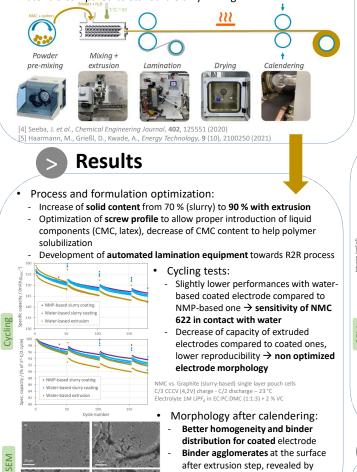
Evaluation of processing strategies for the manufacturing of Li-ion battery positive electrodes using non-solvent extrusion process

A. De Simone, E. Aboudrar, S. Chazelle, L. Gerson, B. Chavillon, E. Mayousse, <u>D. Sotta</u>, F. Rouillon, S. Patoux

University Grenoble Alpes, CEA-Liten, DEHT, 17 avenue des Martyrs, F-38000 Grenoble, France

Context & Objectives

liten

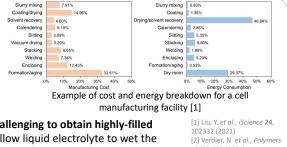

Ceatech

- Positive electrode manufacturing needs the use of toxic N-methyl-2-pyrrolidone (NMP) solvent \rightarrow critical step: high energy consumption for drying stage, need for safety protocols, solvent recovery and recycling facilities [1]
- Alternatives towards dry process manufacturing are considered to reduce cost and energy consumption [2,3]
- Advantages of twin-screw extrusion for producing electrode mixtures: continuous process combining both mixing and layer forming steps, limited use of solvent (or even eliminated), small footprint, easy scale-up
- Main issues for Li-ion (Gen3) electrode manufacturing: solvent-free extrusion is challenging to obtain highly-filled electrodes and usually leads to very dense electrodes → not enough porosity to allow liquid electrolyte to wet the electrodes
 - Objective: develop specific extrusion-based processes with no need for organic solvent and low temperature treatment

Materials & Methods

Water-assisted extrusion

Moving from NMP- to water-based continuous cathode mixing [4,5] • Cathode formulation: NMC 622 + carbon black + CMC + latex ; similar materials compared to standard slurry mixing



lamination/calendering

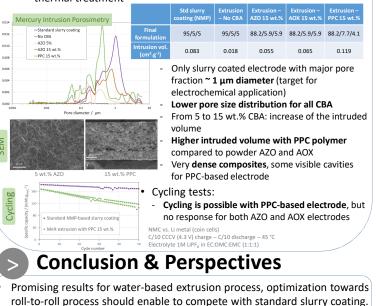
ter-based slurry coating : a) x 1000, b) x 10 000 er-based extrusion : c) x 1000, d) x 10 000

Contact: dane.sotta@cea.fr

Further process improvement should improve electrode morphology

13 (3), 323 (2021) [3] Li, Y. et al., Materials Toda 55, 92-109 (2022)

Melt extrusion with CBA additive


- Inspired strategy from plasturgy \rightarrow chemical blowing agent CBA [6]
- Cathode formulation: NMC 532 + carbon black + binder + CBA
- Selection of HNBR as polymer binder for melt processing

			•	0	
T°C decomp. (°C)	Residual (%)	NMC + carbon + binder + CBA	T*C > Tprce		→ <u>…</u>
200	0 🗹	Powder	Melt		Thermal
220	0 🗹	pre-mixing			treatment
180	0 🗹	1001	HEF.	ST.	ы
120	62 🗵				
	decomp. (°C) 200 220 180	decomp. Residual (%) 200 0 ✓ 220 0 ✓ 180 0 ✓	decomp. (°C) Residual (%) Image: Complexity of the second secon	decomp. Residual (%) 200 0 220 0 180 0	decomp. (*c) Residual (%) Residual (%) 200 0 220 0 180 0

[6] Coste, G., Negrell, C., & Caillol, S European Polymer Journal 140, 110029 (2020)

[7] Astafveva, K. et al., Batteries & Supercaps 3 (4), 341-343 (2020) [8] El Khakani, S. et al., Journal of Power Sources 454, 227884 (2020)

- Optimization to obtain cohesive electrodes masses: binder fraction, material premixing, shear rate...
- Characterization of porosity microstructure after thermal treatment

High impact of CBA on porosity microstructure, to be optimized with

polymers; electrochemical performances still need to be demonstrated.

CARNO Energies du futur

in Follow us:

Website: www.liten.cea.fr