(
1− γ−1

2
(Cdiv)

2

)
∥p′∥2L2(Ω)

)
.

Consider now γ = (Cdiv)
2. We obtain:

aS ( (u′, p′), (v⋆, q⋆) ) ≥ ν Cmin ∥(u′, p′)∥2X where Cmin =
1

2
min( (Cdiv)

2, 1 ).
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We obtain (3.10) with α = ν Cmin. The operator T such that T ( (u′, p′) ) = (v⋆, q⋆)
is linear and continuous:

∥T ( (u′, p′) ) ∥2X := ∥v⋆∥2H1
0(Ω) + ν−2 ∥q⋆∥2L2(Ω)

≤ 2 γ2 ∥u′∥2H1
0(Ω) + 2 ∥vp′∥2H1

0(Ω) + γ2 ν−2 ∥p′∥2L2(Ω),

≤ 2 γ2 ∥u′∥2H1
0(Ω) + ( 2 (Cdiv)

2 + γ2) ν−2 ∥p′∥2L2(Ω),

≤ (Cmax)
2 ∥(u′, p′)∥2X ,

where Cmax = Cdiv

(
max(2 + (Cdiv)

2, 2 (Cdiv)
2)
)1/2

.

Remark that, given (v⋆, q⋆) ∈ X , choosing (u′, p′) = (γ−1v⋆ − γ−2vq⋆ ,−γ−1q⋆)
yields T ((u′, p′)) = (v⋆, q⋆). Hence, the operator T ∈ L(X ) is bijective. □

We can now prove the

Theorem 3. Problem (3.9) is well-posed. It admits one and only one solution such
that:

(3.14) ∀f ∈ H−1(Ω),

{
∥u∥H1

0(Ω) ≤ ν−1 ∥f∥H−1(Ω),

∥p∥L2(Ω) ≤ Cdiv ∥f∥H−1(Ω).

Proof. According to Prop. 2, the continuous bilinear form aS(·, ·) is T -coercive.
Hence, according to Theorem 1, Problem (3.9) is well-posed. Let us prove (3.14).
Consider (u, p) the unique solution of Problem (3.9). Choosing v = 0, we ob-
tain that ∀q ∈ L2

zmv(Ω), (q,divu)L2(Ω) = 0, so that u ∈ V. Now, choosing

v = u and using Cauchy-Schwarz inequality, we have: ν ∥u∥2
H1

0(Ω)
= ⟨f ,u⟩H1

0(Ω) ≤
∥f∥H−1(Ω) ∥u∥H1

0(Ω), so that: ∥u∥H1
0(Ω) ≤ ν−1 ∥f∥H−1(Ω). Next, we choose in (3.9)

v = ṽp ∈ V⊥, where div ṽp = −p (see Prop. 1). Since u ∈ V and ṽp ∈ V⊥, we
have (u, ṽp)H1

0(Ω) = 0. This gives:

−(p, div ṽp)L2(Ω) = ∥p∥2L2(Ω) = ⟨f , ṽp⟩H1
0(Ω) ≤ ∥f∥H−1(Ω) ∥ṽp∥H1

0(Ω) ≤ Cdiv ∥f∥H−1(Ω) ∥p∥L2(Ω),

so that: ∥p∥L2(Ω) ≤ Cdiv∥f∥H−1(Ω). □

Remark 1. We recover the first Banach–Nečas–Babuška condition [8, Thm. 25.9,
(BNB1)]:

aS ( (u′, p′), (v⋆, q⋆) ) ≥ ν Cmin (Cmax)
−1 ∥(u′, p′)∥X ∥(v⋆, q⋆)∥X .

Thus, the T-coercivity approach allows to give an estimate of the stability con-
stant Cstab := ν Cmin (Cmax)

−1. In our computations, it depends on the choice of
the parameters η and γ, so that it could be further optimized.
If we were using a conforming discretization to solve Problem (3.9) (a.e. Taylor-
Hood finite elements [15]), we would use the bilinear form aS(·, ·) to state the
discrete variational formulation. Let us call the discrete spaces Xc,h ⊂ H1

0(Ω) and
Qc,h ⊂ L2

zmv(Ω). Then to prove the discrete T-coercivity, we would need to state
the discrete counterpart to Proposition 1. To do so, we can build a linear operator
Πc : X → Xh, known as Fortin operator, such that (see a.e. [16, §8.4.1]):

∃Cc | ∀v ∈ H1(Ω) ∥GradΠcv∥L2(Ω) ≤ Cc∥Gradv∥L2(Ω),(3.15)

∀v ∈ H1(Ω) (divΠcv, qh)L2(Ω) = (divv, qh)L2(Ω), ∀qh ∈ Qc,h.(3.16)
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Using a nonconforming discretization, we will not use the bilinear form aS(·, ·) to
exhibit the discrete variational formulation, but we will need a similar operator to
(3.15)-(3.16) to prove the discrete T-coercivity, which is stated in Theorem 4.

4. Discretization

We call (O, (xd′)dd′=1) the Cartesian coordinates system, of orthonormal basis
(ed′)dd′=1. Consider (Th)h a simplicial triangulation sequence of Ω, where h denotes
the mesh size. For a triangulation Th, we use the following index sets:

• IK denotes the index set of the elements, such that Th :=
⋃

ℓ∈IK

Kℓ is the

set of elements.
• IF denotes the index set of the facets1, such that Fh :=

⋃
f∈IF

Ff is the set

of facets.
Let IF = Ii

F ∪ Ib
F , where ∀f ∈ Ii

F , Ff ∈ Ω and ∀f ∈ Ib
F , Ff ∈ ∂Ω.

• IS denotes the index set of the vertices, such that (Sj)j∈IS
is the set of

vertices.
Let IS = Ii

S ∪ Ib
S , where ∀j ∈ Ii

S , Sj ∈ Ω and ∀j ∈ Ib
S , Sj ∈ ∂Ω.

We also define the following index subsets:

• ∀ℓ ∈ IK , IF,ℓ = {f ∈ IF |Ff ∈ Kℓ}, IS,ℓ = {j ∈ IS |Sj ∈ Kℓ}.
• ∀j ∈ IS , IK,j = {ℓ ∈ IK |Sj ∈ Kℓ}, Nj := card(IK,j).

For all ℓ ∈ IK , we call hℓ and ρℓ the diameters of Kℓ and its inscribed sphere
respectively, and we let: σℓ =

hℓ

ρℓ
. When the (Th)h is a shape-regular triangulation

sequence (see a.e. [17, def. 11.2]), there exists a constant σ > 1, called the shape
regularity parameter, such that for all h, for all ℓ ∈ IK , σℓ ≤ σ. For all f ∈ IF ,
Mf denotes the barycentre of Ff , and by nf its unit normal (outward oriented if
Ff ∈ ∂Ω). For all j ∈ IS , for all ℓ ∈ IK,j , λj,ℓ denotes the barycentric coordinate
of Sj in Kℓ; Fj,ℓ denotes the face opposite to vertex Sj in element Kℓ, and xj,ℓ

denotes its barycentre. We call Sj,ℓ the outward normal vector of Fj,ℓ and of norm
|Sj,ℓ| = |Fj,ℓ|.

