
HAL Id: cea-03789160
https://cea.hal.science/cea-03789160v1

Submitted on 27 Sep 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Multi-layered model-based design approach towards
system safety and security co-engineering

Megha Quamara, Gabriel Pedroza, Brahim Hamid

To cite this version:
Megha Quamara, Gabriel Pedroza, Brahim Hamid. Multi-layered model-based design approach to-
wards system safety and security co-engineering. ACM/IEEE International Conference on Model
Driven Engineering Languages and Systems Companion (MODELS-C 2021), Oct 2021, Fukuoka (vir-
tual event), Japan. pp.274-283, �10.1109/MODELS-C53483.2021.00048�. �cea-03789160�

https://cea.hal.science/cea-03789160v1
https://hal.archives-ouvertes.fr

Multi-layered Model-based Design Approach
towards System Safety and Security Co-engineering

Megha Quamara∗, Gabriel Pedroza∗, Brahim Hamid†
∗Université Paris-Saclay, CEA, List, F-91120, Palaiseau, France

Email: {megha.quamara, gabriel.pedroza}@cea.fr
†IRIT - University of Toulouse, 118 Route de Narbonne, 31062 Toulouse Cedex 9, France

Email: brahim.hamid@irit.fr

Abstract—The integration of safety and security concerns in
critical domains (e.g., Cyber-Physical Systems (CPSs)) is of ut-
most importance, and should be conducted in early design phases
of system engineering process. Within a Model-Based System
Engineering (MBSE) context, safety and security requirements
cascade-down across models and views, thus contributing to
the detailed missions, functions, and lastly, the architecture.
Such enrichment process is often complex and lacks guid-
ance to consistently breakdown high-level mission-centric system
specifications into the detailed architecture. In particular, non-
savvy safety and security engineers require support to facilitate
integration and verification of stringent safety constraints and
security exigencies. In this regard, we propose a multi-layered
design approach that leverages existing techniques like Model-
Driven Engineering (MDE) and formal methods, to facilitate
integrated verification of high-level safety and security objectives
that can be further specialized across different representations
(i.e. mission, functional, and architectural) of the system. The
overall approach is validated based upon a Connected Driving
Vehicles (CDVs) case study, and using Eclipse Papyrus and Rodin
as experimentation tools.

Index Terms—safety, security, co-engineering, design, model-
driven engineering, formal methods, connected driving vehicles

I. INTRODUCTION
Current system development paradigms show a shift from

traditional Industrial Control Systems (ICSs) to software-
intensive systems (e.g., Cyber-Physical Systems, CPSs) what
substantially increases their degree of inter-connectivity, the
stringency of requirements, and, in consequence, the design
complexity. Indeed, the impact of deploying systems with
design flaws, which are not merely inadequate in terms of
their operational capabilities, but also unsafe and vulnerable
to security attacks, can be critical in regards to economical,
business, and safety criteria what, in the end, can potentially
jeopardize human lives [1]. In such cases, an effective identi-
fication and treatment of safety and security risks is crucial,
which according to the “correct-by-design” principle, should
be conducted at early design stages of the system development
process [2].

In a typical Model-Based Systems Engineering (MBSE)
approach, requirements are broken down across models and
views, from high-level teleological representations of the target
system up to detailed architecture models [3]. This enrichment
process is often complex and lacks guidance for consistent

transfer of knowledge pertaining to both safety and security
disciplines, across different representations of the system un-
der design (issue P1). The state-of-the-art reveals that the
assurance of both dedicated safety and security properties1
is imperative for improving system confidence to perform
critical tasks [4]. However, conducting design-level properties’
verification can be error-prone, mainly due to ambiguous
properties’ specifications or biases introduced by non-savvy
engineer’s interpretation (issue P2). Notwithstanding the need
for incorporation, existing approaches for system engineering
show that, in many cases, safety and security analyses are
often conducted independently [5], [6]. As observed in several
safety-critical domains (e.g., automotive), an entanglement
exists between safety constraints (e.g., messages’ latency) and
security exigencies (e.g., encryption mechanisms’ overhead),
and their mutual assurance needs to be verified [7] (issue
P3). However, to harmonize safety and security properties’
specifications, a joint analysis is technically challenging in
practice due to complexity in terms of model size, frame-
works/languages involved, proofs’ intricacy, etc. A lack of au-
tomated tool support for integrated validation and verification
of properties is thus observed (issue P4).
A. Intended Contributions
To address the above-discussed issues (P1-P4), the contri-

butions of this paper are multi-fold. First, we propose a multi-
layered model approach to facilitate the incorporation of safety
and security properties’ specifications at mission, functional,
and architectural layers (P1). To this end, we leverage existing
modeling techniques [3], such as Unified Modeling Language
(UML) [8] targeting both systems’ and properties’ modeling,
and their further mapping into the formalism of solvers and
model checkers for verification. The use of formal techniques,
namely Event-B [9], even at early modeling phases, should en-
sure that, once deployed, the system’s operation is reliable and
in conformity with the rules originated by mathematical logic
(P2). In addition to typical system’s structural and behavioral
concerns’ analysis [10], we propose to impose a defined set
of safety and security objectives at each layer (i.e. mission,
functional, and architectural) for identifying whether the sys-
tem design meets them, and avoiding potential conflicts (P3).

