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ARTICLE

Genomic adaptation of the picoeukaryote
Pelagomonas calceolata to iron-poor oceans
revealed by a chromosome-scale genome
sequence
Nina Guérin1,2, Marta Ciccarella 1, Elisa Flamant1,2, Paul Frémont 1,2, Sophie Mangenot1,2, Benjamin Istace1,

Benjamin Noel 1, Caroline Belser 1, Laurie Bertrand1,2, Karine Labadie 2,3, Corinne Cruaud2,3,

Sarah Romac 4, Charles Bachy 4,5, Martin Gachenot5, Eric Pelletier1,2, Adriana Alberti1,2,6,

Olivier Jaillon 1,2, Patrick Wincker 1,2, Jean-Marc Aury 1 & Quentin Carradec 1,2✉

The smallest phytoplankton species are key actors in oceans biogeochemical cycling and their

abundance and distribution are affected with global environmental changes. Among them,

algae of the Pelagophyceae class encompass coastal species causative of harmful algal

blooms while others are cosmopolitan and abundant. The lack of genomic reference in this

lineage is a main limitation to study its ecological importance. Here, we analysed Pelagomonas

calceolata relative abundance, ecological niche and potential for the adaptation in all oceans

using a complete chromosome-scale assembled genome sequence. Our results show that

P. calceolata is one of the most abundant eukaryotic species in the oceans with a relative

abundance favoured by high temperature, low-light and iron-poor conditions. Climate change

projections based on its relative abundance suggest an extension of the P. calceolata habitat

toward the poles at the end of this century. Finally, we observed a specific gene repertoire

and expression level variations potentially explaining its ecological success in low-iron and

low-nitrate environments. Collectively, these findings reveal the ecological importance of

P. calceolata and lay the foundation for a global scale analysis of the adaptation and accli-

mation strategies of this small phytoplankton in a changing environment.
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Marine phytoplankton accounts for more than 45% of
photosynthetic primary production on Earth and play an
essential role in supplying organic matter to marine food

webs1. They are key global actors in CO2 uptake and provide gas-
eous oxygen to the atmosphere. A global decline of phytoplankton
biomass has been reported over the past century (1% of chlorophyll-
a concentration per year) leading to a decrease of net primary
production in many oceanic regions2. This decline is probably a
consequence of global ocean warming which drives water column
stratification, reducing the nutrient supply to surface waters.
Temperature-driven reductions in phytoplankton productivity in
tropical and temperate regions are likely to have cascading effects on
higher trophic levels and ecosystem functioning3.

Photosynthetic picoeukaryotes (PPEs), defined by a cell diameter
<3 µm, belong to different phyla, including Chlorophyta, Crypto-
phyta, Haptophyta, and Stramenopiles4. Present in all oceans, PPEs
are the dominant primary producers in warm and oligotrophic
regions5. Ocean warming and expansion of oligotrophic regions in
the next decades may extend the ecological niche of PPEs, and a
global shift from large photosynthetic organisms toward smaller
primary producers is expected3,6. For example, sea ice melting in
the Canadian Arctic Basin has been associated with an increase in
the abundance of PPEs such asMicromonas at the expense of larger
algae7. In the laboratory, this alga has the capacity to change its
optimum temperature for growth in only a few hundred genera-
tions, suggesting that it will be less affected by global warming than
many larger organisms8. In addition, the larger cell surface-to-
volume ratio of PPEs compared to larger phytoplankton cells is
advantageous for resource acquisition and growth in nutrient-
limited environments9,10.

Iron is one key compound required for the activity of the
respiratory chain, photosynthesis and nitrogen fixation10. Because
bioavailable iron is extremely low in more than one-third of the
surface ocean, small phytoplankton has developed several strategies
to optimize iron uptake and reduce iron needs11. In diatoms,
reductive and non-reductive iron uptake mechanisms involve
many proteins, including phytotransferrins, transmembrane ferric
reductases, iron permeates, and siderophore-binding proteins12.
The iron needs can be modulated by the variation of gene
expression levels between iron-required proteins and their iron-free
equivalent. These protein switches include electron transfer
(flavodoxin/ferredoxin), gluconeogenesis (fructose-bisphosphate
aldolase type I or type II) and superoxide dismutases (Mn/Fe-SOD,
Cu/Zn-SOD or Ni-SOD)13–15.

PPE growth is also limited by nitrogen (N) availability in large
portions of the global ocean16. Ammonium (NH4

+), nitrate
(NO3

−) and nitrite (NO2
−) are the primary source of inorganic

N for PPEs, however, several studies have shown that dissolved
organic N, like urea, can be metabolized in N-limited
environments17. For example, several membrane-localized urea
transporters in the diatom Phaeodactylum tricornutum are maxi-
mally expressed in nitrogen-limited conditions18 and the harmful
algal blooms of the pelagophyceae Aureococcus anophagefferens
may be fueled by urea19.

Despite their large taxonomic distribution, most molecular stu-
dies on the ecological role of PPEs and their adaptation to the
environment are restricted to a few species. PPEs are suspected of
possessing highly developed acclimation/adaptation capacities, but
the underlying molecular mechanisms remain poorly characterized
due to the lack of reference genomic data.

Among PPEs, Pelagomonas calceolata was the first described
member of the Pelagophyceae class20. It has since been identified in
many oceanic regions using its 18 S rRNA sequence and chloroplast
genome21–23. Several studies have demonstrated the capacity of
P. calceolata to adapt to different environmental conditions. In the
laboratory, P. calceolata has been shown to exhibit a high degree of

acclimation to light fluctuations with rapid activation of the photo-
protective xanthophyll cycle and non-photochemical quenching24.
In the Marquesas archipelago, P. calceolata is one of the most
responsive species to iron fertilization with upregulation of genes
involved in photosynthesis, amino acid synthesis and nitrogen
assimilation13. A global-scale analysis of pelagophyte genes revealed
that they are adapted to low-iron conditions14. In the subtropical
Pacific, P. calceolata expresses stress genes in surface samples and
genes involved in nitrogen assimilation are overexpressed in the
deep-chlorophyll maximum25. A laboratory study suggests that
P. calceolata also has the ability to increase the transcription levels
of organic-nitrogenous compound cleavage enzymes (cathepsin,
urease, arginase) under low nitrogen concentration26. Thus, gene
expression appears to be controlled according to the nitrogen
source and quantity. Taken together, this apparent adaptive plas-
ticity may explain the presence of P. calceolata in many different
oceanic environments, however, an exhaustive analysis of the
genetic capacity of this species and the in situ characterization of its
ecological niche is lacking.

Here we sequenced, assembled and annotated the Pelagomonas
calceolata genome, with a combination of long- and short reads.
We examined its genomic structure and gene content relative to
other unicellular phytoplankton. We used this genome to detect
P. calceolata in environmental datasets of Tara expeditions
across all oceans to characterize its ecological niche and to
identify the environmental conditions controlling its relative
abundance. Finally, environmental expression levels of genes
involved in nitrogen compounds and iron uptake and metabolism
were studied.