Let introduce spaces of piecewise regular elements:
We set PhH

1 =
{
v ∈ L2(Ω) ; ∀ℓ ∈ IK , v|Kℓ

∈ H1(Kℓ)
}
, endowed with the scalar

product :

(v, w)h :=
∑
ℓ∈IK

(grad v,gradw)L2(Kℓ) ∥v∥2h =
∑
ℓ∈IK

∥grad v∥2L2(Kℓ)
.

We set PhH
1 = [PhH

1]d, endowed with the scalar product :

(v,w)h :=
∑
ℓ∈IK

(Gradv,Gradw)L2(Kℓ) ∥v∥2h =
∑
ℓ∈IK

∥Gradv∥2L2(Kℓ)
.

Let f ∈ Ii
F such that Ff = ∂KL ∩ ∂KR and nf is outward KL oriented.

The jump (resp. average) of a function v ∈ PhH
1 across the facet Ff is defined as

follows: [v]Ff
:= v|KL

− v|KR
(resp. {v}Ff

:= 1
2 (v|KL

+ v|KR
) ). For f ∈ Ib

F , we set:
[v]Ff

:= v|Ff
and {v}Ff

:= v|Ff
.

1The term facet stands for face (resp. edge) when d = 3 (resp. d = 2).
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We set PhH(div) =
{
v ∈ L2(Ω) ; ∀ℓ ∈ IK , v|Kℓ

∈ H(div; Kℓ)
}
, and we define

the operator divh such that:

∀v ∈ PhH(div), ∀q ∈ L2(Ω), (divh v, q) =
∑
ℓ∈IK

(divv, q)L2(Kℓ).

We recall classical finite elements estimates [17]. Let K̂ be the reference simplex

and F̂ be the reference facet. For ℓ ∈ IK (resp. f ∈ IF ), we denote by Tℓ : K̂ → Kℓ

(resp. Tf : F̂ → Ff ) the geometric mapping such that ∀x̂ ∈ K̂, x|Kℓ
= Tℓ(x̂) =

Bℓx̂ + bℓ (resp. x|Ff
= Tf (x̂) = Bf x̂ + bf ), and we set Jℓ = det(Bℓ) (resp.

Jf = det(Bf )). There holds:

(4.1) |Jℓ| = d! |Kℓ|, ∥Bℓ∥ =
hℓ
ρK̂

, ∥Bℓ
−1∥ =

hK̂
ρℓ
, |Jf | = (d− 1)! |Ff |.

For v ∈ L2(Kℓ), we set v̂ℓ = v ◦ Tℓ. For v ∈ v2(Ff ), we set: v̂f = v ◦ Tf . Changing
the variable, we get:

(4.2) ∥v∥2L2(Kℓ)
= |Jℓ| ∥v̂ℓ∥2L2(K̂)

, and ∥v∥2L2(Ff )
= |Jf | ∥v̂f∥2L2(F̂ )

.

Let v ∈ PhH
1. By changing the variable, grad v|Kℓ

= (Bℓ
−1)T gradx̂ v̂ℓ, and it

holds:

(4.3)
(i) ∥grad v∥2L2(Kℓ)

≤ ∥Bℓ
−1∥2 |Kℓ| ∥gradx̂ v̂ℓ∥2L2(K̂)

,

(ii) ∥gradx̂ v̂ℓ∥2L2(K̂)
≤ ∥Bℓ∥2 |Kℓ|−1 ∥grad v∥2L2(Kℓ)

.

We recall the Poincaré-Steklov inequality in cells [17, Lemma 12.11]:
for all ℓ ∈ IK (Kℓ is a convex set), ∀v ∈ H1(Kℓ):

(4.4) ∥vℓ∥L2(Kℓ) ≤ π−1hℓ∥grad v∥L2(Kℓ), where vℓ = v|Kℓ
−
∫
Kℓ
v

|Kℓ|
.

For all D ⊂ Rd, and k ∈ N∗, we call P k(D) the set of order k polynomials on D,
Pk(D) = (P k(D))d, and we consider the broken polynomial space:

P k
disc(Th) =

{
q ∈ L2(Ω); ∀ℓ ∈ IK , q|Kℓ

∈ P k(Kℓ)
}
, Pk

disc(Th) := (P k
disc(Th))d.

We let P 0(Th) be the space of piecewise constant functions on Th.

5. The nonconforming mixed finite element method for Stokes

The nonconforming finite element method was introduced by Crouzeix and Raviart
in [2] to solve Stokes Problem (3.1). We approximate the vector space H1(Ω) com-
ponent by component by piecewise polynomials of order k ∈ N⋆. Let us consider Xh

(resp. X0,h), the space of nonconforming approximation of H1(Ω) (resp. H1
0 (Ω))

of order k:

(5.1)

Xh =

{
vh ∈ P k

disc(Th) ; ∀f ∈ Ii
F , ∀qh ∈ P k−1(Ff ),

∫
Ff

[vh] qh = 0

}
;

X0,h =

{
vh ∈ Xh ; ∀f ∈ Ib

F , ∀qh ∈ P k−1(Ff ),

∫
Ff

vh qh = 0

}
.

The condition on the jumps of vh on the inner facets is often called the patch-test
condition.
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Proposition 3. The broken norm vh → ∥vh∥h is a norm over X0,h.

Proof. Let vh ∈ X0,h such that ∥vh∥h = 0. Then for all ℓ ∈ IK , vh|Kℓ
is a constant.

For all f ∈ Ii
F the jump [vh]Ff

vanishes, so that vh is a constant over Ω. We deduce
from the discrete boundary condition that vh = 0. □

The space of nonconforming approximation of H1(Ω) (resp. H1
0(Ω)) of order k

is Xh = (Xh)
d (resp. X0,h = (X0,h)

d). We set Xh := X0,h × Qh where Qh =

P k−1
disc (Th) ∩ L2

zmv(Ω). We deduce from Proposition 3 the

Proposition 4. The broken norm defined below is a norm on Xh:

(5.2) ∥(·, ·)∥Xh
:

{ Xh 7→ R

(vh, qh) →
(
∥vh∥2h + ν−2 ∥qh∥2L2(Ω)

)1/2 .

Thus, the product space Xh endowed with the broken norm ∥ · ∥Xh
is a Hilbert

space.

Proposition 5. The following discrete Poincaré–Steklov inequality holds: there
exists a constant Cnc

PS independent of Th such that

(5.3) ∀vh ∈ X0,h, ∥vh∥L2(Ω) ≤ Cnc
PS ∥vh∥h,

where Cnc
PS is independent of Th and is proportional to the diameter of Ω.

Proof. Inequality (5.3) is stated in [8, Lemma 36.6] for k = 1, but one can check
that the proof holds true for higher-order, thanks to the patch-test condition. An
alternative proof is given in [18, Theorem C.1]. □

We consider the discrete continuous bilinear form aS,h(·, ·) such that :{
aS,h : Xh ×Xh → R

(u′
h, p

′
h)× (vh, qh) 7→ ν(u′

h,vh)h − (divh vh, p
′
h)− (divh u

′
h, qh)

.