1Fundamental well-defined notions that are the building blocks upon which
high-level requirements can be decomposed and characterized.

The proposed approach being technology-agnostic provides the
flexibility with regards to the choice of specification/modeling
languages and Verification and Validation (V&V) tool support.
For demonstration purposes, the tool support developed is
based on Papyrus [11], as modeling framework, and Rodin
[12], as verification tool. This tool-chain is applied to evaluate
the overall approach by analyzing a use case of Connected
Driving Vehicles (CDVs), being both safety- and security-
critical CPSs (P4). Overall, the main contribution lies in
the multi-layered design approach to conduct an integrated
safety-security properties’ verification. Since this is a first step
towards an effective co-engineering, this paper mainly covers
the mission-centric layer. To sum up, our approach also aims
to facilitate model re-usability to non-savvy engineers via a
set of libraries containing safety and security signatures that
are generic, but specialize-able and amenable for instantiation
across different layers.

In summary, the intended contributions of this work are -
(C1) The introduction of a multi-layered modeling framework

to capture a system under design at different levels
of granularity via a set of Domain-Specific Modeling
Languages (DSMLs) corresponding to each layer.

(C2) The instantiation of the approach through an integrated
design framework, targeting high-level mission-centric
system specification (i.e., Mission layer).

(C3) The formal-based and rigorous specification of safety and
security objectives of the modeled-system.

(C4) A tool-chain support integrating Model-Driven Engineer-
ing (MDE) techniques, namely Eclipse Papyrus, and a
formal-based tool, namely Rodin, to conduct verification,
spot inconsistencies, and ensure design conformity with
respect to the objectives.

(C5) The application of the approach in the context of CDVs.
B. Outline

The remainder of this paper is organized as follows. Section
II details the key aspects of the proposed approach. Section III
presents an instantiation of the approach for the mission layer
of system specification. Section IV exemplifies the approach
via a CPS case study. Section V reviews related works and
positions our contribution. Finally, Section VI concludes this
paper, with perspective work directions.

II. OVERALL APPROACH
In this section, we discuss the key aspects of the proposed

multi-layered design approach, including the modeling and
formalization languages and techniques for its realization.
A. Need for Integrated Safety-Security Multi-layered Design

Assurance of high-level safety missions (e.g., collision
avoidance) of the system (e.g., autonomous vehicles) relies
on its underlying functions (e.g., obstacle detection) and ar-
chitectural components (e.g., LIDAR). In such cases, safety
properties’ verification can be conducted with respect to
the system, sub-systems, or architecture, depending on the
availability of essential design details. Likewise, risk analysis

to address high-level security concerns (e.g. unauthorized
access) is often information-centric what entails cascading
down to a detailed system view, comprising components and
transmission channels. Such instances, in turn, call for a
consistent transfer of system-related aspects and preservation
of properties across different representations of the system
with varying granularity. However, this enrichment process
being complex, often lacks guidance in terms of language and
automated tool support for non-savvy engineers, to integrate
and conduct verification of safety and security properties’
specifications across the system design. This endorses the
development of the multi-layered design approach proposed
in this work.
B. Proposed Multi-layered System Modeling Framework
The proposed multi-layered system modeling framework

(C1) depicted in Fig. 1, decomposes system representation
into following three layers2 - 1) Mission layer (Layer 1)
defines the set of missions to be achieved by the system under
design that are envisioned to be accomplished via application
of operations. In other terms, it concentrates on the formulation
of high-level strategic concerns of the system that are derived
from the operational, safety, and security requirements. 2)
Functional layer (Layer 2) defines the system decomposed
into functional paths that represent the flow of information
between a set of functions performed by different sub-systems,
together with their functional interfaces. 3) Architectural
layer (Layer 3) defines the system as a composition of a set
of components that represent self-contained computational/-
communication elements or physical entities. In other terms,
it concentrates on low-level technical details of the system.

Fig. 1. Multi-layered system specification framework.