Results
Chromosome-scale assembly and annotation of the P. calceo-
lata genome. To measure the abundance of P. calceolata in the
oceans and study its genetic capacity to grow in different envir-
onmental conditions, we sequenced and assembled the genome of
P. calceolata RCC100 using long reads of Oxford Nanopore
Technologies (ONT) and Illumina short reads. Using the k-mer
distribution of short reads, the genome was estimated to be
homozygous with a size of 31Mb (Supplementary Fig. S1a). The
ONT long reads were assembled with Flye into six nuclear contigs
for a total of 32.4Mb, 1 plastid circular contig (90 Kb) and 1
mitochondrial circular contig (39 Kb) (Fig. 1, Supplementary
Fig. S1b, c, and Supplementary Data 1). Two large and highly
similar duplicated regions (>99% of identity) were detected at the
extremity of contig 1 and 5 (393 Kb) and at the extremities of contig
3 and 6 (192 Kb; Supplementary Note 1 and Supplementary
Fig. S1d). (TTAGGG)n telomeric repeats were detected at both
ends of contigs 2, 3, 4, and 6, indicating that these four contigs
represent complete chromosomes (Supplementary Fig. S1d). For
contig 1 and contig 5, telomeric sequences were identified at only
one extremity, the other extremity ending in the duplicated region.
We used the Hi-C long-range technology to validate the assembly
of P. calceolata genome sequence. The interaction map revealed a
high number of contacts within contigs and very few across contigs
(Supplementary Fig. S2 and Supplementary Note 2). No chimeras
or fragmentations were detected. This result confirms that the six
contigs correspond to six chromosomes of P. calceolata.

A total of 16,667 genes were predicted on the P. calceolata
genome (see “Methods”), which is a high number for a PPE
(Table 1 and Supplementary Data 2). There was an average of 0.45
intron per gene, and the distribution of their lengths reveals a peak
at around 210 bp, which is the characteristic length of Introner
Elements described inA. anophagefferens27 (Supplementary Fig. S3,
Supplementary Data 3, and Supplementary Note 3). In all, 9812
P. calceolata predicted proteins (58%) are homologous with at least
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one gene in a stramenopile genome, including 2631 (16%) only
shared with the pelagophyte A. anophagefferens (Supplementary
Fig. S4). A conserved functional domain (Pfam, KO or Inter-
ProScan) was found in 11,240 proteins (67%). Even if gene
completeness estimations are imprecise for species distant from
model organisms, we obtained 94.0% of completeness with
BUSCO28 (88% single-copy and 6% duplicated genes), showing
that our genome is near complete (Supplementary Data 4).

GC content, centromeres, and meiosis in P. calceolata. A
remarkable feature in the P. calceolata genome is the distribution of
GC content along P. calceolata chromosomes (Fig. 1). While the
average GC content of the nuclear genome is 63%, one large region

in each contig (259 Kb on average) is 52% GC. These unique large
troughs in GC content in each chromosome suggest that these
regions encompass centromeres. The Hi-C result confirms cen-
tromere positions with the presence of contacts between low-GC
regions across chromosomes, suggesting the physical proximity of
these regions in the nucleus (Supplementary Fig. S2). Interestingly,
we did not observe an accumulation of repeated elements or
transposons in these low-GC regions and only a slight decrease of
gene density. Genomic specificities and gene content of low-GC
regions are detailed in Supplementary Data 5, S6 and Supplemen-
tary Note 4. Low-GC patterns in centromeres could be explained by
the inhibition of recombination29,30, suggesting that P. calceolata is
capable of meiosis and recombination. Among 23 meiosis-specific

Fig. 1 Pelagomonas calceolata nuclear genome. Representation of the 6 nuclear contigs of P. calceolata. The top layer indicates the number of genes per
100 Kb (black bars), the middle layer represents the GC content in percentage over a window of 200 Kb and the bottom layer is the position of DNA
repeats of more than 500 bases repeated at least five times over the entire genome. Red, orange, and yellow bars indicate three different repeats in low-GC
regions present in at least three different contigs. Dashed red and blue rectangles are duplicated chromosomic regions.

Table 1 Genome characteristics of several unicellular photosynthetic eukaryotes.

Phylum/class Species Genome size (Mb) Number of chromosomes Predicted genes GC% Cell size References

Pelagophyceae Pelagomonas calceolata 32.4 6 16,667 63.6 2 µm This study
Pelagophyceae Aureococcus

anophagefferens
56.0 Unknown 11,520 67.4 2 µm 89

Eustigmatophyceae Nannochloropsis oceanica 29.3 32 7730 54.0 3 µm 90

Diatom Phaeodactylum tricornutum 27.0 33 10,402 48.8 11 µm 91

Diatom Thalassiosira pseudonana 34.5 24 11,776 46.9 5 µm 92

Chlorophyta Micromonas pusilla 21.9 17 10,575 65 ≤2 μm 93

Chlorophyta Ostreococcus lucimarinus 13.2 21 7651 60 1.3 µm 94

Chlorophyta Bathycoccus prasinos 15.1 19 7847 48 1–2 µm 95

Haptophyta Emiliania huxleyi 141.7 Unknown 38,549 64.5 4–5 μm 96
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genes characterized in other species31–33, 18 homologs are present
in the P. calceolata genome (Supplementary Data 7). These genes
include the double-strand DNA break (DSB) initiator SPO11;
RAD50, RAD52, and MRE11 to bind DSBs; HOP2, MND1, DMC1,
and RAD51 to ensure pairing and invade the homologous strand;
MSH2, MSH3 PMS1, and MSH6 genes involved in the synthesis-
dependent strand annealing pathway and MUS81 necessary for
non-interfering (class II) crossing over. The five missing genes
are absent in many organisms capable of meiosis, suggesting
that they are not required to perform genetic recombination
(Supplementary Note 5). Taken together, the genomic structure
and the genetic content of P.calceolata strongly suggests that this
species performs meiosis.

Relative abundance of P. calceolata across oceanic basins. To
estimate the relative abundance of P. calceolata across all oceans,
we first used the abundance of the V9 region of the 18 S rRNA
sequenced from all samples of the Tara Oceans expedition34.
The most abundant P. calceolata Operational Taxonomic Unit
(OTU) in the 0.8–5 µm size fraction is on average 0.80% for the
104 surface samples and 1.23% for the 61 deep-chlorophyll
maximum (DCM) samples (Supplementary Data 8). According to
this abundance estimation method, P. calceolata is the third most
abundant eukaryote OTU of the 0.8–5 µm size fraction after two
Dinophyceae OTUs affiliated to Ankistrodinium and an unknown
Gymnodiniaceae.

To estimate P. calceolata abundance independently from PCRs
and 18 S rRNA copy number bias, we used the mapping of
metagenomic reads on the P. calceolata genome. For the 0.8–5 µm
size fraction, the percentage of sequenced reads aligned on the
genome is 1.39% (n= 93, sd= 1.5) in surface samples and 2.67%
(n= 55, sd= 1.6) in DCM samples. In the 0.8–2000 µm size
fraction, P. calceolata represents 1.01% (n= 80, sd= 1.2) of all
reads in surface samples and 1.56% (n= 39, sd= 1.3) in DCM
samples. A maximal relative abundance of 6.7% in the 0.8 − 5 µm
size fraction was observed in the North Indian Ocean (station
TARA_38) at the DCM (Fig. 2a). In the Indian Ocean, Red Sea and
Mediterranean Sea, P. calceolata is significantly more abundant in
the DCM than at the surface (Fig. 2b). In cold waters (below 10 °C),
P. calceolata is not detected above our threshold of 25% of
horizontal genomic coverage. Important variations between and
within each oceanic basin are observed, suggesting that many biotic
or abiotic factors influence P. calceolata abundance.

