
HAL Id: cea-03823234
https://cea.hal.science/cea-03823234

Submitted on 20 Oct 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A new key recovery side-channel attack on HQC with
chosen ciphertext

Guillaume Goy, Antoine Loiseau, Philippe Gaborit

To cite this version:
Guillaume Goy, Antoine Loiseau, Philippe Gaborit. A new key recovery side-channel attack on HQC
with chosen ciphertext. 13th International Conference on Post-Quantum Cryptography, PQCrypto
2022, Sep 2022, Online conference, France. pp.353-371, �10.1007/978-3-031-17234-2_17�. �cea-
03823234�

https://cea.hal.science/cea-03823234
https://hal.archives-ouvertes.fr

A New Key Recovery Side-Channel Attack on
HQC with Chosen Ciphertext

Guillaume Goy12, Antoine Loiseau1, and Philippe Gaborit2

1 Univ. Grenoble Alpes, CEA, Leti, MINATEC Campus, F-38054 Grenoble, France
{guillaume.goy,antoine.loiseau}@cea.fr

2 XLIM, University of Limoges
gaborit@unilim.fr

Abstract. Hamming Quasi-Cyclic (HQC) is a code-based candidate of
NIST post-quantum standardization procedure. The decoding steps of
code-based cryptosystems are known to be vulnerable to side-channel
attacks and HQC is no exception to this rule. In this paper, we present
a new key recovery side-channel attack on HQC with chosen cipher-
text. Our attack takes advantage of the reuse of a static secret key on a
micro-controller with a physical access. The goal is to retrieve the static
secret key by targeting the Reed-Muller decoding step of the decap-
sulation and more precisely the Hadamard transform. This function is
known for its diffusion property, a property that we exploit through side-
channel analysis. The side-channel information is used to build an Oracle
that distinguishes between several decoding patterns of the Reed-Muller
codes. We show how to query the Oracle such that the responses give a
full information about the static secret key. Experiments show that less
than 20.000 electromagnetic attack traces are sufficient to retrieve the
whole static secret key used for the decapsulation. Finally, we present a
masking-based countermeasure to thwart our attack.

Keywords: HQC · Reed-Muller Codes · Chosen Ciphertext Attack ·
Side-Channel Attack · Post-Quantum Cryptography

1 Introduction

The interest for Post-Quantum Cryptography (PQC) increased with the quan-
tum computers threat to classic cryptography schemes like RSA [20]. The re-
search is promoted by the National Institute of Standards and Technology (NIST)
who launched a call for proposal [16] in 2016 with the aim to standardize new sig-
nature and Key Encapsulation Mechanism (KEM) schemes. NIST moves closer
to making standardization decisions and aims to precisely measuring the se-
curity of the schemes, including Side-Channel Attacks (SCA) and their coun-
termeasures. Thus, the security against SCA and the cost and performance of
side-channel protection could be criteria for standards selection [3].

Hamming Quasi-Cyclic (HQC) [1,2,4] is a promising candidate of the fourth
round of the PQC NIST contest. Unlike the McEliece construction [15] and

2 Goy G., Loiseau A. and Gaborit P.

derivates, the security of HQC is not related to hiding the structure of an error
correcting code. In HQC, the structure of the decoding codes is publicly known
and the security can be reduced to the Quasi-Cyclic version of the well know
Syndrome Decoding (SD) problem [2,5,24].

Nowadays cryptographic schemes are assessed to be theoretically secure, for
HQC, the security comes from two sides. On the one hand, the IND-CCA2 se-
curity is provided by the transformation of a IND-CPA scheme with a Fujisaki-
Okamoto like transform [7,8,11]. This point guarantees the security against ma-
licious adversaries who would make a diverted use of the scheme. On the other
hand, finding the secret key is impossible given the reduction of security to a
known NP-hard problem [5]. However, implementation of a secure scheme in
constrained devices, such as micro-controller, can still be vulnerable to physical
attacks.

Side-Channel Attacks (SCA) [12,13], introduced by P. Kocher in 1996, are
non-invasive physical attacks with aim to exploit side-channel leakage (timing,
power consumption, electromagnetic radiation, execution time, heat, sound ...).
Since their introduction, SCA have a long history of success in extracting secret
information (such as secret key or message) of cryptographic algorithms [6,19,26].
The leakage is statistically dependent on the intermediate variables that are
processed and this side-channel information can be exploited to extract secret
information.

Related Works SCA already targeted the HQC scheme in various ways. In
2019 and 2020, the first version of HQC based on BCH codes was attacked by
Timing attacks (TA). These TA [17,25] use a correlation between the weight of
the decoded error and the computation time of the decoder. As a result, HQC
authors’ team proposed a constant time implementation for decoding BCH codes
to mitigate these TA.

In 2021, a novel TA [10,23] targeted the RMRS version of HQC. This TA
uses the rejection sampling construction to attack both HQC and BIKE. Indeed,
the sampling of a vector of small Hamming weight ω is performed by randomly
choosing its support. ω locations are sampled and sometimes collisions occur at
these locations which, leads to rejecting the vector and sampling another one
from the beginning. However, all the randomness is generated with a seed (see
Algorithm 4) which is derived from the exchanged message used to compute
the shared key. This observation leads to a relation between the run-time of the
rejection sampling and the exchanged message. This relation is strong enough
to extract information about the secret key in HQC with a chosen ciphertext
strategy.