Let ℓf ∈ L(Xh,R) be such that :

∀(vh, qh) ∈ Xh, ℓf ( (vh, qh) ) =

{
(f ,vh)L2(Ω) if f ∈ L2(Ω)

⟨f , Ih(vh)⟩H1
0(Ω) if f ̸∈ L2(Ω)

,

where Ih : X0,h → Y0,h, with Y0,h = {vh ∈ H1
0(Ω) ; ∀ℓ ∈ IK , vh|Kℓ

∈ Pk(Kℓ)},
is the averaging operator described in [17, §22.4.1]. There exists a constant Cnc

Ih
> 0

independent of Th such that :

(5.4) ∥Ihvh∥H1
0(Ω) ≤ Cnc

Ih
∥vh∥h, ∀vh ∈ X0,h.

The nonconforming discretization of Problem (3.9) reads:
Find (uh, ph) ∈ Xh such that

(5.5) aS,h ((uh, ph), (vh, qh)) = ℓf ( (vh, qh) ) ∀(vh, qh) ∈ Xh.

Let us prove that Problem (5.5) is well-posed using the T-coercivity theory.

Theorem 4. Suppose that there exists a Fortin operator Πnc : H
1(Ω) → Xh such

that

∃Cnc | ∀v ∈ H1(Ω) ∥Πncv∥h ≤ Cnc∥Gradv∥L2(Ω),(5.6)

∀v ∈ H1(Ω) (divh Πncv, qh) = (divv, qh)L2(Ω), ∀q ∈ Qh,(5.7)
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where the constant Cnc does not depend on h. Then Problem (5.5) is well-posed.
Moreover, it admits one and only one solution (uh, ph) such that:

(5.8)

if f ∈ L2(Ω) :

 ∥uh∥h ≤ Cnc
PS ν

−1 ∥f∥L2(Ω)

∥ph∥L2(Ω) ≤ 2Cnc
PS C

nc
div ∥f∥L2(Ω)

,

if f ̸∈ L2(Ω) :


∥uh∥h ≤ Cnc

Ih
ν−1 ∥f∥H−1(Ω)

∥ph∥L2(Ω) ≤ 2Cnc
Ih
Cnc

div ∥f∥H−1(Ω)

,

where Cnc
div = Cdiv Cnc.

Proof. Let us consider (u′
h, p

′
h) ∈ Xh and let us build (v⋆

h, q
⋆
h) ∈ Xh satisfying (2.2)

(with V = Xh). We follow the three main steps of the proof of Theorem 1.

1. According to Proposition 1, there exists ṽp′
h
∈ V⊥ such that div ṽp′

h
=

p′h in Ω and ∥ṽp′
h
∥H1

0(Ω) ≤ Cdiv∥p′h∥L2(Ω). Let us set vp′
h

= ν−1ṽp′
h
.

Consider vh,p′
h

= Πncvp′
h
, for all qh ∈ Qh, we have: (divh vh,p′

h
, qh) =

ν−1 (p′h, qh)L2(Ω) and

(5.9) ∥vh,p′
h
∥h ≤ ν−1 Cnc

div ∥p′h∥L2(Ω) where C
nc
div = Cnc Cdiv.

Let us set (v⋆
h, q

⋆
h) := (γncu

′
h − vh,p′

h
,−γnc p′h), with γnc > 0. We obtain:

(5.10) aS,h ( (u′
h, p

′
h), (v

⋆
h, q

⋆
h) ) = ν γnc∥u′

h∥2h + ν−1∥p′h∥2L2(Ω) − ν(u′
h,vh,p′

h
)h.

2. In order to bound the last term of (5.10), we use Young inequality and then
inequality (5.9) so that for all ηnc > 0:

(5.11) (u′
h,vh,p′

h
)h ≤ ηnc

2
∥u′

h∥2h +
η−1
nc

2

(
Cnc

div

ν

)2

∥p′h∥2L2(Ω).

3. Using the bound (5.11) in (5.10) and choosing ηnc = γnc, we get:

aS,h ( (u′
h, p

′
h), (v

⋆
h, q

⋆
h) ) ≥ ν

(
γnc
2

∥u′
h∥2h + ν−2

(
1− (γnc)

−1

2
(Cnc

div)
2

)
∥p′h∥2L2(Ω)

)
.

Consider now γnc = (Cnc
div)

2. We obtain:

aS,h ( (u′
h, p

′
h), (v

⋆
h, q

⋆
h) ) ≥

ν

2
Cnc

min ∥(u′
h, p

′
h)∥2Xh

,

where Cnc
min =

1

2
min( (Cnc

div)
2, 1 ).

The operator Th such that Th(u
′
h, p

′
h) = (v⋆

h, p
⋆
h) is linear and continuous:

∥Th(u′
h, p

′
h)∥2Xh

= ∥v⋆
h∥2h + ν−2 ∥q⋆h∥L2(Ω) ≤ (Cnc

max)
2 ∥(u′

h, p
′
h)∥2Xh

where Cnc
max = Cnc

div

(
max

(
2 + (Cnc

div)
2 , 2 (Cnc

div)
2
) )1/2

. Remark that the operator
Th ∈ L(Xh) is bijective. The discrete continuous bilinear form aS,h(·, ·) is then
Th-coercive and according to Theorem 1, Problem (5.5) is well posed. Consider
(uh, ph) the unique solution of Problem (5.5). Choosing vh = 0, we obtain that
divh uh = 0. Now, choosing vh = uh in (5.5) and using Cauchy-Schwarz inequality,
we get that:

(5.12)


∥uh∥h ≤ ν−1 Cnc

PS ∥f∥L2(Ω) if f ∈ L2(Ω), using (5.3) ;

∥uh∥h ≤ ν−1 Cnc
Ih

∥f∥H−1(Ω) if f ̸∈ L2(Ω), using (5.4).
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Consider (vh, qh) = (vh,ph
, 0) in (5.5), where vh,ph

= Πncvph
is built as vh,p′

h
in

point 1, setting p′h = ph. Suppose that f ∈ L2(Ω). Using the triangular inequal-
ity, Cauchy-Schwarz inequality, Poincaré-Steklov inequality (5.3), Theorem 4, and
estimate (5.12), we have:

∥ph∥2L2(Ω) = ν (uh,vh,ph
)h − (f ,vh,ph

)L2(Ω) ,

≤ ν ∥uh∥h ∥vh,ph
∥h + ∥f∥L2(Ω) ∥vh,ph

∥L2(Ω)

≤ 2Cnc
PS ∥f∥L2(Ω) ∥vh,ph

∥h ≤ 2Cnc
PS Cnc ∥f∥L2(Ω) ∥Gradvph

∥L2(Ω) ,

≤ 2Cnc
PS C

nc
div ∥f∥L2(Ω) ∥ph∥L2(Ω).

Applying the same reasoning when f ∈ H−1(Ω), we get that:

(5.13)


∥ph∥L2(Ω) ≤ 2Cnc

PS C
nc
div ∥f∥L2(Ω) if f ∈ L2(Ω), using (5.3) ;

∥ph∥L2(Ω) ≤ 2Cnc
Ih

Cnc
div∥f∥H−1(Ω) if f ̸∈ L2(Ω), using (5.4).