Finally, we compared the two methods of abundance estimations
(Supplementary Fig. S5). The metagenomic-based relative abun-
dance is strongly correlated to the metabarcoding-based relative
abundance (Pearson correlations of 0.91 and 0.70 for the 0.8–2000
and 0.8–5 µm size fractions, respectively). However, the
metabarcoding-based abundance is on average 2.3 lower in the
0.8–5 µm size fraction and 3.1 lower in the 0.8–2000 size fraction
compared to the metagenomic-based abundance (Supplementary
Fig. S5).

High relative abundance of P. calceolata in temperate, low-light,
and iron-poor regions. In order to identify factors controlling
P. calceolata abundance in the oceans, we used physical-chemical
parameters available for each oceanic station (see “Methods”).
Principal component analysis revealed a positive relation between
metagenomic-based P. calceolata abundance, the temperature,
and the coast distance and a negative relation with iron con-
centration (Fig. 3a, b). This result was consistent over the 2 size
fractions containing P. calceolata cells (0.8–5 µm and 0.8–2000 µm
size fractions; Supplementary Fig. S6). Despite the numerous fac-
tors potentially influencing P. calceolata abundance, we observed
a weak but significant Pearson’s positive correlation with the

temperature, a negative correlation with Photosynthetically Active
Radiation (PAR, mean of 30 days) and a negative correlation with
iron concentrations (Table 2). In the 0.8–5 µm size fraction, the
relative abundance of P. calceolata is higher in low-iron conditions
(<0.2 nmol/l, 54 samples) with on average 2.3% of metagenomic
reads than in high-iron environments (>0.2 nmol/l, 88 samples)
with on average 1.7% of metagenomic reads (Wilcoxon test,
P value= 0.02). In the 0.8–2000 µm size fraction, we observe the
same tendency with a relative abundance of 1.9% of metagenomic
reads on average in low-iron waters (49 samples) and a lower
relative abundance of 0.78% of metagenomic reads on average in
high-iron environments (59 samples) (Wilcoxon test, P value=
9.6e−7). In addition, P. calceolata relative abundance is weakly
correlated with the 9’butanoyloxyfucoxanthin concentration, a
signature pigment for pelagophytes (Pearson 0.22, P value= 0.02
and Pearson 0.41, P value= 4.82e−05 in the 0.8–5 µm and
0.8–2000 µm size fraction, respectively). We used a general additive
model to estimate the contribution of temperature, PAR and iron
concentration to P. calceolata relative abundance (Table 2). The
three factors explain 32.3% of the variations of P. calceolata
abundance in the 0.8–5 µm size fraction and 56.8% in the
0.8–2000 µm size fraction.

Finally, we projected the relative abundance of P. calceolata at
the end of the century following Frémont et al. methodology35.
We modeled the ecological niche of P. calceolata using the
World Ocean Atlas (WOA18) datasets at the time and location
of sampling or using the projected climatology in 2099 using
the RPC8.5 scenario (see “Methods”). We used four machine-
learning techniques: Generalized Additive Models (GAM), Neural
Networks (nn), Random Forest (rf) and Gradient Boosted Trees
(bt) and evaluated their performances with two parameters. The
Pearson correlation coefficient indicates the correlation between
the model and in situ measurements of P. calceolata abundance.
The four machine-learning tools have similar performances based
on Pearson’s correlations (nn= 0.676; gam= 0.621; bt= 0.683;
rf= 0.694). The second parameter is the root mean square error
(rmse) and reflects the magnitude of the errors in the models (the
number of standard deviations from the mean). Using this metric
the GAM approach is less good (rmse= 1.04) than the three
other tools (nn= 0.964; bt= 0.952; rf= 0.941). These results
indicate that we have enough in situ data to capture the global
trends on the relative abundance of P. calceolata but these models
could be imprecise on the amplitude of abundance variations. In
addition, the predictions in the tropical waters are uncertain
because this environment in 2099 is out of the range of the
training dataset. Because the performances of the four models are
similar, we combined them to obtain the most accurate projection
(Fig. 3c and Supplementary Fig. S7). Despite these limitations, we
projected an increase of up to 1.12% of P. calceolata relative
abundance from latitude 40° to latitude 50° in the North and
South hemispheres and a decrease in temperate and tropical
waters (−0.8% maximum).

Genes related to iron uptake, storage and usage in P. calceolata.
Iron is a critical metal for all photosynthetic organisms, required
for the photosynthesis, the nitrogen cycle and the protection
against reactive oxygen species. Since P. calceolata seems to thrive
in iron-poor waters, we identified P. calceolata genes coding for
iron uptake and storage, then compared their expression levels in
low (<0.2 nmol/l) versus high (>0.2 nmol/l) iron conditions using
Tara Oceans metatranscriptomes. P. calceolata has five genes
encoding the phytotransferrin ISIP2A involved in Fe3+ uptake via
endosomal vesicles and 2 putative iron-storage protein ISIP3. In
iron-poor environments, three ISIP2A and one ISIP3 are over-
expressed (Fig. 4a and Supplementary Data 9). This result indicates
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that similarly to diatoms, ISIP are upregulated following iron
starvation in P. calceolata potentially improving cell growth in
low-iron environments. Three genes encode the iron transporter
ferroportin but are not differentially expressed according to
the environment (Supplementary Fig. S8a). These proteins are
iron exporters in multicellular organisms but their function in
microalgae remains to be studied36. Finally, we identified eight
Zinc/iron permeases potentially involved in iron uptake from the

environment in the P. calceolata genome. Among them, two are
overexpressed in high-iron and one in low-iron environments.
Interestingly, we note the absence of the iron permease FTR1,
the iron-storage ferritin and the starvation induced protein ISIP1
(involved in endocytosis of siderophores in diatoms). In compar-
ison to P. calceolata, the coastal Pelagophyceae A. anophagefferens
do not have ISIP3 gene and a lower number of Zinc–Iron
permeases.

Fig. 2 Relative abundance and distribution of P. calceolata in the oceans. a World map of the relative abundance of P. calceolata metagenomic reads. The
color code indicates the percentage of sequenced reads aligned on the genome. The DCM samples of size fractions 0.8–5 µm (circles) or 0.8–2000 µm
(triangles) are shown. P. calceolata is considered to be absent when the horizontal coverage is below 25% of the genome (gray dots). b Boxplot of the
relative abundance in each oceanic region in surface and DCM samples. Red stars indicate a significant difference between SUR and DCM samples
(Wilcoxon test, P value <0.01).
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Fig. 3 Ecological niche of P. calceolata. a Principal component analysis of the metagenomic-based relative abundance of P. calceolata in the 0.8–5 µm size
fraction. Percentages of variance explained by each axis are indicated on axis titles. Top panel: each dot represents a sample with a size proportional to the
relative abundance of P. calceolata and the colors indicate the oceanic basins. Bottom panel: nine environmental parameters are represented as vectors
alongside the relative abundance of P. calceolata (blue vector). b Bubble plot of the relative abundance of P. calceolata for the 0.8–5 µm size fraction
according to the nine environmental parameters. c Delta of the modeled relative abundance of P. calceolata between 2010 and 2099. Green areas
correspond to a decrease while purple areas correspond to an increase of P. calceolata relative abundance. Small stars indicate locations where at least one
of the predictor drivers is out of range compared to the training dataset values.