In 2022, an horizontal SCA [9] used the Decryption Failure Rate (DFR) of
HQC by targeting Reed-Solomon (RS) decoding. Indeed, the low DFR implies
that the Reed-Muller decoder almost always decodes all the errors. This leads to
an error-free codeword decoding by the RS decoder. By studying the behaviour
of the RS decoder and using a better decoder for the RS codes in order to correct

A New Key Recovery Side-Channel Attack on HQC with Chosen Ciphertext 3

side-channel induced errors, authors are able to recover the exchanged message
in a single trace.

In 2020 and 2022, Schamberger et al. [22,21] proposed two chosen ciphertext
attacks (CCA) based on a side-channel Oracle able to determine whenever an
error is corrected by the HQC decoder through a supervised approach. These
attacks are possible despite the IND-CCA2 security because the side-channel
distinguisher is performed before the re-encryption phase, during the decoding
part. The first attack [22] targets the BCH version of HQC, they chose the
ciphertext in order to create a single error for the BCH decoder, which can be
seen by the Oracle. They are able to recover a large part of the possible keys
in HQC with a secret key support (non-zero locations) research. By a complex
chosen ciphertext attack, they are able to deduce information about the support
of the secret key which is used during the decapsulation. Authors adapted their
power side-channel attack to the Reed-Muller Reed-Solomon version of HQC
[21], leading to a complex but functional attack on the new version of HQC.
These attacks are a serious threat to the HQC security and no countermeasure
have been proposed to thwart these attacks neither in the first paper, nor in
the second. In this context, finding a new distinguisher on the HQC decoding
procedure allows to build the same kind of attacks.

Our Contributions In this paper, we propose a simpler key recovery side-
channel attack with a chosen ciphertext strategy targeting the new RMRS ver-
sion of HQC. We are able to retrieve a static secret key of HQC by building
a chosen ciphertext attack with a less complex queries selection process. The
main idea is to build queries in order to create collisions with the secret key
support, changing the decoding behaviour. We show how to construct a new
simple Oracle on the RM decoding step that is able to determine the number
of corrected errors. This Oracle is based on a supervised side-channel approach
with the used of a Linear Discriminant Analysis. The knowledge of the secret
key is not required for the Oracle’s training stage, allowing a training phase on
a clone device and reducing the number of attack measurements. We build an
Oracle of 120.000 training traces and use 50 attack traces per bit to create an
attack with 100% accuracy. A divide and conquer strategy allows at recovering
the whole decoding static secret key with less than 20.000 attack traces. Our at-
tack can be avoided by a masking-based countermeasure applied on the Oracle
target function.

Paper Organization The paper is organized as follows: In Section 2, we recall
the HQC framework and the main algorithms useful for the understanding of the
attack. Section 3 is devoted to the description of our chosen ciphertext attack,
showing how to build the queries in order to recover the secret key using a
decoding Oracle. In Section 4, we describe the construction and evaluation of
the Oracle based on side-channel measurements. Then we present our results and
give the attack complexity. We present a simple masking based countermeasure
in Section 5 to thwart our attack before concluding.

4 Goy G., Loiseau A. and Gaborit P.

2 Hamming Quasi-Cyclic (HQC)

2.1 HQC overview

HQC [2] is a code-based post-quantum resistant Key Encapsulation Mechanism
(KEM). Unlike other code-based cryptosystems, the security of HQC does not
rely on hiding the structure of an error correcting code. The security is guar-
anteed by a random double circulant code with a reduction to the well-studied
Quasi-Cyclic Syndrome Decoding Problem (QCSD) [2,5,24]. HQC uses another
code C with an efficient decoder C.Decode that is publicly known. Neither the
security of the scheme nor the decryption capability depend on the knowledge
of C.Decode. A classic construction is to turn a Public Key Encryption (PKE)
scheme into a KEM. HQC-PKE is fully described by three algorithms (see Al-
gorithms 1, 2 and 3 in Figure 1). Considering R = F2[X]/(Xn − 1) the ambient
space with n a primitive prime given as parameter and Rω the space restriction
to words of Hamming weight ω.

Algorithm 1 Keygen
Input: param
Output: (pk, sk)

1: h
$←R

2: (x,y)
$← R2

ω

3: s = x+ hy
4: pk = (h, s)
5: sk = (x,y)

Algorithm 2 Encrypt

Input: (pk,m), param
Output: ciphertext c

1: e
$←R, wt(e) = ωe

2: (r1, r2)
$←R2

ωr

3: u = r1 + hr2
4: v = mG+ sr2 + e
5: c = (u,v)

Algorithm 3 Decrypt

Input: (sk, c)
Output: m

1: m = C.Decode(v− uy)

Fig. 1: HQC-PKE Algorithms [1,2]

A quantum adapted Fujisaki-Okamoto transformation [7,8] called the Hof-
heinz-Hövelmanns-Kiltz (HHK) transformation [11] turns the PKE into a KEM
and allows HQC-KEM scheme to reach IND-CCA2 security. The main idea of
such a construction is the re-encryption during the decapsulation that prevent
from chosen ciphertext attack (CCA). The KEM IND-CCA2 property is guar-
anteed given that the PKE has been proved IND-CPA (see HQC specifications
[2] for details). HQC KEM algorithms [1] are described with Algorithms 4 and
5 in Figure 2.