□

Remark 2. Again, we recover the first Banach–Nečas–Babuška condition [8, Thm.
25.9, (BNB1)]:

aS,h ( (u′
h, p

′
h), (v

⋆
h, q

⋆
h) ) ≥ ν Cnc

min (C
nc
max)

−1 ∥(u′
h, p

′
h)∥Xh

∥(v⋆
h, q

⋆
h)∥Xh

.

As a corollary of Theorem 4, the following a priori error estimate follows [2,
Theorem 4]:

Corollary 1. Under the assumption of Theorem 4, suppose that (u, p) ∈ H1+k(Ω)×
Hk(Ω), we then have the estimate:

(5.14) ∥u− uh∥L2(Ω) ≤ Cσℓ hk+1
(
|u|Hk+1(Ω) + ν−1 |p|Hk(Ω)

)
,

where the constant C > 0 is independent of h, σ is the shape regularity parameter
and the exponent ℓ ∈ N⋆ depends on k.

The main issue with nonconforming mixed finite elements is the construction
the basis functions. In a recent paper, Sauter explains such a construction in two
dimensions [18, Corollary 2.4], and gives a bound to the discrete counterpart βT (Ω)
of β(Ω) defined in (3.4):

(5.15) βT (Ω) = inf
qh∈Qh\{0}

sup
vh∈X0,h\{0}

(divh vh, qh)

∥qh∥L2(Ω) ∥vh∥h
≥ cT k

−α.

This bound is in cT k
−α, where the parameter α is explicit and depends on k and

on the mesh topology; and the constant cT depends only on the shape-regularity
of the mesh.

6. Nonconforming Crouzeix-Raviart mixed finite elements

We study the lowest order nonconforming Crouzeix-Raviart mixed finite elements
[2]. Let us consider XCR (resp. X0,CR), the space of nonconforming approximation
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of H1(Ω) (resp. H1
0 (Ω)) of order 1:

(6.1)

XCR =

{
vh ∈ P 1

disc(Th) ; ∀f ∈ Ii
F ,

∫
Ff

[vh] = 0

}
;

X0,CR =

{
vh ∈ XCR ; ∀f ∈ Ib

F ,

∫
Ff

vh = 0

}
.

The space of nonconforming approximation of of H1(Ω) (resp. H1
0(Ω)) of order 1

is XCR = (XCR)
d (resp. X0,CR = (X0,CR)

d). We set XCR := X0,CR ×QCR where
QCR = P 0(Th) ∩ L2

zmv(Ω).
We can endow XCR with the basis (ψf )f∈IF

such that: ∀ℓ ∈ IK ,

ψf |Kℓ
=

{
1− dλi,ℓ if f ∈ IF,ℓ,

0 otherwise,

where Si is the vertex opposite to Ff in Kℓ. We then have ψf |Ff
= 1, so that

[ψf ]Ff
= 0 if f ∈ Ii

F (i.e. Ff ∈
◦
Ω), and ∀f ′ ̸= f ,

∫
Ff′

ψf = 0.

We have: XCR = vect ((ψf )f∈IF
) and X0,CR = vect

(
(ψf )f∈Ii

F

)
.

The Crouzeix-Raviart interpolation operator πCR for scalar functions is defined by:

πCR :


H1(Ω) → XCR

v 7→
∑
f∈IF

πfv ψf , where πfv =
1

|Ff |

∫
Ff

v.

Notice that ∀f ∈ IF ,
∫
Ff
πCRv =

∫
Ff
v. Moreover, the Crouzeix-Raviart interpo-

lation operator preserves the constants, so that πCRvΩ = vΩ where vΩ =
∫
Ω
v/|Ω|.

We recall the following result [19, Lemma 2]):

Lemma 1. The Crouzeix-Raviart interpolation operator πCR is such that:

(6.2) ∀v ∈ H1(Ω), ∥πCRv∥h ≤ ∥grad v∥L2(Ω).

Proof. We have, integrating by parts twice and using Cauchy-Schwarz inequality:

gradπCRv|Kℓ
= |Kℓ|−1

∫
Kℓ

gradπCRv = |Kℓ|−1
∑

f∈IF,ℓ

∫
Ff

πCRv nf ,

= |Kℓ|−1
∑

f∈IF,ℓ

∫
Ff

v nf = |Kℓ|−1

∫
Kℓ

grad v,

|gradπCRv|Kℓ
| ≤ |Kℓ|−1/2 ∥grad v∥L2(Kℓ)

⇒ ∥gradπCRv∥2L2(Kℓ)
≤ ∥grad v∥2L2(Kℓ)

.

Summing these local estimates over ℓ ∈ IK , we obtain (6.2). □

For a vector v ∈ H1(Ω) of components (vd′)dd′=1, the Crouzeix-Raviart interpo-

lation operator is such that: ΠCRv = (πCRvd′)
d
d′=1. Let us set Πfv = (πfvd′)

d
d′=1.

Lemma 2. The Crouzeix-Raviart interpolation operator ΠCR can play the role of
the Fortin operator:

∀v ∈ H1(Ω) ∥ΠCRv∥h ≤ ∥Gradv∥L2(Ω),(6.3)

∀v ∈ H1(Ω) (divh ΠCRv, qh) = (divv, qh)L2(Ω), ∀q ∈ Qh,(6.4)
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Moreover, for all v ∈ P1(Ω), ΠCRv = v.

Proof. We obtain (6.3) applying Lemma 1 component by component. By integrat-
ing by parts, we have ∀v ∈ H1(Ω), ∀ℓ ∈ IK :∫

Kℓ

divΠCRv =
∑

f∈IF,ℓ

∫
Ff

ΠCRv · nf =
∑

f∈IF,ℓ

∫
Ff

Πfv · nf ,

=
∑

f∈IF,ℓ

∫
Ff

v · nf =

∫
Kℓ

divv,

so that (6.4) is satisfied. □

We can apply the T-coercivity theory to show the next following result:

Theorem 5. Let Xh = XCR. Then the continuous bilinear form aS,h(·, ·) is Th-
coercive and Problem (5.5) is well-posed.

Proof. Using estimates (6.3) and (5.3), we apply the proof of Theorem 4. □

Since the constant of the interpolation operator ΠCR is equal to 1, we have
CCR

min = Cmin and CCR
max = Cmax: the stability constant of the nonconforming

Crouzeix-Raviart mixed finite elements is independent of the mesh. This is not the
case for higher-order (see [20, Theorem 2.2]).
For higher-order, we cannot built the interpolation operator component by compo-
nent, since higher-order divergence moments must be preserved. Thus, for k > 1,
we must build Πnc so that for all v ∈ H1(Ω), for all ℓ ∈ IK , for all q ∈ P k−1(Kℓ):∫

Kℓ

q divΠncv =

∫
Kℓ

q divv.

We recall that by integration by parts, we have:

(6.5)

∫
Kℓ

q divΠncv +

∫
Kℓ

grad q ·Πncv =

∫
∂Kℓ

qΠncv · n|∂Kℓ
.