ARTICLE COMMUNICATIONS BIOLOGY | https://doi.org/10.1038/s42003-022-03939-z

6 COMMUNICATIONS BIOLOGY |           (2022) 5:983 | https://doi.org/10.1038/s42003-022-03939-z | www.nature.com/commsbio

www.nature.com/commsbio


Several important ferrous proteins can be substituted by
non-ferrous equivalents in iron-poor environments14. In the
P. calceolata genome we identified 11 flavodoxin genes involved
in electron transfer during photosynthesis, potentially replacing
ferredoxins (17 genes; Supplementary Data 9). This number
of genes is important compared to other algae, including
A. anophagefferens (5 flavodoxins and 9 ferredoxins). Expression
levels of these genes across the oceans revealed overexpression
of flavodoxin genes in low-iron environments, replaced by
ferredoxins in high-iron conditions (Fig. 4b). The Fructose-
Bisphosphate Aldolase (FBA), necessary for gluconeogenesis and
the Calvin cycle, is encoded by six genes in P. calceolata.
Two genes are dependent on a divalent cation (FBA type II), and
the four others are Zinc/Iron-independent (FBA type I). FBA type
I is overexpressed in high-iron conditions and quasi-absent in
low-iron conditions (Fig. 4c). Finally, all types of Superoxide
dismutases (SOD) are found in the P. calceolata genome. Non-
ferrous SODs (Cu/Zn and Ni) encoded by three genes and Mn/
Fe-SOD encoded by two genes are not differentially expressed
according to iron concentrations (Supplementary Fig. S8b). The
gene content and the transcriptomic flexibility suggest important
capacities for P. calceolata growth in low-iron environments.

Genes involved in nitrogen uptake, storage, and recycling.
Because P. calceolata could be an important player in the nitrogen
(N) cycle in oceanic ecosystems25, we explored its gene content
and analyzed the expression levels of genes involved in nitrogen
metabolism in the environment using Tara Oceans metatran-
scriptomes (Fig. 5 and Supplementary Data 9). The uptake
of nitrogen-containing inorganic compounds is supported by 11
genes in P. calceolata. Three genes encode nitrate/nitrite trans-
porters, three genes encode formate/nitrite transporters and five
genes encode ammonium transporters. One formate/nitrite and
two nitrate/nitrite transporter genes are significantly over-
expressed in low-nitrate conditions (Supplementary Fig. S9). One
ammonium transporter is overexpressed in low-ammonium
environments (Supplementary Fig. S9). We identified one
nitrate reductase and two nitrite reductases in the P. calceolata
genome (Supplementary Data 9). The expression level is sig-
nificantly higher in high-nitrate environments for the nitrate
reductase and one nitrite reductase (Supplementary Fig. S10).
But the second nitrite reductase is surprisingly less expressed in
high-nitrate conditions. The number of enzymes incorporating
ammonium into organic compounds (GS/GOGAT pathway) is
higher in P. calceolata than in other species: five glutamine

synthetase (GS) and four glutamate synthase (GOGAT) genes
are present in the P. calceolata genome. Two GS genes are more
expressed in high-nitrate samples and 1 GOGAT gene is more
expressed in low-nitrate samples (Supplementary Fig. S10).

We identified three genes carrying the nitrate and nitrite sensing
(NIT) domain (IPR013587) in the P. calceolata genome. Using
NCBI non-redundant proteins and marine genomic databases (see
“Methods”), 60 homologous proteins of the NIT-sensing domains
of P. calceolatawere identified. These homologs are restricted to the
Pelagophyceae class (16 transcriptomes), the Dictyochophyceae
class (6 transcriptomes) and one putative cryptophyte transcrip-
tome. The phylogenetic tree of this protein family shows three
subfamilies diverging before the Dictyochophyceae/Pelagophyceae
separation (Supplementary Fig. S11). One P. calceolata protein
carries a NIT-sensing domain surrounded by two transmembrane
domains suggesting a capacity for external nitrate/nitrite sensing
while the two other NIT genes carry a protein-kinase domain
(IPR000719) suggesting phosphorylation-based signal transduction
dependent on intracellular nitrate or nitrite concentration (Fig. 5b).
To investigate this possibility, we studied the expression levels
of NIT-sensing genes. The potential external NIT-sensing gene is
indeed significantly overexpressed in low-nitrate environments.
In contrast, only one of the intracellular NIT-sensing genes is
upregulated in nitrate-rich environments (Fig. 5c). This result
suggests an important role of the NIT-sensing genes in the
acclimation to environmental nitrate concentrations.

Finally, we identified genes involved in nitrogen recycling from
organic compounds which are important in several species in case
of inorganic nitrogen deprivation. One arginase and one cyanate
lyase were detected in the P. calceolata genome but no gene
encoding formamidase. In addition, the number of gene copies
for enzymes involved in the urea cycle (carbamoyl-phosphate
synthetase, ornithine carbamoyltransferase, argininosuccinate
synthase and argininosuccinate lyase) is equal or slightly lower
than in other algae (Fig. 5a and Supplementary Data 9). Among
these genes, only the cyanate lyase is overexpressed in low-nitrate
conditions suggesting cyanate is an important alternative source
of organic nitrogen for P. calceolata (Supplementary Fig. S10).

Discussion
The essential roles of phytoplankton in oceanic ecosystems have
been illustrated many times, however, numerous lineages are still
poorly explored and model organisms are restricted to a few taxa
(mainly diatoms, prasinophytes, and haptophytes) limiting the
global understanding of phytoplankton activity. The P. calceolata

Table 2 Environmental parameters explaining P. calceolata relative abundance for the 0.8–5 µm (a) and the 0.8–2000 µm (b)
size fractions.

(a) GAM model GAM verification Pearson correlations

0.8–5 µm edf F value P value k-index k P value r P value

s(Temperature) 1 22.16 6.84e−6 1.11 0.87 0.23 0.001
s(Iron concentration) 1.257 13.12 2.26e−4 0.93 0.12 −0.25 0.001
s(PAR 30 days) 1.859 15.94 4.56e−7 1.01 0.44 −0.32 0.001
Adjusted R² 0.3
Deviance explained 32.30%

(b) GAM model GAM verification Pearson correlations

0.8–2000 µm edf F value P value k-index k P value r P value

s(Temperature) 3.628 9.442 1.71e−6 0.96 0.31 0.57 0.0001
s(Iron concentration) 1.54 1.225 2.42e−1 0.91 0.14 −0.47 0.0001
s(PAR 30 days) 2.454 6.962 0.00027 1.14 0.93 −0.051 0.6
Adjusted R² 0.53
Deviance explained 56.80%
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Fig. 4 Expression of iron-related genes in P. calceolata. a Relative gene expression levels normalized in transcript per million (TPM) of five
phytotransferrins (ISIP2A) and two putative iron storage (ISIP3) in low-iron (<0.2 nM) and high-iron (>0.2 nM) oceanic stations. P values of Wilcoxon
statistical tests between low- and high-iron conditions are indicated for each gene. Significant P values (<0.01) are in bold. b Relative expression levels
(TPM) of genes coding for ferredoxin (orange) and its non-ferrous equivalent flavodoxin (purple) in each Tara Oceans sample. Samples are sorted from
low-iron (left) to high-iron (right) conditions. Iron concentrations are indicated in nM on the colored horizontal bar. c Same representation for genes coding
for fructose-bisphosphate aldolase II (orange) and its non-ferrous equivalent fructose-bisphosphate aldolase I (purple).
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genome assembled and annotated in this study reveals a pre-
viously underestimated high abundance of P. calceolata in the
oceans and brings new insights into specific genomic features of
this algae class related to its adaptation to specific environments.