As mentioned earlier, the formal security of HQC does not rely on the chosen
publicly known code. Therefore, this code can be chosen at the convenience of
the developer. Authors of HQC propose the use of a concatenated code with
a duplicated Reed-Muller (RM) code for internal code and a Reed-Solomon
(RS) code for the external one. Formally, the internal code is a [n1, k1, d1] code
over Fq and an external code a [n2, k2, d2] code, with q = 2k2 . To encode with

A New Key Recovery Side-Channel Attack on HQC with Chosen Ciphertext 5

Algorithm 4 Encaps

Input: pk = (h, s)
Output: (c,d)

1: m
$← Fk

2

2: θ = G(m) ▷ seed
3: c = Encrypt(m, pk, θ)
4: K = K(m, c)
5: d = H(m)
6: return (c,d)

Algorithm 5 Decaps

Input: c,d, sk, pk
Output: shared key K or ⊥

1: m’ = Decrypt(c, sk)
2: θ′ = G(m′) ▷ seed
3: c′ = Encrypt(m′, pk, Θ′) ▷ re-encrypt
4: if c ̸= c or d ̸= H(m′) then
5: return ⊥
6: else
7: return K = K(m, c)
8: end if

Fig. 2: HQC-KEM Algorithms [1,2]. (Same key gen. as PKE version, see Fig. 1)

a concatenated construction, we first encode a message of length k1 with the
external code to obtain an intermediate codeword of length n1 over Fq = F2k2 .
The internal code can be independently applied on each of the n1 elements of
Fq, leading to encode n1 times with the internal code, obtaining a final codeword
of length n1n2 (see Figure 3).

k1

RS.Encode

k2

n1

RM.Encode

RM.Encode

RM.Encode

RM.Encode

n2

RM.Decode

RM.Decode

RM.Decode

RM.Decode

k2

RS.Decode

k1

n1

Fig. 3: Simplified HQC Concatenated RMRS Codes Framework

The decoder is then a double decoder that decodes the internal code first and
then the external. The decoding procedure is the same as the encoder and the
first operation is to decode a n1n2 sized codeword with n1 independent decoding
steps applied on blocs of size n2. Our attack only targets these RM decoding

6 Goy G., Loiseau A. and Gaborit P.

steps and, for the sake of clarity, we will only describe the RM construction in
this paper.

2.2 Decoding Reed-Muller Codes

HQC uses the same RM code RM(1, 7), which is a [128, 8, 64] code over F2,
regardless of the chosen security level. Furthermore, each bit is duplicated 3 or
5 times (see Figure 2), adding multiplicity to the codewords, to obtain codes of
parameters [384, 8, 192] or [640, 8, 320]. These RM codes of order 1 are seen as
Hadamard codes and can be decoded using a Fast Hadamard Transform (FHT).
The decoding procedure is always the same, composed of three main algorithms
in the June 2020 HQC reference implementation [1]. The procedure is composed
by the following main steps:

1. Removing the multiplicity of codewords with the expand and sum function
(see Algorithm 6).

2. Apply the Fast Hadamard Transform (FHT) (see Algorithm 7).
3. Recover the message with the find peaks function (see Algorithm 8).

The first step goal is to remove the multiplicity of the codeword by adding
in N bit to bit each repetition (see Algorithm 6). The result is an expanded
codeword of length 128 leaving in J0, 3K or J0, 5K depending on the value of the
multiplicity mul.

Algorithm 6 Expand and sum

Input: codeword c and the multiplicity mul.
Output: expanded codeword c′

1: c′ = 0 ∈ N128

2: for i ∈ J0,mulK do
3: for j ∈ J0, 128K do
4: c′[j] += c[128× i+ j]
5: end for
6: end for
7: return c’

Fast Hadamard Transform (FHT) The FHT is a generalized discrete Fourier
Transform applied to expand codeword (see Algorithm 7). In practice, this func-
tion is equivalent to multiplying the expand codeword with an Hadamard matrix.
Indeed, MacWilliams and Sloane [14] showed that the weight distribution of the
cosets can be determined by the application of an Hadamard transform. This al-
lows to decode with a maximum likelihood strategy, finding the distance between
a received message and every codewords. For a RM(1,m) code, the Hadamard
matrix to choose is H2m which can be described recursively (see Equation (1)).

H2m =

(
Hm Hm

Hm −Hm

)
, H1 = 1 (1)

A New Key Recovery Side-Channel Attack on HQC with Chosen Ciphertext 7

Applying such a vector matrix multiplication would require 2m × 2m additions
and subtractions. Fortunately, H2m can be written as a product of m 2m × 2m

sparse matrices with only two non-zeros elements per column (see Equation 2).
This observation allows to change the vector matrix multiplication by m vector
and sparse matrix multiplication.

H2m = M
(1)
2mM

(2)
2m · · ·M

(m)
2m , M

(i)
2m = I2m−i ⊗H2 ⊗ I2i−1 , 1 ≤ i ≤ m (2)

with In the identity matrix of size n× n and ⊗ the Kronecker product. That is
the reason why the Algorithm 7 is composed of a for loop with argument m = 7.

Algorithm 7 Fast Hadamard Transform (FHT)

Input: expanded codeword c and the multiplicity mul.
Output: expanded codeword transformed structure c

1: for pass ∈ J0, 6K do
2: for i ∈ J0, 63K do
3: d[i] = c[2i] + c[2i+ 1]
4: d[i+ 64] = c[2i]− c[2i+ 1]
5: end for
6: swap(d, c) ▷ copy d in c and c in d
7: end for
8: c′[0] −= 64 ∗mul
9: return c

In our RM(1, 7) case, this transformation returns a vector of length 128.
The last function Find Peaks permits to finish the decoding. Among this vector,
the argument of the absolute maximum gives the 7 least significant bits of the
decoded message. The most significant bit is given by the sign of this maximum
(see Algorithm 8).