Hence, to obtain a local estimate of ∥GradΠncv∥L2(Kℓ), we will need the following
Lemma:

Lemma 3. Let v ∈ H1(Ω) and q ∈ P k−1(Kℓ). We set vℓ := vℓ −
∫
Kℓ

v

|Kℓ|
, where

vℓ = v|Kℓ
. We have:

(6.6)

∣∣∣∣∫
∂Kℓ

q vℓ · n|∂Kℓ

∣∣∣∣ ≤ |Kℓ|k/2 ∥Gradvℓ∥L2(Kℓ)

Proof. We have by integration by parts, and then using Cauchy-Schwarz inequality:∣∣∣∣∫
∂Kℓ

q vℓ · nf

∣∣∣∣ ≤ ∣∣∣∣∫
Kℓ

q divvℓ

∣∣∣∣+ ∣∣∣∣∫
Kℓ

grad q · vℓ

∣∣∣∣ ,
≤ ∥q∥L2(Kℓ) ∥Gradvℓ∥L2(Kℓ) + ∥grad q∥L2(Kℓ) ∥vℓ∥L2(Kℓ),

≤ |Kℓ|k/2∥Gradvℓ∥L2(Kℓ) + |Kℓ|(k−1)/2 ∥vℓ∥L2(Kℓ),

≲ |Kℓ|k/2∥Gradvℓ∥L2(Kℓ) using (4.4).

□
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In the next section, we will see that for k = 2, we will need Lemma 3. For k ≥ 3,
it could be necessary to bound the tangential components of vℓ. To do so, we would
need to preserve curl integrals on Kℓ. Indeed, by integration by parts, we have:

• For d = 2, v ∈ H1(Ω), q ∈ P k−1(Kℓ):

(6.7)

∫
Kℓ

q (curl q · v − curlv q) =

∫
∂Kℓ

q v × n|∂Kℓ
.

• For d = 3, v ∈ H1(Ω), w ∈ Pk−1(Kℓ):

(6.8)

∫
Kℓ

(w · curl v − curlw · v) =
∫
∂Kℓ

(n|∂Kℓ
× v × n|∂Kℓ

) · (w × n|∂Kℓ
).

7. Fortin-Soulie mixed finite elements

We consider here the case d = 2 and we study Fortin-Soulie mixed finite elements
[3]. We consider a shape-regular triangulation sequence (Th)h.
Let us consider XFS (resp. X0,FS), the space of nonconforming approximation of
H1(Ω) (resp. H1

0 (Ω)) of order 2:

(7.1)

XFS =

{
vh ∈ P 2

disc(Th) ; ∀f ∈ Ii
F , ∀qh ∈ P 1(Ff ),

∫
Ff

[vh] qh = 0

}
;

X0,FS =

{
vh ∈ XFS ; ∀f ∈ Ib

F , ∀qh ∈ P 1(Ff ),

∫
Ff

vh qh = 0

}
.

The space of nonconforming approximation of H1(Ω) (resp. H1
0(Ω)) of order 2 is

XFS = (XFS)
2 (resp. X0,FS = (X0,FS)

2). We set XFS = X0,FS × QFS where
QFS := P 1

disc(Th) ∩ L2
zmv(Ω).

The building of a basis for X0,FS is more involved than for X0,CR since we cannot
use two points per facet as degrees of freedom. Indeed, for all ℓ ∈ Kℓ, there exists
a polynomial of order 2 vanishing on the Gauss-Legendre points of the facets of the
boundary ∂Kℓ. Let f ∈ IF . The barycentric coordinates of the two Gauss-Legendre
points (p+,f , p−,f ) on Ff are such that:

p+,f = (c+, c−), p−,f = (c−, c+), where c± = (1± 1/
√
3)/2.

These points can be used to integrate exactly order three polynomials:

∀g ∈ P 3(Ff ),

∫
Ff

g =
|Ff |
2

(g(p+,f ) + g(p−,f )) .

For all ℓ ∈ IK , we define the quadratic function ϕKℓ
that vanishes on the six

Gauss-Legendre points of the facets of Kℓ (see Fig. 1):

(7.2) ϕKℓ
:= 2− 3

∑
i∈IS,ℓ

λ2i,ℓ such that ∀f ∈ IF,ℓ, ∀q ∈ P 1(F ),

∫
Ff

ϕKℓ
q = 0.

We also define the spaces of P 2-Lagrange functions:

XLG :=
{
vh ∈ H1(Ω); ∀ℓ ∈ IK , vh|Kℓ

∈ P 2(Kℓ)
}
,

X0,LG :=
{
vh ∈ XLG; vh|∂Ω = 0

}
.

The Proposition below proved in [3, Prop. 1] allows to build a basis for X0,FS :
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p1 p2

p3

p4

p5

p6

Figure 1. The six Gauss-Legendre points of an element Kℓ and
the elliptic function ϕKℓ

.

Proposition 6. We have the following decomposition: XFS = XLG + Φh with
dim(XLG ∩Φh) = 1. Any function of XFS can be written as the sum of a function
of XLG and a function of Φh. This representation can be made unique by specifying
one degree of freedom.

Notice that Φh ∩ XLG = vect(vΦ), where for all ℓ ∈ IK , vΦ|Kℓ
= ϕKℓ

. Then,
counting the degrees of freedom, one can show that dim(XFS) = dim(XLG) +
dim(Φh) + 1. For problems involving Dirichlet boundary conditions we can prove
thus that for X0,FS the representation is unique and X0,FS = X0,LG ⊕ Φh. We
have XLG = vect

(
(ϕSi

)i∈IS
, (ϕFf

)f∈IF

)
where the basis functions are such that:

∀i, j ∈ IS , ∀f, g ∈ IF :
ϕSi(Sj) = δij , ϕSi(Mf ) = 0, ϕMf

(Mg) = δfg, ϕMf
(Si) = 0.

For all ℓ ∈ IK , we will denote by (ϕℓ,j)
6
j=1 the local nodal basis such that:

(ϕℓ,j)
3
j=1 = (ϕSi|Kℓ

)i∈IS,ℓ
and (ϕℓ,j)

6
j=4 = (ϕFf |Kℓ

)f∈IF,ℓ
.

The spaces XFS and X0,FS are such that:

(7.3)

XFS = vect
(
(ϕSi

)i∈IS
, (ϕFf

)f∈IF
, (ϕKℓ

)ℓ∈IK

)
,

X0,FS = vect
(
(ϕSi

)i∈Ii
S
, (ϕFf

)f∈Ii
F
, (ϕKℓ

)ℓ∈IK

)
.

We propose here an alternative definition of the Fortin interpolation operator pro-
posed in [3]. Let us first recall the Scott-Zhang interpolation operator [21, 22]. For

all i ∈ IS , we choose some ℓi ∈ IK,i, and we build the L2(Kℓi)-dual basis (ϕ̃ℓi,j)
6
j=1

of the local nodal basis such that:

∀j, j′ ∈ {1, · · · , 6},
∫
Kℓi

ϕ̃ℓi,j ϕℓi,j′ = δj,j′ .