We have shown in this study that P. calceolata is cosmopolitan
in oceanic samples above 10 °C with a relative abundance

generally >1% of all sequenced reads. In contrast to the coastal
Pelagophyceae A. anophagefferens that can present high peaks of
abundance37, no P. calceolata blooms were reported, but P. cal-
ceolata is well-adapted to an extensive range of environmental
conditions as suggested by previous studies21,23. Although the
abundance of an organism calculated from metabarcoding or

Fig. 5 Nitrogen sensing and metabolism in P. calceolata. a Schematic representation of N transport and assimilation in P. calceolata based on the gene
content. The color code indicates if the number of gene copies for a specific function is overrepresented (green), equally represented (blue),
underrepresented (orange) or absent (red) in P. calceolata genome compared to the mean of eight pico-nano photosynthetic eukaryotes. Gene copy
number for each function is indicated in Supplementary Data 9. b Domain organization of NIT-sensing proteins in P. calceolata. Orange boxes are NIT-
sensing domains (IPR13587), blue boxes are serine–threonine/tyrosine-kinase domain (IPR20635), and yellow rectangles are transmembrane domains.
c Relative expression levels (TPM) of three NIT-sensing genes in low-nitrate (<2 µM) and high-nitrate (>2 µM) environments. P values of
Mann–Withney–Wilcoxon tests between low- and high-nitrate samples are indicated for each gene. Significant P values (<0.01) are in bold.
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metagenomic data provides only an indirect and relative quan-
tification of organism abundances, both methods suggest that P.
calceolata is one of the most abundant pico-nano eukaryote in
offshore data. The high relative abundance of P. calceolata mea-
sured with a metabarcoding approach has recently been con-
firmed with a qPCR method (average of 5 882 ± 2 855 rRNA gene
copies mL−1 on the surface of the eastern North Pacific)21. In
addition, we have shown that the metabarcoding approach
probably underestimates the relative abundance of P. calceolata
compared to the metagenomic analysis owing to the low copy
number of rRNAs in this organism. However, we cannot exclude
that the large genome size of P. calceolata compared to bacterial
genomes present in the 0.8–5 µm size fraction overestimates its
relative abundance in metagenomic datasets. Further studies may
combine microscopic and flow sorting approaches with genomic
data to assess the number of cells and the biomass of this
organism in the oceans. Our model analysis has revealed a
probable increase of P. calceolata relative abundance at the end of
the century in high latitudes where the seawater temperature is
currently too low for this species. This result is coherent with
previous studies suggesting a global increase of phytoplankton in
subpolar regions38,39.

Iron is essential for growth, photosynthesis, primary produc-
tion, nitrogen fixation and reduction for PPEs40. Our results show
that P. calceolata thrives in iron-poor waters and thus occupies a
large ecological niche for a PPE. Two main strategies exist against
iron deprivation: the optimization of iron uptake and the mod-
ulation of iron needs. Genes coding for iron chelators and ferritin
are absent from the P. calceolata genome, and genes coding for
passive iron transporters are under- or equally represented
compared to other PPEs. In contrast, phytotransferrins (ISIP2A),
putative iron-storage proteins (ISIP3) and ferroportins are over-
represented in the P. calceolata genome. The expression levels of
ISIP genes are anti-correlated with iron concentration in P. cal-
ceolata showing an acclimation to low-iron conditions. Because
phytotransferrins are dependent on carbonate ions, ocean acid-
ification may reduce iron uptake efficiency in many species
including P. calceolata41,42. Compared to P. calceolata, the low
abundance of A. anophagefferens in open oceans where iron is
limited is consistent with the absence of genes involved in iron
uptake and storage, including iron permeases and ISIP3 genes.
The presence of three ferroportin genes in P. calceolata is inter-
esting since these transmembrane iron export proteins play a
significant role in iron homeostasis in multicellular organisms36.
Ferroportin function in microalgae is unknown but could act to
export iron from endosomes to the cytoplasm43. In the green alga
Chlamydomonas reinhardtii, a ferroportin gene is overexpressed
under low Fe conditions44. Even though we did not find sig-
nificant changes in the expression of the 3 ferroportin genes of P.
calceolata according to iron concentration, the function of these
genes could be investigated to understand their role in variable
iron concentrations.

Modulation of iron needs seems to be a major acclimation
strategy for P. calceolata in low-iron environments. All known
molecular switches between ferrous and non-ferrous proteins are
present in the P. calceolata genome and the transcriptomic reg-
ulation of these genes suggests a central role of these proteins for
its growth in low-iron environments.

Expressing more than 90% of all nitrate transporter transcripts,
pelagophytes may dominate nitrate uptake and assimilation in the
North Pacific Ocean25. Indeed, P. calceolata contains a large
collection of genes for inorganic nitrogen transporters. The main
difference with the coastal A. anophagefferens is the reduced
number of ammonium transporters in P. calceolata.

Organic nitrogen compounds could also be a major nitrogen
source of for P. calceolata. We have shown that the cyanate lyase

and urease genes are expressed in many environments but only
the cyanate lyase is overexpressed in low-nitrate conditions.
These two genes, largely present among phytoplankton lineages,
could be significant components of acclimation to low-nitrate
environments45. In addition, A. anophagefferens grow faster on
the organic nitrogen substrates (urea and glutamic acid) than on
nitrate or ammonium, suggesting that the dominance of Pela-
gophyceae in low-nitrate environments could be due to an opti-
mized usage of these organic molecules46.

One remarkable feature of the P. calceolata genome is the pre-
sence of three genes carrying NIT domains (PF08376). This NIT
domain was first described in bacterial nitrite and nitrate sensor
proteins47. This sensor is an alpha-helical protein playing a signal
transduction role in regulating gene expression, cell motility and
enzyme activity in Klebsiella oxytoca48. In pico-nano algae, NIT-
sensing domains can be associated with a serine–threonine/tyr-
osine-kinase domain, suggesting signal transduction according to
intracellular nitrate/nitrite concentration, or surrounded by two
transmembrane domains suggesting extracellular sensing. Even
though NIT-sensing domains can be found across various phyla,
homologs of P. calceolata NIT proteins are restricted to pelago-
phytes and dictyochophytes. The NIT genes in P. calceolata are
highly expressed in subtropical Pacific N-depleted waters, sug-
gesting that these proteins have a role in transcription regulation
according to nitrate availability25. Our results suggest that NIT-
sensing proteins respond differently to environmental nitrate
depletion. We can hypothesize that the NIT-sensing protein
overexpressed in nitrate-rich environments plays a role in the
intracellular regulation of stored nitrogen, activating pathways
when nitrate or nitrite stocks are sufficient. In contrast, putative
extracellular NIT-sensing could be an environmental nitrate or
nitrite sensor activated to regulate the expression of genes involved
in the acclimation to low-nitrate conditions.