Before going further, it is worth to situate the choice behind
the specific layered representations in the context of this
work. Layer 1 offers a teleological view to understand the

2Inclusion of the relevant representations of the system to capture its key
aspects is the choice of the system designer.

overall purpose of complex engineered systems, where an
early safety-security analysis can still be conducted despite
the absence of detailed architectural choices. Likewise, Layer
2 represents a classic functional decomposition of the system
based on consensus in the literature [13]. Finally, Layer 3
specification provides the technical details to decide how
the system functions distribute over the components lying
within the system. The conceptual models corresponding to the
aforementioned layers comprise fundamental notions, along
with their attributes and potential relationships, for specifying
the structural and behavioral aspects of the system at different
levels (Mission at highest) of granularity. The introduced layers
stand for keeping separation between modeling purposes in
the aim to facilitate incorporation and treatment of safety
and security properties, rather than keeping them in a single
encapsulated description [13]. Each layered representation
is independently defined with its own set of semantics to
facilitate integrated specification and analysis of the properties.
To address their intertwined semantics, the framework is
amenable for both top-down or bottom-up approaches to be
applied. Specifically, the former would allow the incorporation
of greater details during the system specification process, as
described below -

∙ Mission captures WHAT is needed to be achieved by the
system.

∙ Function captures HOW to achieve WHAT is needed to
be achieved by the system.

∙ Architecture captures WHICH elements can finally realize
the WHAT and HOW.

On the other hand, the bottom-up approach shall allow
to analyze the propagation of malfunctioning at lowest layer
upwards up to the highest one. For instance, from safety
perspective, a faulty component (e.g., sensor) may eventually
trigger a hazardous situation for the whole system (e.g.,
autonomous vehicle) through the transmission of erroneous
information. The structural and semantic linking among these
layers concentrate on ensuring the consistency between cor-
responding representations and preservation of properties via
traceability.

C. Integrated Design Approach for Safety and Security

The aforementioned conceptual models lay the foundation
for the proposed integrated design approach, which combines -
1) modeling of detailed system aspects, and safety and security
properties, 2) formalization of both system and properties, 3)
integration of formalized model elements, and 4) verification
of properties via transformation into a delegated formal tool.
The proposed integration allows to encompass the “safe- and
secure-by-design” principle, the disambiguation of properties’
specification, and the early detection of potential conflicts
between properties. In addition, the formalized properties’
specifications will be generic enough to be accommodated as
reusable libraries to be instantiated at the three model layers.

D. Languages and Techniques for Modeling and Formaliza-
tion
The specification language for the proposed design approach

is a multi-paradigm language, comprising -
∙ Semi-formal constructs for graphical representation and
modeling aspects supported by the approach. Accord-
ingly, we use UML to create system specification meta-
models and profiles (i.e. the DSMLs) [8]. Being a general-
purpose modeling language, UML can be extended ac-
cording to the specificities of the target application
domain, whereby system architects and developers can
understand the diverse aspects associated with the system
and collaborate during the engineering process.

∙ Formal constructs for specification, reasoning, and ver-
ification of properties. Accordingly, we use First-Order
Logic (FOL) to specify the aspects related to the system
and safety and security properties in a generic (reduces
state explosion during model checking), technology-
independent (prevents technology-specific assumptions
during use case analysis), and unambiguous fashion [14].
Other formal logic-based alternatives include Z notion
[15] and pi-calculus [16] - which are beyond the scope
of this work. Besides, the application of V&V analysis on
the design model helps to identify discrepancies between
verified properties (refer to Section III-F).

III. MISSION LAYER INTEGRATED DESIGN APPROACH
In this section, we present an instantiation of the integrated

design approach proposed in Section II-C, for theMission layer
(i.e., Layer 1) of multi-layered system specification framework,
as depicted in Fig. 2 (C2).

Fig. 2. Mission-layer (Layer 1) integrated design approach.

A. Modeling System Missions and Safety-Security Objectives
As mentioned in Section II-B, the Mission system specifi-

cation model concentrates on the high-level strategic concerns
of the system (i.e., missions), without any low-level technical
details (i.e., functions and architecture). This conceptual model
captures two different views - mission specification and prop-
erty specification, where the latter extends the former. Some

Fig. 3. DSML profiles defined for modeling Missions (MissionView) and Properties (MissionPropertyView, MissionPropertyCategoryView).

of the representative elements constituting this model are se-
mantically inherited from the state-of-the-art artifacts proposed
for rigorously defining the missions [17]–[21] and properties
[22]. The meta-models corresponding to the aforementioned
views are discussed in the following sub-sections, where both
are implemented as UML profiles to provide a standardized
modeling environment.