Let us define the Fortin-Soulie interpolation operator for scalar functions by:

(7.4)
πFS :


H1(Ω) → XFS

v 7→ π̃v +
∑
ℓ∈IK

vKℓ
ϕKℓ

,

with π̃v =
∑
i∈IS

vSi
ϕSi

+
∑
f∈IF

vFf
ϕFf

.
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• The coefficients (vSi
)i∈IS

are fixed so that: ∀i ∈ IS , vSi
=

∫
Kℓ,i

v ϕ̃ℓi,ji ,

where ji is the index such that

∫
Kℓi

ϕ̃ℓi,ji ϕSi|Kℓi
= 1.

• The coefficients
(
vFf

)
f∈IF

are fixed so that: ∀f ∈ IF ,
∫
Ff

π̃v =

∫
Ff

v.

For all ℓ ∈ IK , the coefficient vKℓ
is fixed so that:

∫
Kℓ

πFSv =

∫
Kℓ

v.

The definition (7.4) is more general than the one given in [3], which holds for
v ∈ H2(Ω).

We set vSi := ( π̃v1(Si), π̃v2(Si))
T
and vFf

:= ( π̃v1(Ff ), π̃v2(Ff ) )
T
.

We can define two different Fortin-Soulie interpolation operators for vector func-
tions. First, let

Π̃FS :

{
H1(Ω) → XFS

v 7→ (πFS(v)1, πFS(v)2)
T .

We remind that the coefficients (ṽKℓ
)ℓ∈IK

are such that:

(7.5) ∀ℓ ∈ IK ,
∫
Kℓ

Π̃FSv =

∫
Kℓ

v.

The interpolation operator Π̃FS preserves the local averages, but it doesn’t preserve
the divergence. We then define a second interpolation operator which preserves the
divergence in a weak sense:

ΠFS :


H1(Ω) → XFS

v 7→
∑
i∈IS

vSiϕSi +
∑
f∈IF

vFf
ϕFf

+
∑
ℓ∈IK

vKℓ
ϕKℓ

.

For all ℓ ∈ IK , the vector coefficient vKℓ
∈ R2 is now fixed so that condition (5.7)

is satisfied. We can impose for example that the projection ΠFSv satisfies:

(7.6)

∫
Kℓ

T−1
ℓ (x) div ΠFSv =

∫
Kℓ

T−1
ℓ (x) divv.

Notice that due to (7.2), the patch-test condition is still satisfied.

Proposition 7. Let σD > 0. The Fortin-Soulie interpolation operator ΠFS is such

for all v ∈
⋂

0<s<σD

H1+s(Ω) we have:

∀ s ∈]0, σD[, ∀ℓ ∈ IK , ∥Grad(ΠFSv − v)∥L2(Kℓ) ≲ (σℓ)
2 (hℓ)

s |v|1+s,Kℓ
,(7.7)

∀ s ∈]0, σD[, ∃CFS = O(σ2), ∥ΠFSv − v∥h ≤ CFS h
s |v|1+s,Ω.(7.8)

Remark 3. Albeit we are inspired by the proof of [2, Lemma 4], we changed the
transition from equation (4.27) to (4.29) there by using only the properties related to
the normal component of the velocity, cf (6.6). As a matter of fact, in the original
proof, one ends up with either CFS = O(σ3) with the help of the multiple trace
inequality or with CFS = O(σ2) at the cost of imposing a stronger assumption on
the regularity of v (namely, σD > 1/2). Finally, because we do not split the integral
over the boundaries of elements into the sum of d+ 1 integrals over the facets, we
obtain purely local estimates, which appear to be new for the Fortin-Soulie element
in the case of low-regularity fields v.
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Proof. Let v ∈ H1(Ω). By construction, we have:

(7.9)

∫
Kℓ

(Π̃FSv − v) = 0 and for all f ∈ IF,ℓ,

∫
Ff

(Π̃FSv − v)|Kℓ
= 0.

We have:

(7.10)
∥Grad (ΠFSv − v)∥L2(Kℓ) ≤ ∥Grad (ΠFSv − Π̃FSv)|L2(Kℓ)

+∥Grad (Π̃FSv − v)∥L2(Kℓ).

Notice that for all ℓ ∈ IK , (ΠFSv − Π̃FSv)|Kℓ
= (vKℓ

− ṽKℓ
)ϕKℓ

.
Using (4.3)-(i), we obtain that:

(7.11)
∥Grad (ΠFSv − Π̃FSv)∥L2(Kℓ) ≲ |vKℓ

− ṽKℓ
| ∥grad ϕKℓ

∥L2(Kℓ),

≲ ∥Bℓ
−1∥ |Kℓ|1/2 |vKℓ

− ṽKℓ
|,

≲ σℓ |vKℓ
− ṽKℓ

|.

Let us estimate |vKℓ
− ṽKℓ

|. On the one hand, we have:∫
Kℓ

(ΠFSv − Π̃FSv) =

∫
Kℓ

(ΠFSv − v) from (7.5),

=

∫
∂Kℓ

x (ΠFSv − v) · n|∂Kℓ
by IBP,

=

∫
∂Kℓ

x (Π̃FSv − v) · n|∂Kℓ
from (7.2).

Since (7.9) holds, we can use Lemma 3. We obtain:

(7.12)

∣∣∣∣∫
Kℓ

(ΠFSv − Π̃FSv)

∣∣∣∣ ≤ |Kℓ| ∥Grad(Π̃FSv − v)∥L2(Kℓ).

On the other hand, it holds:

(7.13)

∫
Kℓ

(ΠFSv − Π̃FSv) = (vKℓ
− ṽKℓ

)

∫
Kℓ

ϕKℓ
=

|Kℓ|
4

(vKℓ
− ṽKℓ

).

Hence, combining (7.12) and (7.13), we have:

(7.14) |vKℓ
− ṽKℓ

| ≤ 4 ∥Grad(Π̃FSv − v)∥L2(Kℓ)

Using this results in (7.11), we deduce from (7.10) that for all v ∈ H1(Ω), for all
ℓ ∈ IK we have:

(7.15) ∥Grad(ΠFSv − v)∥Kℓ
≲ σℓ ∥Grad(Π̃FSv − v)∥L2(Kℓ).

For all v ∈ P2(Kℓ) we have Π̃FS(v) = v and ˆ̃ΠFSv̂ℓ = v̂ℓ. Hence, using Bramble-
Hilbert/Deny-Lions Lemma [17, Lemma 11.9], we have:

∀v ∈ H1(Ω) ∥Grad(Π̃FSv − v)∥L2(Kℓ) ≲ σℓ |v|1,Kℓ
,

∀v ∈ H2(Ω) ∥Grad(Π̃FSv − v)∥L2(Kℓ) ≲ σℓ hℓ |v|2,Kℓ
.

We deduce that:

∀v ∈ H1(Ω) ∥Grad(ΠFSv − v)∥L2(Kℓ) ≲ (σℓ)
2 |v|1,Kℓ

,(7.16)

∀v ∈ H2(Ω) ∥Grad(ΠFSv − v)∥L2(Kℓ) ≲ (σℓ)
2 hℓ |v|2,Kℓ

.(7.17)

Using interpolation property [23, Lemma 22.2], we obtain (7.7). By summation, we
get (7.8). □
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We recall that the discrete Poincaré–Steklov inequality (5.3) holds.