In summary, due to its widespread distribution and its high
abundance in the open oceans, Pelagomonas calceolata can serve
as an ecologically-relevant model to study marine photosynthetic
protists. We used the chromosome-scale genome sequence,
mostly telomere-to-telomere, generated in this study to estimate
its abundance in environmental datasets. We have shown that the
P. calceolata genome has specific genomic features potentially
explaining its ecological success in open oceans. Compared to the
coastal Pelagophyceae A. anophagefferens, the P. calceolata gen-
ome contains specific genes involved in the acclimation to low-
iron conditions. The large repertoire of genes involved in nutrient
acquisition from the environment is coherent with its widespread
pattern of relative abundance distribution across different envir-
onments. The ecological niche of P. calceolata suggests that this
alga will benefit from the global climate change with the extension
of oligotrophic regions and global ocean warming. Future studies
could use the P. calceolata genome to explore adaptation and
acclimation processes controlling the distribution and abundance
of this alga.

Methods
Pelagomonas culture. Pelagomonas calceolata RCC100 culture was grown in
12:12-h light:dark photoperiod in K medium with natural seawater base at 20 °C.
At the Roscoff Culture Collection, cells were kept at a light intensity of ~80 μmol
photon m−2 s−1 and the volume of culture was ramped up to 1 litre in mid-
exponential growth phase before harvesting. RCC100 culture was not axenic and
grown in the presence of undefined bacterial microbiota.

DNA extraction, library preparation, and sequencing. We pelleted cells from
500 ml of culture by two successive centrifugations at 10,000 × g for 15 min at 4 °C.
Genomic DNA was extracted using the NucleoSpin Plant II Mini kit according to
the manufacturer’s instructions (Macherey-Nagel, Hoerdt, France) with the fol-
lowing exception for the lysis step: 400 µL of lysis buffer PL1 and 25 µL of pro-
teinase K 25mg/mL were added to strain pellets, and lysates were incubated at
55 °C for 1 h at 900 rpm. DNA quantity and integrity were respectively evaluated

ARTICLE COMMUNICATIONS BIOLOGY | https://doi.org/10.1038/s42003-022-03939-z

10 COMMUNICATIONS BIOLOGY |           (2022) 5:983 | https://doi.org/10.1038/s42003-022-03939-z | www.nature.com/commsbio

www.nature.com/commsbio


on a Qubit 2.0 spectrofluorometer (Invitrogen, Carlsbad, CA, USA) and a
Nanodrop1000 spectrophotometer (Thermo Fisher Scientific, MA, USA).

For Illumina sequencing, DNA (1.5 μg) was sonicated using a Covaris
E220 sonicator (Covaris, Woburn, MA, USA). Fragments were end-repaired, 3′-
adenylated and Illumina adapters (Bioo Scientific, Austin, TX, USA) added using
the Kapa Hyper Prep Kit (KapaBiosystems, Wilmington, MA, USA). Ligation
products were purified with AMPure XP beads (Beckmann Coulter Genomics,
Danvers, MA, USA). The library was then quantified by qPCR using the KAPA
Library Quantification Kit for Illumina Libraries (KapaBiosystems), and the library
profile was assessed using a High Sensitivity DNA kit on an Agilent Bioanalyzer
(Agilent Technologies, Santa Clara, CA, USA). The library was sequenced on an
Illumina NovaSeq instrument (Illumina, San Diego, CA, USA) using 150 base-
length read chemistry in paired-end mode.

For ONT sequencing, the library was prepared using the 1D Native barcoding
genomic DNA (with EXP-NBD104 and SQK-LSK109). Genomic DNA fragments
(1 µg) were repaired and 3’-adenylated with the NEBNext FFPE DNA Repair Mix,
and the NEBNext® Ultra™ II End Repair/dA-Tailing Module (New England
Biolabs, Ipswich, MA, USA). Adapters with barcodes provided by ONT were then
ligated using the NEB Blunt/TA Ligase Master Mix (NEB). After purification with
AMPure XP beads (Beckmann Coulter, Brea, CA, USA), the sequencing adapters
(ONT) were added using the NEBNext Quick T4 DNA ligase (NEB). The library
was purified with AMPure XP beads (Beckmann Coulter), then mixed with the
Sequencing Buffer (ONT) and the Loading Bead (ONT), and loaded on a MinION
R9.4.1 flow cell. Reads were basecalled using Guppy 3.1.5.

For the Hi-C sequencing, the library was prepared using the Dovetail Omni-C
kit (Dovetail Genomics, Scotts Valley, CA, USA). A P. calceolata RCC100 culture
(60 mL corresponding approximately to 6 × 107 cells) was first centrifuged at
5000 × g for 10 min. The pellet was processed as mammalian cells, following the
Mammalian Cell Protocol for Sample Preparation (version 1.4) without using DSG
cross-linking reagent. Briefly, the chromatin was fixed with formaldehyde,
randomly digested with DNase I and then extracted. Chromatin ends were repaired
and ligated to a biotinylated bridge adapter, followed by proximity ligation of
adapter-containing ends. After proximity ligation, crosslinks were reversed and
DNA was purified. Purified DNA was treated to remove biotin that was not
internal to ligated fragments, and a sequencing library was generated using
NEBNext Ultra enzymes and Illumina-compatible adapters. Biotin-containing
fragments were isolated using streptavidin beads before PCR enrichment of the
library. The Dovetail Hi-C library quality was checked as described above and
sequenced on an Illumina MiSeq instrument (Illumina, San Diego, CA, USA) in
paired mode (2*150 bp), producing 2,832,092 reads. The Hi-C raw reads were
aligned against the assembly (-s none option) using Juicer (Juicer version 1.5.6 -
Juicer Tools Version 1.9.9)49. The contact map representation was generated with
R version 4.1.1 using the merged nodups file.

RNA extraction, library preparation, and sequencing. When the cell con-
centration reached 10 million cells/mL in the mid-exponential growth phase,
160 mL of culture were collected by three successive filtrations on 1.2-µm poly-
carbonate filters of 47 mm to avoid prokaryotic contamination. To preserve cell
and RNA integrity, we kept filtration time and pressure below 10 min and
20 mmHg, respectively. Then filters were stored in 15-mL Falcon tubes with 3 mL
of Trizol (Invitrogen, Carlsbad, CA, USA), mixed and flash-frozen in liquid
nitrogen for further processing. RNA was extracted by incubation at 65 °C for
15 min, followed by chloroform extraction. The aqueous phase was purified using a
Purelink RNA Isolation kit (Ambion Invitrogen, Carlsbad, CA, USA) according to
the manufacturer’s instructions. DNA contamination was removed by digestion
using the TURBO DNA-free™ Kit (Ambion Invitrogen) according to the manu-
facturer’s DNase treatment protocol. After two rounds of 30-min incubation at
37 °C, the efficiency of DNase treatment was assessed by PCR. Quantity and quality
of extracted RNA were analyzed with RNA-specific fluorimetric quantitation on a
Qubit 2.0 Fluorometer using Qubit RNA HS Assay (Invitrogen). The qualities of
total RNA were checked by capillary electrophoresis on an Agilent Bioanalyzer,
using the RNA 6000 Nano LabChip kit (Agilent Technologies, Santa Clara, CA).