Algorithm 8 Find Peaks

Input: expanded codeword transformed structure c
Output: message m

1: (peak value, peak abs value,peak pos) = (0, 0, 0)
2: for i ∈ J0, 123K do
3: (t, tabs) = (c[i], absolute(c[i])
4: if tabs > peak abs value then
5: (peak value, peak abs value,peak pos) = (t, tabs, i)
6: end if
7: end for
8: peak pos += 128 ∗ (peak value > 0) ▷ Setting the msb
9: return peak pos

8 Goy G., Loiseau A. and Gaborit P.

3 Theoretical combined Chosen Ciphertext and
Side-Channel Attacks

In this section, we present a new attack to recover the secret key y ∈ Fn
2 . The

main operation during the decapsulation part of HQC is decoding the erroneous
codeword v− uy. Then the knowledge of the y part of the secret key is enough
to decapsulate.

Attack Scenario We consider a physical access to a device performing the
HQC decapsulation with a static secret key. We assume that we can submit any
ciphertext to the device. Our goal is to retrieve this key and then be able to
decapsulate any message encapsulated by the associated public key. Our attack
exploits the side-channel leakage to create an Oracle that is able to distinguish
between several decoding patterns. We use the chosen ciphertext attack construc-
tion to send appropriate ciphertexts to the static secret key decapsulation chip.
The electromagnetic measurements during the decapsulation constitute queries
we can give to the Oracle.

We show how to build queries that allows to fully recover y. First of all, notice
that choosing the special ciphertext (u,v) = (1,0) leads to decode the secret
key y. Vector y is a sparse vector, with a small Hamming weight wt(y) = ω.
As a result, the RM decoder manipulates almost only zeros which is decoding
into 0. This ciphertext is rejected by the re-encryption phase and the decapsu-
lation returns a random vector as shared key for the IND-CCA2 security. This
security could prevent our attack, however this is not an issue, given that our
distinguisher does not depend on the output of the decapsulation but on the
SCA leakage. Indeed, before the re-encryption, this ciphertext is manipulated
by HQC decryption algorithms, among which the RM decoder, which give us all
the necessary information to recover the secret key.

The RM decoder is independently applied on n1 codewords blocs of size n2

(see Figure 3), individually retrieving each of the n1 bloc of y leads at recovering
y. Our Oracle allows to recognize the number of errors corrected in each bloc.
The idea is to vary the number of corrected errors by choosing the value of v.
The goal is to find v = y which leads to decode v− y = 0. We show a strategy
to effectively achieve this result.

The Oracle behaviour depends on the Hamming weight of the bloc to be
decoded. Then, we study the support distribution of y among its different blocs.

3.1 Support Distribution of y

The support Supp(x) of a vector x = (x0, · · · , xn) is the location of its non-zero
coordinates (see Equation (3)). If x is seen as a binary vector, its support is
exactly the locations of the ones and the knowledge of the support is equivalent
to the knowledge of the vector.

Supp(x) = {i ∈ Z | xi ̸= 0} (3)

A New Key Recovery Side-Channel Attack on HQC with Chosen Ciphertext 9

The vector y has a length of n bits which is the smallest primitive prime
number greater than n1n2. The primitive prime n is used for the ambient space
in order to thwart structural attacks. However, only the n1n2 first bits, corre-
sponding to the length of the concatenated code, are used during the decoding
code, making the last l = n − n1n2 truncated bits useless. Then, y ∈ Fn

2 can
be seen as the concatenation of two vectors y = (y′,y′′) with y′ ∈ Fn1n2

2 and
y′′ ∈ Fl

2. This particularity prevents us for recovering any information about
Supp(y′′). Fortunately, these bits are not relevant for the decoding step, and
setting them to 0 is sufficient for a successful decoding. Furthermore, in almost
all cases, wt(y′′) = 0 (see Figure 1) and in other cases, wt(y′′) is close too zero
with a high probability. The probability P (wt(y′′) = k) can be approximated
by:

Qk := P (wt(y′′) = k) ∼=
(
ω

k

)
pk(1− p)ω−k (4)

where ω = wt(y) and p the probability to draw with replacement a bit in y′

which is equal to p =
|y′|
|y|

.

λ n n1n2 ω Q0 Q1 Q2 Q≥2

128 17.669 17.664 66 98, 15% 1, 83% 0, 02% ≤ 10−3%

192 35.851 35.840 100 96, 98% 2, 98% 0, 05% ≤ 10−3%

256 57.637 57.600 131 91, 93% 7, 73% 0, 32% ≤ 10−2%

Table 1: A few parameters of HQC and Support Probability Distribution3 be-
tween y′ and y′′ following Equation (4)

Recovering y′ is enough to call the attack successful. Nevertheless, strategies
exist to deduce the last l bits, for a complete recovery of y. This low Hamming
weight distribution allows to build an exhaustive research for the last l = n−n1n2

bits of y. Alternatively, Schamberger et al. [22], proposes a method in Section 3.3
of their paper to recover Supp(y′′) given the knowledge of Supp(y′) in polynomial
time.