Theorem 6. Let Xh = XFS. Then the continuous bilinear form aS,h(·, ·) is Th-
coercive and Problem (5.5) is well-posed.

Proof. According to Proposition 7, the Fortin-Soulie interpolation operator ΠFS

satisfies (5.6)-(5.7), so that we can apply the proof of Theorem 4. □

Notice that in the recent paper [24], the inf-sup condition of the mixed Fortin-
Soulie finite element is proven directly on a triangle and then using the macro-
element technique [25], but it seems difficult to use this technique to build a Fortin
operator, which is needed to compute error estimates.
The study can be extended to higher orders for d = 2 using the following papers:
[26] for k ≥ 4, k even, [27] for k = 3 and [20] for k ≥ 5, k odd. In [28], the authors
propose a local Fortin operator for the lowest order Taylor-Hood finite element [15]
for d = 3.

8. Numerical results

Consider Problem (3.1) with data f = −gradϕ, where ϕ ∈ H1(Ω) ∩ L2
zmv(Ω).

The unique solution is then (u, p) := (0, ϕ). By integrating by parts, the source
term in (3.6) reads:

(8.1) ∀v ∈ H1
0(Ω),

∫
Ω

f · v =

∫
Ω

ϕ divv.

Recall that the nonconforming space Xh defined in (5.1) is a subset of PhH
1: using

a nonconforming finite element method, the integration by parts must be done on
each element of the triangulation, and we have:

(8.2) ∀v ∈ PhH
1,

∫
Ω

f · v = (divh v, ϕ) +
∑
f∈IF

∫
Ff

[v · nf ]ϕ.

When we apply this result to the right-hand-side of (5.5), we notice that the term
with the jumps acts as a numerical source, which numerical influence is proportional
to 1/ν. Thus, we cannot obtain exactly uh = 0 (see also (5.14)). Linke proposed
in [29] to project the test function vh ∈ Xh on a discrete subspace of H(div; Ω),
like Raviart-Thomas or Brezzi-Douglas-Marini finite elements (see [30, 31], or the
monograph [16]). Let Πdiv : X0,h → P k

disc(Th) ∩H0(div; Ω) be some interpolation
operator built so that for all vh ∈ X0,h, for all ℓ ∈ IK , (div Πdivvh)|Kℓ

= divvh|Kℓ
.

Integrating by parts, we have for all vh ∈ X0,h:∫
Ω

f ·Πdivvh =

∫
Ω

ϕ divΠdivvh =
∑
ℓ∈Kℓ

∫
Kℓ

ϕ divΠdivvh,

=
∑
ℓ∈Kℓ

∫
Kℓ

ϕ divvh = (divh vh, ϕ).

The projection Πdiv allows to eliminate the terms of the integrals of the jumps in
(8.2).
Let us write Problem (5.5) as:
Find (uh, ph) ∈ Xh such that

(8.3) aS,h ((uh, ph), (vh, qh)) = ℓf ( (Πdivvh, qh) ) ∀(vh, qh) ∈ Xh.
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In the case of Xh = XCR and a projection on Brezzi-Douglas-Marini finite elements,
the following error estimate holds if (u, p) ∈ H2(Ω)×H1(Ω):

(8.4) ∥u− uh∥L2(Ω) ≤ C̃ h2 |u|H2(Ω),

where the constant C̃ if independent of h. The proof is detailed in [32] for shape-
regular meshes and [33] for anisotropic meshes. We remark that the error doesn’t
depend on the norm of the pressure nor on the ν parameter. We will provide
some numerical results to illustrate the effectiveness of this formulation, even with
a projection on the Raviart-Thomas finite elements, which, for a fixed polynomial
order, are less precise than the Brezzi-Douglas-Marini finite elements.
For all ℓ ∈ IK , we let P k

H(Kℓ) be the set of homogeneous polynomials of order k
on Kℓ.
For k ∈ N⋆, the space of Raviart-Thomas finite elements can be defined as:

XRTk
:=
{
v ∈ H(div; Ω); ∀ℓ ∈ Ik, v|Kℓ

= aℓ + bℓx | (aℓ, bℓ) ∈ P k(Kℓ)
d × P k

H(Kℓ)
}
.

Let k ≤ 1.
The Raviart–Thomas interpolation operator ΠRTk

: H1(Ω)∪Xh → XRTk
is defined

by: ∀v ∈ H1(Ω) ∪Xh,

(8.5)


∀f ∈ IF ,

∫
Ff

ΠRTk
v · nf q =

∫
Ff

v · nf q, ∀q ∈ P k(Ff )

for k = 1, ∀ℓ ∈ IK ,
∫
Kℓ

ΠRT1
v =

∫
Kℓ

v
.

Note that the Raviart–Thomas interpolation operator preserves the constants. Let
vh ∈ Xh. In order to compute the left-hand-side of (8.2), we must evaluate
(ΠRTk

vh)|Kℓ
for all ℓ ∈ IK . Calculations are performed using the proposition

below, which corresponds to [34, Lemma 3.11]:

Proposition 8. Let k ≤ 1. Let Π̂RTk
: H1(K̂) → Pk(K̂) be the Raviart–Thomas

interpolation operator restricted to the reference element, so that: ∀v̂ ∈ H1(K̂),

(8.6)


∀F̂ ∈ ∂K̂,

∫
F̂

Π̂RTk
v̂ · nF̂ q̂ =

∫
F̂

v̂ · nF̂ q̂, ∀q̂ ∈ P k(F̂ )

for k = 1,

∫
K̂

Π̂RTk
v̂ =

∫
K̂

v̂
.

We then have: ∀ℓ ∈ IK ,

(8.7) (ΠRTk
v)|Kℓ

(x) = Bℓ

(
Π̂RTk

Bℓ
−1v̂ℓ

)
◦ Tℓ−1(x) where v̂ℓ = v ◦ Tℓ(x̂).

The proof is based on the equality of the F̂ and K̂-moments of (ΠRTk
v)|Kℓ

◦Tℓ(x̂)
and Bℓ

(
Π̂RTk

Bℓ
−1v̂ℓ

)
(x̂). For k = 0, setting for d′ ∈ {1, · · · , d}: ψf,d′ := ψf ed′ ,

we obtain that:

(8.8) ∀ℓ ∈ IK , ∀f ∈ IF,ℓ , (ΠRT0ψf,d′)|Kℓ
= (d |Kℓ|)−1

(
x− O⃗Sf,ℓ

)
Sf,ℓ · ed′ ,

where Sf,ℓ is the vertex opposite to Ff in Kℓ.
For k = 1, the vector (ΠRT1vh)|Kℓ

is described by eight unknowns:

(ΠRT1
vh)|Kℓ

= Aℓ x+ (bℓ · x)x+ dℓ, where Aℓ ∈ R2×2, bℓ ∈ R2, dℓ ∈ R2.