RNA-Seq library preparation was carried out from 1 µg total RNA using the
TruSeq Stranded mRNA kit (Illumina, San Diego, CA, USA), allowing mRNA
strand orientation. Briefly, poly(A)+ RNAs were selected with oligo(dT) beads,
chemically fragmented and converted into single-stranded cDNA using random
hexamer priming. After second strand synthesis, double-stranded cDNA was 3’-
adenylated and ligated to Illumina adapters. Ligation products were PCR-amplified
following the manufacturer’s recommendations. Finally, the ready-to-sequence
Illumina library was quantified by qPCR using the KAPA Library Quantification
Kit for Illumina libraries (KapaBiosystems, Wilmington, MA, USA), and evaluated
with an Agilent 2100 Bioanalyzer (Agilent Technologies, Santa Clara, CA, USA).
The library was sequenced using 101 bp paired-end read chemistry on a HiSeq2000
Illumina sequencer. Low-quality nucleotides (Q < 20) from both ends of the reads
were discarded. Illumina sequencing adapters and primer sequences were removed
and reads shorter than 30 nucleotides after trimming were discarded. These
trimming and cleaning steps were achieved using in-house-designed software based
on the FastX package (https://www.genoscope.cns.fr/externe/fastxtend/). The last
step identifies and discards read pairs mapped to the phage phiX genome, using the
SOAP aligner50 and the Enterobacteria phage PhiX174 reference sequence

(GenBank: NC_001422.1). This processing, described in ref. 51, resulted in high-
quality data. Moreover, ribosomal RNA-like reads were excluded using
SortMeRNA52 2.1 and SILVA databases.

Long-read-based genome assembly. Raw nanopore reads were used for genome
assembly. The taxonomic assignation was performed using Centrifuge53 version
1.0.3 to detect potential contamination. Genome size and heterozygosity rate were
estimated using Genomescope54 and Illumina short reads. For the genome
assembly, we generated three sets of ONT reads: all the reads, 30× genome coverage
with the longest reads and 30× genome coverage of the highest quality reads
estimated by the Filtlong tool (https://github.com/rrwick/Filtlong). We applied
Filtlong filtering with default parameters using Pelagomonas Illumina short reads
as a reference (ONT reads covered by Illumina reads have higher scores). We then
applied four different assemblers with default settings, Smartdenovo, Redbean, Flye
and Ra on these three sets of reads (Supplementary Data 1)55–58. After the
assembly phase, we selected the best assembly (Flye with all reads) based on the
cumulative size and fragmentation. Indeed, the Wtdbg2 and Smartdenovo
assembler generated fragmented assemblies with lower N90. Raven and Flye were
very close, but only the Flye assembly with all ONT reads contained both the
mitochondrial and chloroplastic circular contigs. To display connections that are
not present in the contigs file, we used Bandage tool59. The selected Flye assembly
was polished three times using Racon60 with ONT reads, and two times with Hapo-
G61 and Illumina reads. Gene completeness of the assembly was estimated using
the single-copy orthologous gene analysis from BUSCO v5 with the stramenopile
dataset version 10 containing 100 genes28.

Repeat masking and GC analyses. Repetitive regions on the genome were
masked using Tandem Repeat Finder tool62, Dust tool to detect low-complexity
regions63 and RepeatMasker64 to identify interspersed repeats based on homology
search within the Stramenopile clade and other low-complexity sequences. The
positions of detected repeats were merged and hard-masked on the genome,
amounting to 8% of its length. Ab initio identification of repeat family sequences
was performed using RepeatScout65. The algorithm first calculates the frequency of
all k-mers in the genome, then removes low-complexity regions and tandem
repeats. In >80% of the cases, repeat families identified using ab initio approaches
do not overlap with repetitive regions identified by homology search. GC content
along the genome was calculated with Bedtools nuc version 2.29.266 and the
coverage over a non-overlapping window of 2 Kb with Mosdepth version 0.2.867.

Transcriptome assembly. RNA sequencing reads from P. calceolata RCC100 were
assembled using Velvet 1.2.07 and Oases 0.2.08 with a k-mer size of 63 bp68,69.
Reads were mapped back to the contigs with BWA-mem70 and only consistent
paired-end reads were kept. Uncovered regions were detected and used to identify
chimeric contigs. In addition, open reading frames (ORF) and domains were
searched using respectively TransDecoder (http://transdecoder.sourceforge.net)
and CDDsearch71. Contig extremities without predicted ORFs or functional
domains were removed. Lastly, we used the read strand information to orient RNA
contigs. We completed the RNA contigs dataset with the two transcriptome
assemblies of the RCC100 strain of P. calceolata from the Marine Eukaryotes
Transcriptomes database (METdb) (http://metdb.sb-roscoff.fr/metdb/)72.

Gene prediction. Nuclear gene prediction was performed using 23,696 Pelago-
monadales proteins (mainly A. anophagefferens) downloaded from the NCBI
website. Proteins were aligned on the genome in a two-step strategy. First, BLAT73

(version 36 with default parameters) was used to rapidly localize corresponding
putative regions of these proteins on the genome. The best match and the matches
with a score greater than or equal to 90% of the best match score were retained.
Then, the regions with BLAT alignments were masked and we aligned the same set
of proteins using BLAST74, which can identify more divergent matches. Second,
alignments were refined using Genewise75 (version 2.2.0 default parameters, except
the -splice model option to detect non-canonical splicing sites), which is more
accurate for detecting intron/exon boundaries. Alignments were kept if more than
50% of the length of the protein is aligned on the genome. Additionally, the
transcriptome assemblies of P. calceolata RCC969, RCC2362, RCC706 and
RCC981 included in the METdb were translated into proteins and aligned to the
genome using BLAT, a BLAT score > 50 % filter, and alignments refined with
Genewise as previously described.

We selected alignments from the newly generated transcriptome assembly and
the two assemblies available in METdb belonging to the P. calceolata
RCC100 strain to build a training set for the AUGUSTUS ab initio gene
predictor76. Only gene models with complete coding DNA sequences were retained
for training and 1000 genes were set aside for testing AUGUSTUS accuracy. Initial
training produced exon and intron parameters for P. calceolata species. Parameters
were optimized using successive steps of training and testing. We calculated gene
prediction accuracy by running AUGUSTUS on the test set. At the exon level,
AUGUSTUS performed well in terms of sensitivity (0.619) and specificity (0.669).
We thus run AUGUSTUS on the masked genome based on trained parameters.

The ab initio prediction and all the transcriptomic and protein alignments were
combined using Gmove, an easy-to-use predictor with no need for a pre-calibration
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step77. Briefly, putative exons and introns, extracted from predictions and
alignments, were used to build a graph, where nodes and edges represent exons and
introns respectively. From this graph, Gmove extracts all paths and searches open
reading frames (ORFs) consistent with the protein evidence. We trimmed
untranslated transcribed regions that overlapped the coding part of a neighbor gene
and renamed the genes following the standard nomenclature. Mono-exonic
genes models encoding proteins of less than 200 amino acids without significant
protein match (1006 genes) were excluded. Chloroplast and mitochondrial genes
(contig 7 and 8) were predicted using previously published annotations for
P.calceolata23,78. Following this pipeline, we predicted 16,667 genes with 0.45
intron per gene on average.

Functional annotation. Predicted gene models of P. calceolata nuclear genome
(contig 1 to contig 6) were annotated for protein function using InterProScan
v5.41-78.079. A protein alignment against the NR database (01-12-2021 version)
was performed with diamond v0.9.2480. The best protein match with a functional
annotation and an e-value < 10−5 was retained. KEGG Orthologues (KO) were
identified with the HMM search tool KofamKoala v1.3.0 and KO annotations with
an e-value < 10−5 and a score above the HMM threshold were retained81. Finally,
Gene Ontology (GO) terms and Enzyme commission (EC) numbers were recov-
ered from the Interproscan and KO analysis respectively. Previously published
chloroplast and mitochondrial gene names and functions were reported on the
corresponding genes23,78. All functional gene annotations of P. calceolata are
available in Supplementary Data 2.