Support Distribution of y′ The vector y′ lives in Fn1n2
2 and the external

decoder manipulates the codeword by bloc of size n1, we can rewrite:

y′ =
(
y′
0,y

′
1, · · · ,y′

n1−1

)
and for all i, y′

i ∈ Fn2
2 (5)

For our attack, the worst case is when y′ is full weight, i.e. wt(y′) = wt(y)
which happens when wt(y′′) = 0 with a high probability (see Figure 1). Indeed,
this case increases the probability of having blocs with high Hamming weight.
Later we will see that our distinguisher can only distinguish blocs with Hamming

3 For each line, the sum is not equal to one because of the chosen approximation

10 Goy G., Loiseau A. and Gaborit P.

weight up to τ . Since the support distribution of y is almost always in this
unfavorable case, we will only consider it for the following.

The Reed-Muller decoder manipulates each bloc y′
i independently, we calcu-

late the probability Pk such as a randomly sampled bloc y′
i has an Hamming

weight of k (see Equation (6) and Figure 2).

Pk := P
(
wt(y′

i) = k
∣∣∣ y $← Rω, i

$← J0, n1 − 1K
)

(6)

λ mul. n1 n2 ω P0 P1 P2 P3 P4 P≥5

128 3 46 384 66 23, 44% 34, 38% 24, 83% 11, 77% 4, 12% 1, 45%

192 5 56 640 100 16, 50% 30, 00% 27, 00% 16, 04% 7, 07% 3.40%

256 5 90 640 131 23, 14% 34, 06% 24, 87% 12, 02% 4, 32% 1, 59%

Table 2: A few parameters of HQC and Support Probability Distribution3 among
the blocs of y′ following Equation (6).

From Figure 2, we observe that the small Hamming weight blocs are mostly
represented. Furthermore, it is relatively rare to sample blocs of weight greater
than or equal to 5. For the following, as an approximation, we consider all blocs
of weight 5 or more in the same class.

Higher Magnitude Error (HME) Expand And Sum is the first decoding
function and realises a classic addition over N. Then, the expanded codeword
lives in J0,mulK. Applied to y, in most cases, the result is in J0, 1K but it happens
that two errors share the same location modulo 128 in a bloc (y′

i). This gives
an error of magnitude 2. These errors induce a slightly different behavior of the
FHT within the same class, affecting the behavior of our Oracle. Fortunately,
these higher magnitude errors happen with a low probability. Equation (7) gives
the probability of having an error of magnitude at least 2.

P (HME) =

n2∑
k=0

P (wt(y′
i) = k)× P (HME | wt(y′

i) = k)

=

n2∑
k=0

Pk ×
(
1− P

(
HME | wt(y′

i) = k
))

=

n2∑
k=0

Pk ×

(
1−

k∏
i=0

n2 − (mul− 1)× i

n2

) (7)

An HME happens in vector y′ with probabilities 0, 53%, 0, 97% and 0, 65%
for respectively HQC-128, HQC-192 and HQC-256.

3 For each line, the sum is not equal to one because of the chosen approximation

A New Key Recovery Side-Channel Attack on HQC with Chosen Ciphertext 11

3.2 Chosen Ciphertext Attack with Oracle

We use a RM decoding Oracle ORM
i,b which takes as input an HQC ciphertext

(u,v). ORM
i,b is able to determine the number of errors corrected by the RM

decoder in the ith bloc y′
i for i ∈ J0, n1 − 1K. Our oracle works in a given range

and correctly determine the number of corrected errors if it does not exceed a
given threshold τ . The Oracle can be queried for different inputs and returns
b ∈ J0, τK. Notice that in the case of decoding y, the number of decoded errors
in a bloc y′

i is almost always the Hamming weight wt(y′
i). We describe how to

construct this Oracle ORM
i,b from side-channel leakage in Section 4.

Attack Description Let us focus on a single chosen bloc y′
j , the attack is

identical for other blocs of y. In a first step, the Oracle ORM
j,b is queried to

known the number of errors to correct in y′
j which gives a reference value for

the next steps. Second, the main idea of the attack is to recursively select vj of
Hamming weight 1 in order to find a collision with the support of y′

j . Finding
a collision implies to modify the number of errors decoded compared to the
reference value and then recover an information about Supp(y′

j). In fact, for a
chosen vj there are two cases we can distinguish with the Oracle:

1. Supp(y′
j)∩Supp(vj) = Supp(vj). Then wt(vj−y′

j) = wt(y′
j)−1, the decoder

will correct one error less than the reference decoding of y′
j .

ORM
j,b (v− y) = ORM

j,b (y)− 1

2. Supp(y′
j) ∩ Supp(vj) = ∅. Then wt(vj − yj) = wt(yj) + 1, the decoder will

correct one error more than the reference decoding of y.

ORM
j,b (v− y) = ORM

j,b (y) + 1

These observations allow to determine the support of y′
j by choosing vj

successively equal to all vectors of Hamming weight 1. By remembering the
locations for which the Oracle outputs 1 less than the reference value ORM

j,b (y),
we are able to determine the entire support Supp(y′

j). Applying this strategy to
all blocs of y′ aims at recovering the entire support Supp(y′).

Divide and Conquer Strategy As described, the attack requires as many
queries as the number of bits in y′, i.e. n1n2 bits, in order to test all elements
of Hamming weight one. However, given that the RM blocs decoding are inde-
pendent, the attack can be performed in parallel on each bloc. We query the
n1 Oracles ORM

i,b at the same time, leading to a single query. Then, the mini-
mal number of query needed to recover y′ is reduced to the number of bits in
a single bloc, i.e. n2 bits. As a result, targeting HQC-128 (resp. HQC-192 and
HQC-256) requires 384 queries (resp. 640). To know the total number of attack
traces needed, this value is multiplied by the number of attack traces necessary
to determine a single bit.