We compute only once the inverse of the matrix of the linear system (8.6), in R8×8.
In the Tables 1, 2 and 3, we call εν0(u) = ∥u−uh∥L2(Ω)/∥(u, p)∥X the velocity error
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in L2(Ω)-norm, where uh is the solution to Problem (5.5) (columns XCR and XFS)
or (8.3) (columns XCR +ΠRT0 and XFS +ΠRT1) and h is the mesh size.
We first consider Stokes Problem (3.1) in Ω = (0, 1)2 with u = 0, p = (x1)

3+(x2)
3−

0.5, f = grad p = 3
(
(x1)

2, (x2)
2
)T

. We report in Table 1 εν0(u) for h = 5.00 e− 2
and for different values of ν.

ν XCR XCR +ΠRT0
XFS XFS +ΠRT1

1.00 e− 4 7.96 e− 4 4.59 e− 17 8.81 e− 7 1.54 e− 16
1.00 e− 5 7.96 e− 4 4.59 e− 17 8.81 e− 7 1.54 e− 16
1.00 e− 6 7.96 e− 4 4.59 e− 17 8.81 e− 7 1.54 e− 16

Table 1. Values of εν0(u) for h = 5.00 e− 2

Here we have ∥(u, p)∥X = ν∥p∥L2(Ω). Hence, the L2(Ω)-norm of the discrete velocity

∥uh∥L2(Ω) is proportional to ν
−1. Using the projection, we obtain εν0(u) = 0 close

to machine precision.
We now consider Stokes Problem (3.1) in Ω = (0, 1)2 with:

u =

(
(1− cos(2π x1)) sin(2π x2)
(cos(2π x2)− 1) sin(2π x1)

)
,

{
p = sin(2π x1) sin(2π x2),
f = −ν∆u+ grad p.

We report in Table 2 (resp. 3) the values of εν0(u) in the case ν = 1.00 e− 3 (resp.
ν = 1.00 e− 4) for mesh sizes. We observe that when there is no projection, εν0(u)
is independent of ν, whereas using the projection, εν0(u) is proportional to ν.

h XCR XCR +ΠRT0
XFS XFS +ΠRT1

5.00 e− 2 1.32 e− 3 2.74 e− 5 4.73 e− 6 5.05 e− 7
2.50 e− 2 3.30 e− 4 6.93 e− 6 5.06 e− 7 6.42 e− 8
1.25 e− 2 8.25 e− 5 1.74 e− 6 6.31 e− 8 8.10 e− 9
6.25 e− 3 2.04 e− 5 4.35 e− 7 7.44 e− 9 1.03 e− 9

Rate h2.00 h1.99 h3.08 h2.97

Table 2. Values of εν0(u) for ν = 1.00 e− 3

h XCR XCR +ΠRT0
XFS XFS +ΠRT1

5.00 e− 2 1.32 e− 3 2.74 e− 6 4.70 e− 6 5.05 e− 8
2.50 e− 2 3.30 e− 4 6.93 e− 7 5.10 e− 7 6.43 e− 9
1.25 e− 2 8.25 e− 5 1.74 e− 7 6.37 e− 8 8.11 e− 10
6.25 e− 3 2.04 e− 5 4.36 e− 8 7.51 e− 9 9.77 e− 11

Rate h2.00 h1.99 h3.08 h2.99

Table 3. Values of εν0(u) for ν = 1.00 e− 4

Let us consider Stokes Problem (3.1) with a low-regular velocity. Let Ω = (0, 1)2,
S0 = (0.5, 0.5), and (r, θ) be the polar coordinates centred on S0. We set:

u = rαeθ, p = r so that f := −ν∆u+ grad p = ν (1− α2) rα−2 eθ + er.

We report in Table 4 the values of εν0(u) for ν = 1.00 e−4, and for different for mesh
sizes, with α = 1 and α = 0.49. For α = 1, u = (−y, x)T ∈ H2(Ω). For α = 0.49,
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u ∈
⋂

0<s<α

H1+s(Ω), hence u /∈ H2(Ω). It seems that the Raviart-Thomas projec-

tion is less efficient in that last case.
In order to enhance the numerical results, one could also use a posteriori error esti-

α = 1 α = 0.45
h XFS XFS +ΠRT1

XFS XFS +ΠRT1

1.00 e− 1 3.03 e− 5 2.81 e− 6 3.05 e− 5 3.94 e− 6
5.00 e− 2 4.34 e− 6 1.54 e− 6 4.57 e− 6 2.15 e− 6
2.50 e− 2 4.72 e− 7 2.41 e− 8 9.70 e− 7 8.52 e− 7

Rate h3.00 h3.43 h2.48 h1.11

Table 4. Values of εν0(u), ν = 1.00 e− 4.

mators to adapt the mesh near point S0 (see [35, 36] for k = 1 and [37] for k = 2).
Alternatively, using the nonconforming Crouzeix-Raviart mixed finite element method,
one can build a divergence-free basis, as described in [38]. Notice that using con-
forming finite elements, the Scott-Vogelius finite elements [39, 40, 41] produce ve-
locity approximations that are exactly divergence free.
The code used to get the numerical results can be downloaded on GitHub [42].

9. Conclusion

We analysed the discretization of Stokes problem with nonconforming finite el-
ements in light of the T-coercivity theory, we obtained local stability estimates for
order 1 in 2 or 3 dimension without mesh regularity assumption; and for order 1 in
2 dimension in the case of a shape-regular triangulation sequence. This local ap-
proach, splitting the normal and the tangential components could help to generalize
our results to order k ≥ 3 (using maybe also other internal moment conservation).
This is ongoing work.We then provided numerical results to illustrate the impor-
tance of using H(div)-conforming projection. Further, we intend to extend the
study to other mixed finite element methods.

Acknowledgements

The author acknowledges Mahran Rihani and Albéric Lefort.

References

[1] V. Girault and P.-A. Raviart. Finite element methods for Navier-Stokes equations. Springer-
Verlag, 1986.

[2] M. Crouzeix and P.-A. Raviart. Conforming and nonconforming finite element methods for

solving the stationary Stokes equations. RAIRO, Sér. Anal. Numér., 7(3):33–75, 1973.
[3] M. Fortin and M. Soulie. A non-conforming piecewise quadratic finite element on triangles.

International Journal for Numerical Methods in Engineering, 19(4):505–520, 1983.

[4] P. Ciarlet Jr. T-coercivity: Application to the discretization of Helmhotz-like problems. Com-
puters & Mathematics with Applications, 64(1):22–24, 2012.

[5] E. Jamelot and P. Ciarlet, Jr. Fast non-overlapping Schwarz domain decomposition methods

for solving the neutron diffusion equation. Journal of Computational Physics, 241:445–463,
2013.

[6] P. Ciarlet Jr., E. Jamelot, and F. D. Kpadonou. Domain decomposition methods for the
diffusion equation with low-regularity solution. Computers & Mathematics with Applications,

74(10):2369–2384, 2017.



STABILITY ESTIMATES FOR FORTIN-SOULIE FE 21

[7] L. Giret. Non-Conforming Domain Decomposition for the Multigroup Neutron SPN Equa-

tion. PhD thesis, Université Paris-Saclay, 2018.
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