In order to compare the functional annotation of P. calceolata with other small
free-living photosynthetic eukaryotes, we applied the same analysis to the predicted
proteins available for the following species: Aureococcus anophagefferens,
Thalassiosira pseudonana, Phaeodactylum tricornutum, Nannochloropsis oceanica,
Bathycoccus prasinos, Micromonas pusilla, Ostreococcus lucimarinus, and Emiliania
huxleyi (references are indicated in Table 1).

We defined a list of 23 meiosis-specific genes using three previous
studies31–33. KO annotations and Interproscan domains were used to recover
these genes in the P. calceolata genome. Transcriptomic reads of P. calceolata
were mapped back to the predicted genes with BWA-MEM v 2.2.1. Reads
aligned over more than 80% of their length were retained to estimate the relative
expression levels of meiosis genes.

Genes containing the NIT-sensing domain were identified based on
Interproscan annotations. Eukaryotic homologs of the three P. calceolata NIT-
sensing genes were retrieved with a BLASTP (e-value < 10−5, coverage > 100 aa)
against 27.7 million proteins from NR, the METdb72 transcriptome database,
eukaryotic algal proteomes from the JGI database, Tara Oceans single-cell
amplified genomes and metagenome assembled genomes (SMAGs)82. The 60
retrieved proteins and the 3 P. calceolata NIT-domain-containing proteins were
then aligned with Mafft v7.0 (https://mafft.cbrc.jp/alignment/server/) and a
Maximum Likelihood phylogenetic tree (Jones–Taylor–Thornton substitution
model and 100 bootstraps) was made with MEGAX software. Transmembrane
regions in NIT-sensing domain-containing proteins were identified with TMHMM
v 2.055.

Estimation of P. calceolata relative abundance in environmental metagenomic
reads. We used metagenomic datasets of Tara Oceans and Tara Polar Circle
expeditions to detect and estimate the relative abundance of the P. calceolata in the
oceans. Datasets from water samples collected on the photic zone: surface (SUR)
and deep-chlorophyll maximum (DCM) were analyzed. Size-fractionated water
samples containing pico-nano algae (organisms < 5 µm in cell diameter) were
selected: 0.2–3 µm (100 samples), 0.8–2000 µm (119 samples) and 0.8–5 µm
(148 samples)51. Metagenomic reads were aligned on the P. calceolata genome
assembled in this study with BWA-mem version 0.7.15 with default parameters83.
Alignments with at least 90% of identity over 80% of read length were retained for
further analysis. In the case of several possible best matches, a random one was
picked. In order to remove putative PCR duplicates, multiple read pairs aligned at
the same position on the P. calceolata genome were removed with samtools rmdup
version 1.10.270. For the metagenomic abundance, we divided the total number of
reads aligned on the P. calceolata genome assembled in this study by the total
number of sequenced reads for each sample. For the metabarcoding abundance, we
used the 18SV9 rRNA OTU table published in 2019 and available here https://
zenodo.org/record/3768510#.YEX2S9zjJaQ34. Bacterial and archaea OTUs were
removed for this analysis.

P. calceolata relative abundance models. Two P. calceolata relative abundance
models were performed based on the in situ environmental conditions measured at
the time of sampling or using the WOA18 datasets. The environmental parameters
measured during the expedition are available in the Pangaea database (https://
www.pangaea.de/) and are described in ref. 84. Iron concentrations are annual
means derived from PISCES2 model85 and described in ref. 13. Ammonium con-
centrations at the date and location of sampling are derived from the MITgcm
Darwin model and available in the Pangaea database86. Environmental parameters
for each sample are available in Supplementary Data 10. We consider oceanic
samples as “low-iron” if they contain less than 0.2 nM of iron, “low-nitrate” if they

contain less than 2 µM of nitrate and “low-ammonium” if they contain less than
25 nM of ammonium. These thresholds were defined with the distribution of
nutrient concentrations in the dataset and previous studies13,14. Pearson’s corre-
lations between the relative abundance of P. calceolata and all environmental
parameters were calculated with the cor function the R package FactoMineR ver-
sion 2.4 and the GGally package version 2.1.0. Principal component analysis (PCA)
was performed with 9 parameters presenting significant Pearson’s correlations. We
used a Generalized Additive Model (GAM) for its ability to fit non-linear and non-
monotonic functions and for its low sensitivity to extreme values to model the
relative abundance of P. calceolata as a function of iron concentration, temperature
and PAR light87. This function is implemented in the mgcv R package version
1.8–33.

The mean of several climatologies of the Earth System Models under the
RCP8.5 scenario (ESM8.5) was used to define the environmental conditions at
the end of the century following the method of ref. 35. P. calceolata relative
abundance models based on the WOA18 at locations, depths, and months of
Tara Oceans samples or ESM8.5 were obtained using four machine-learning
techniques as described in ref. 35. with some differences. The four tools were
trained in regression mode, we used the neuralnet R package88 with the
following parameters: hidden= 1, decay= 0.1, mxit= 1e6 and size= 5, 6 splines
were selected for the GAM. We performed 100-fold random cross-validation for
each model and evaluated their performance using the Pearson correlation
coefficient and rmse. We used the ensemble model approaches35 for final global-
scale models of the relative abundance of P. calceolata (i.e., the mean projections
of the validated machine-learning techniques). Figures 2a, 3c, and
Supplementary Fig. S7 were generated using the world map of R package
“maps”, “mapdata” and “ggmap”. World maps data are imported from the
public domain Natural Earth project.

Environmental metatranscriptomic reads mapping and filtering. Metatran-
scriptomic reads from Tara Oceans datasets were aligned on predicted coding
sequences of the P. calceolata genome with BWA-mem 2.2.1 using default para-
meters. We selected reads aligned with more than 95% of identity over 80% of the
read length. We kept nuclear genes covered by at least ten reads in a minimum of
ten samples and removed those detected in more than 90% of samples which
probably aggregate metagenomic reads from other organisms (cross-mapping). To
obtain robust relative expression values, we removed samples where less than 25%
of P. calceolata genes were detected. We finally got the expression of 15,679 genes
of P. calceolata across 167 samples. In all gene expression analyses, we normalized
the gene expression levels in transcripts per kilobase million (TPM). Gene
expression levels of P. calceolata in all Tara Oceans samples are available here:
https://doi.org/10.5281/zenodo.6983365.

Statistical analysis and reproducibility. Sample sizes are indicated in the
methods, in the figure captions or in the main text. Nonparametric Wilcoxon
signed-rank tests were applied with the two-sided alternative hypothesis and not
paired. Two sides Fisher statistical tests were applied for gene enrichments analysis.
All statistical tests in the manuscript were generated with R version 4.0.3 and P
values < 0.01 are considered significant.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
Pelagomonas calceolata genomic and transcriptomic reads, genome assembly, and gene
prediction are available at the ENA (EMBL-EBI) website under the accession number
PRJEB47931. P. calceolata transcriptomes are available under the accession number
PRJEB34158, runs ERR3497221 and ERR3497222. Tara Oceans and Tara Polar Circle
metagenomic sequences are archived at the ENA under the following accession numbers:
PRJEB9740, PRJEB9691, PRJEB4352, and PRJEB1787. All other data are available from
the corresponding author upon reasonable request.
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