12 Goy G., Loiseau A. and Gaborit P.

4 Building Decoding Oracle with a Side-Channel

In this section, we build a RM decoding Oracle that allows to identify the number
of decoded errors. This Oracle is constructed from side-channel leakages and
enables to retrieve the secret key y′, as explained in Section 3. We first present
our practical set-up which allows traces measurements. Then we describe our
Oracle and conduct a leakage assessment with Welch t-test. Finally we evaluate
the strength of our Oracle with a different number of training traces and give
the cost and performance of the practical attack.

Side-Channel Attack Set-up We realise our measurements on a ARM Cortex
M4 micro-controller with a clock frequency of 168 MHz. We record the side-
channel leakage from electromagnetic emanations (EM) with a LANGER EMV-
Technik near field microprobe ICR HH 100-6. Measurements are registered with
a 750M sampling rate oscilloscope ROHDE & SCHWARZ RTO2014. During
acquisitions, the communication between the micro-controller and the computer
is performed through an UART connection. During the acquisitions, we used an
external clock to mitigate the jitter effects among the traces. We extract the
Hadamard transform algorithm from the reference implementation of HQC [1]
of June 2021. We set a dedicated GPIO pin just before the FHT function to
trigger the oscilloscope and reset it after, we will call trace the resulting EM
measurement.

4.1 Building the Oracle

We build the Oracle according to the 6 main classes identified with the support
probability distribution (see Figure 2). Each of these classes corresponds to a
different Hamming weight for y′

i a bloc of y. Each element of class k is created
by randomly sampling its supports, corresponding to k random locations for the
ones. Then, among these classes, the proportion of HME vectors is the same
as in a HQC instance, following Equation (7). The randomness is provided by
the random generator of the micro-controller. We acquired a set of 10.000 traces
per class used to evaluate the Oracle. These acquisitions were performed in a
random order.

Leakage Assesment We use a Welch t-test to conduct a leakage assessment
for the Oracle. The t-value between two sets S0 and S1 with their respective
cardinality n0 and n1, mean of µ0 and µ1 and variance of σ0 and σ1 is computed
with the formula from Equation (8). Usually, a threshold |t| = 4.5 is defined,
admitting a significant statistical difference with a high degree of confidence
when this threshold is exceeded.

t =
µ0 − µ1√(
σ2
0

n0
+

σ2
1

n1

) (8)

A New Key Recovery Side-Channel Attack on HQC with Chosen Ciphertext 13

We compute the t-values for each class pair in order to characterize the
distinction between them. Results are presented in Figure 4. For each sub-figure,
we observe the 7 occurrences of the for loop during the FHT (see Algorithm 7).
This test indicates a good level of distinguishability, which could allow to build
a classifier.

Regions of Interest In the way of the Points of Interest (PoI) selection, the
leakage assessment allows us to select Regions of Interest (RoI). This selection
allows to keep only relevant parts of the traces and to reduce the computation
time of our classifier. As we can see, among the seven occurrences of the for loop,
the last one (approx. samples 41, 000 to 48, 000) seems to be very informative
(see Figures 4a, 4c, 4f, 4h, 4j, 4l, 4m and 4o). This part of the traces is the first
considered RoI for further studies.

However, this RoI does not seem sufficient to build a complete distinguisher,
indeed, some results show no leakage in the last occurrence (see Figures 4e, 4g,
4i and 4n). In practice, using only trace segments in this RoI is not enough
to mount an attack with a sufficient accuracy. To fill this information gap, we
also use another RoI. In order to create a complete distinguisher between every
classes, we also extract a RoI from the fifth occurrence (approx. samples 27, 300
to 34, 200). This second RoI allows to distinguish between cases not covered by
the first one (see Figures 4e, 4g, 4i, 4k and 4n). For both of these RoI, we keep
only the first thousand samples which significantly reduces the computation time
and the memory requirements.

4.2 Results

We build a distinguisher with a Linear Discriminant Analysis (LDA) which is a
linear classifier. We use the LDA version from the sklearn python library [18].
We carry out several times the attack with a different number of training traces
per class, respectively 1, 000, 2, 500, 5, 000, 10, 000, 20, 000 and 40, 000 traces.
The traces are sliced according to the area of interest identified in Section 4.1
and evenly distributed among the target classes.

Theoretically, with a perfect Oracle, recovering a single bit in a given bloc
requires only one trace. Practically, we quickly see that a single attack trace is not
enough to obtain a sufficient success rate (see Figure 5). Then, we build an attack
with s traces in order to increase the success rate. Each trace is independently
handled by the Oracle and we reconcile the s query outputs with a soft-max

technique. Given (p1, · · · , pτ) =
s∑

i=1

(p1,i, · · · , pτ,i) the sum of the probabilities

returning by the s instances of the attack for each of the τ classes. The output
of the Oracle is given by b = argmax(p1, · · · , pτ). We realize the attack several
times with s from 0 to 60, we plot in Figure 5 the results of these tests.

14 Goy G., Loiseau A. and Gaborit P.

(a) Classes 0 and 1 (b) Classes 0 and 2 (c) Classes 0 and 3

(d) Classes 0 and 4 (e) Classes 0 and 5 (f) Classes 1 and 2

(g) Classes 1 and 3 (h) Classes 1 and 4 (i) Classes 1 and 5

(j) Classes 2 and 3 (k) Classes 2 and 4 (l) Classes 2 and 5

(m) Classes 3 and 4 (n) Classes 3 and 5 (o) Classes 4 and 5

Fig. 4: Welch t-test results between each classes using 10, 000 traces of randomly
sampled inputs within the classe. The trace correspond to the FHT. −4, 5 and
4, 5 are plotted with dashed red lines.

A New Key Recovery Side-Channel Attack on HQC with Chosen Ciphertext 15

Fig. 5: Single bit success rate recovery depending on the number of attack traces
s. Comparison of the success rate between attacks with a different number of
training traces per class.

Attack Success Rate and Cost Experiments of figure 5 show that s = 50
attack traces are enough to reach a perfect success rate on a bit with a training
set of 40, 000 traces per class. We build the attack on our set of measurements
with 40, 000 training traces per class, 240, 000 training traces in total. With this
set of parameters and our specific training and attack set-up, we are able to
recover all bits of y′ with s×n2 = 50×384 = 19, 200 attack traces for HQC-128
(see Section 3.2).

5 Countermeasure

A direct countermeasure against RM decoding distinguisher is the used of a
mask. The idea is to hide the sensitive data by dividing its knowledge in several
part. Indeed, if the input c of the FHT satisfies the relation 9,

c =

n∑
i=0

ci (9)

by the linearity of the Hadamard transform, the result is given by Equation (10).

FHT(c) =
n∑

i=0

FHT(ci) (10)

16 Goy G., Loiseau A. and Gaborit P.

To create a secure masking scheme, the n − 1 first ci must be sampled uni-
formly at random and the last element cn is chosen to satisfy the relation (9).
The n order mask countermeasure requires to compute n+1 times the FHT. We
give the first order masking Hadamard transform in Algorithm 9.

Algorithm 9 Hadamard Transform with first order mask

Input: expanded codeword c and the multiplicity mul.
Output: expanded codeword transformed structure c

1: c0
$← expanded codeword

2: c1 = c− c0
3: c0 = FHT(c0)
4: c1 = FHT(c1)
5: c = c0 + c1
6: return c

Countermeasure Evaluation An attacker who would like to target the mas-
ked version of the Hadamard transform would have to target the n shares in order
to retrieve the whole information. Our attack scenario cannot be applied directly
against the shares given that the expanded codewords ci are randomly sampled.
This implies that the shares do not respect the Hamming weight restrictions
imposed by our Oracle.

In spite of this, we evaluate the strength of the counter-measure by repeating
the experiment as in the Section 4. We compute the FHT with the first order
mask (see Algorithm 9) on 60, 000 expanded codewords evenly distributed among
the classes. Then, we compute the t-values for each class peer, leading to the
results presented in Figure 6. We assume that the significant reduction in the
number of observed statistical differences with the Welch t-test ensures that the
countermeasure is effective against our attack.

6 Conclusion and Future Work

In this paper we present a new side-channel attack on the RMRS version of HQC
which aims at recovering a static secret key. We show that by choosing a certain
ciphertext, a part of the secret key is given as input of the decoding algorithm.
We build a chosen ciphertext attack from this point by slightly modifying the
ciphertext in order to find collision with the secret key. In the paper, we show
a strategy, a query sequence, that allows to find collisions and then recover the
entire secret key.

Our attack is based on a side-channel Oracle that is able to distinguish be-
tween several decoding patterns. We evaluate our Oracle with electromagnetic
side-channel measurements from our Cortex M4 micro-controller set-up and show

A New Key Recovery Side-Channel Attack on HQC with Chosen Ciphertext 17

(a) Classes 0 and 1 (b) Classes 0 and 2 (c) Classes 0 and 3

(d) Classes 0 and 4 (e) Classes 0 and 5 (f) Classes 1 and 2

(g) Classes 1 and 3 (h) Classes 1 and 4 (i) Classes 1 and 5

(j) Classes 2 and 3 (k) Classes 2 and 4 (l) Classes 2 and 5

(m) Classes 3 and 4 (n) Classes 3 and 5 (o) Classes 4 and 5

Fig. 6: Welch t-test results between each classes using 10, 000 traces of randomly
sampled inputs within the classe. The trace correspond to the FHT with the
counter-measure. −4, 5 and 4, 5 are plotted with dashed red lines.

18 Goy G., Loiseau A. and Gaborit P.

that it is easy to build and reliable. Indeed, the best performances of our Or-
acle were observed with a trade-off of 40, 000 training traces per classes, and
50 attack trace to recover a bit on a bloc with a success rate of 1 on our test
set measurements. The independence of the decoding among the different blocs
allows to parallelize the attack and recover all bits of the secret key with 19, 200
attacks traces.

Our attack is a threat to the security of HQC and contributes to the need
of an efficient countermeasure to mitigate such attacks. We propose a simple
masking-based countermeasure in order to thwart our attack that doubles the
run-time of the target function. As a perspective, the number of attack traces
could be reduce by finding more efficient query sequence. For the same purpose,
other functions of HQC could play the role of distinguisher, allowing to improve
the performance or even to build new attacks.

7 Acknowledgements

This work was supported by the French National Agency in the framework of
the ”Investissements d’avenir” (future-oriented investments) program (ANR-10-
AIRT-05) and by the defense innovation agency (AID) from the french ministry
of armed forces.

References

1. Aguilar-Melchor, C., Aragon, N., Bettaieb, S., Bidoux, L., Blazy, O., Deneuville,
J.C., Gaborit, P., Persichetti, E., Zémor, G.: HQC reference implementation, https:
//pqc-hqc.org/implementation.html

2. Aguilar-Melchor, C., Aragon, N., Bettaieb, S., Bidoux, L., Blazy, O., Deneuville,
J.C., Gaborit, P., Persichetti, E., Zémor, G.: Hamming Quasi-Cyclic (HQC) (2017)

3. Alagic, G., Alperin-Sheriff, J., Apon, D., Cooper, D., Dang, Q., Kelsey, J., Liu,
Y.K., Miller, C., Moody, D., Peralta, R., et al.: Status report on the second round
of the nist post-quantum cryptography standardization process. US Department
of Commerce, NIST (2020)

4. Aragon, N., Gaborit, P., Zémor, G.: HQC-RMRS, an instantiation of the HQC
encryption framework with a more efficient auxiliary error-correcting code. arXiv
preprint arXiv:2005.10741 (2020)

5. Berlekamp, E., McEliece, R., van Tilborg, H.: On the inherent intractability of cer-
tain coding problems (corresp.). IEEE Transactions on Information Theory 24(3),
384–386 (May 1978). https://doi.org/10.1109/TIT.1978.1055873

6. Brier, E., Clavier, C., Olivier, F.: Correlation power analysis with a leakage model.
In: International workshop on cryptographic hardware and embedded systems. pp.
16–29. Springer (2004)

7. Fujisaki, E., Okamoto, T.: Secure integration of asymmetric and symmetric en-
cryption schemes. In: Annual International Cryptology Conference. pp. 537–554.
Springer (1999)

8. Fujisaki, E., Okamoto, T.: Secure integration of asymmetric and symmetric en-
cryption schemes. Journal of cryptology 26(1), 80–101 (2013)

https://pqc-hqc.org/implementation.html
https://pqc-hqc.org/implementation.html
https://doi.org/10.1109/TIT.1978.1055873

A New Key Recovery Side-Channel Attack on HQC with Chosen Ciphertext 19

9. Goy, G., Loiseau, A., Gaborit, P.: Estimating the strength of horizontal correlation
attacks in the hamming weight leakage model: A side-channel analysis on hqc kem
(2022)

10. Guo, Q., Hlauschek, C., Johansson, T., Lahr, N., Nilsson, A., Schröder, R.L.: Don’t
reject this: Key-recovery timing attacks due to rejection-sampling in hqc and bike.
Cryptology ePrint Archive (2021)

11. Hofheinz, D., Hövelmanns, K., Kiltz, E.: A modular analysis of the fujisaki-okamoto
transformation. In: Kalai, Y., Reyzin, L. (eds.) Theory of Cryptography. pp. 341–
371. Springer International Publishing, Cham (2017)

12. Kocher, P., Jaffe, J., Jun, B.: Differential power analysis. In: Annual international
cryptology conference. pp. 388–397. Springer (1999)

13. Kocher, P.C.: Timing attacks on implementations of Diffie-Hellman, RSA, DSS,
and other systems. In: Annual International Cryptology Conference. pp. 104–113.
Springer (1996)

14. MacWilliams, F.J., Sloane, N.J.A.: The theory of error correcting codes, vol. 16.
Elsevier (1977)

15. McEliece, R.J.: A public-key cryptosystem based on algebraic. Coding Thv 4244,
114–116 (1978)

16. NIST: Submission requirements and evaluation criteria for the post-quantum cryp-
tography standardization process. . (2016)

17. Paiva, T.B., Terada, R.: A timing attack on the HQC encryption scheme. In:
International Conference on Selected Areas in Cryptography. pp. 551–573. Springer
(2019)

18. Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O.,
Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A.,
Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine
learning in Python. Journal of Machine Learning Research 12, 2825–2830 (2011)

19. Petrvalsky, M., Richmond, T., Drutarovsky, M., Cayrel, P.L., Fischer, V.: Differ-
ential power analysis attack on the secure bit permutation in the mceliece cryp-
tosystem. In: 2016 26th International Conference Radioelektronika (RADIOELEK-
TRONIKA). pp. 132–137. IEEE (2016)

20. Rivest, R.L., Shamir, A., Adleman, L.: A method for obtaining digital signatures
and public-key cryptosystems. Communications of the ACM 21(2), 120–126 (1978)

21. Schamberger, T., Holzbaur, L., Renner, J., Wachter-Zeh, A., Sigl, G.: A power side-
channel attack on the reed-muller reed-solomon version of the hqc cryptosystem.
Cryptology ePrint Archive (2022)

22. Schamberger, T., Renner, J., Sigl, G., Wachter-Zeh, A.: A power side-channel at-
tack on the CCA2-Secure HQC KEM. In: 19th Smart Card Research and Advanced
Application Conference (CARDIS2020) (2020)

23. Schröder, L.: A novel timing side-channel assisted key-recovery attack against
HQC. Ph.D. thesis, Wien (2022)

24. Sendrier, N.: Decoding one out of many. In: International Workshop on Post-
Quantum Cryptography. pp. 51–67. Springer (2011)

25. Wafo-Tapa, G., Bettaieb, S., Bidoux, L., Gaborit, P., Marcatel, E.: A practicable
timing attack against HQC and its countermeasure. Advances in Mathematics of
Communications (2020)

26. Walter, C.D.: Sliding windows succumbs to big mac attack. In: International Work-
shop on Cryptographic Hardware and Embedded Systems. pp. 286–299. Springer
(2001)

	A New Key Recovery Side-Channel Attack on HQC with Chosen Ciphertext