1) Mission DSML: Fig. 3 depicts the UML profile cap-
turing the “mission specification view”. It aims to represent
the system in terms of its missions, operations, environment,
and their interactions. It also provides the basis to incorporate
new concepts that are necessary to capture safety and security
properties. The principal classes constituting the elements of
the corresponding meta-model as UML notations, are defined
as follows -

∙ System: Represents the system under design as an atomic
unit, sharing a physical and logical border with its envi-
ronment.

∙ Mission: Represents a high-level purpose of the system
in the form of an atomic finality related to some behavior,
constraint, or feature. The mission statement reflects
an obligation comprising modal verbs (e.g., must, will,
should). overallGoal captures the intended operationalSi-
tuation of the system, derived from the hazardousEvent
or securityIncident.

∙ Operation: Represents the strategy or implementation
steps performed by the system to accomplish the mission.
Application of the operation leads to an elementary
state transition with respect to the system that may or
may not be aligned with the mission statement. opera-
tionInput and operationOutput represent the operation-
specific stimuli and response, respectively, crossing the
physical and logical border between the system and its
environment. pre/postCondition and environmentTrigger-
Condition capture the descriptive and prescriptive con-
ditions, respectively, associated with the application of
the operation. durationOfExecution captures the interval
typed as DurationType (Function, Parameter, or Value),
for the operation to get triggered and produce an output.

∙ Environment: Represents the physical environment with

which the system interacts. It may comprise - 1) Peo-
ple (e.g., system operators, users, or observers) having
cooperative or even malicious intent, and 2) Asset (com-
mercial, personal, or civic) that exist outside the system.

2) Safety and Security Properties DSML: Fig. 3 depicts
the profile capturing the “property specification view”. It
represents the reusable model libraries typed as PropertyCat-
egoryLibrary, defining high-level properties associated with
the system (SystemProperty). PropertyCategory represents
the classification of safety and security objectives associated
with the system in a given context. For example, in a safety
context, operational availability is defined by the International
Standard Organization (ISO) 26262 as the “capability of a
product (e.g., system, hardware, software, etc.) to provide a
stated function if demanded, under given conditions over its
defined lifetime” [20]. Readiness of the system in terms of
completion of the operations assigned to it, is of significant
importance to guarantee distinct missions in safety-critical
systems, e.g., obstacle detection in autonomous vehicles to
avoid crash. Likewise, in security context, system accessibility
is defined as “a qualitative feature that represents the ability
to limit the access of the system and retrieval of information
by the entities” [23]. These libraries are subsequently used as
external models for capturing the safety and security objectives
of the system as signatures, as described in the following sub-
sections.
B. Formalization of the Modeling Languages
In this section, we describe the formal syntax associated to

the DSMLs corresponding to the system missions and safety
and security objectives mentioned in the previous Section
III-A.
1) Formal Syntax for Mission DSML: The DSML illus-

trated in Fig. 3, is attached with a syntax that preserves the
associations and types in the UML profile. Once the system
missions are modelled in this language, their corresponding
formal syntax can be obtained by following the mapping
described in Table I.
2) Formal Syntax and Logic for Properties DSML: For

the sake of simplicity, we only explain one safety objective

TABLE I
MAPPING: MISSION VIEW PROFILE ↦ FORMAL SYNTAX

DSML element Formal syntax

System S ∶= ({M i}, Environment), i ∈ {1… n}

Mission M i ∶= ({Oj}, operationalSituation, hazardousEvent, securityIncident, overallGoal), j ∈ {1… k}

Operation Oj := (operationInput, operationOutput, preCondition, postCondition, environmentTriggerCondition,
durationOfExecution, durationType), durationT ype ∈ {FUNCTION, PARAMETER, V ALUE}

Environment Environment ∈ {People, Asset}

category (i.e., Availability) and one security objective category
(i.e., Controlled Accessibility) that represent the pragmatical
choices inspired by literature concerning safety- and security-
critical systems [20], [23]. Notice that the work developed so
far includes a library of other representative safety and security
objectives’ signatures (see Fig. 3), which is nonetheless not
included in this paper, due to lack of space. The FOL-based
formalism of the safety and security objectives belonging to
the defined categories is extended with Modal Logic (ModL)
[24] to capture their temporal aspects. The formal syntax and
logic defining each safety and security objective signature is
introduced in Table II, and discussed below (C3) -

∙ Operational availability: The operational availability
objective is defined as follows - “a system S in a certain
operational situation should allow for the realization
of safety-critical operation(s) Oj , whenever a hazardous
event is detected”. The execution of these operations
should be in alignment with the accomplishment of the
safety mission.

∙ System accessibility: The system accessibility objective
is defined as follows - “a system S must allow and limit
the access of security-critical operation(s) Oj to only
authorized entities”. In other words, entities belonging
to the environment, for instance people, can get access to
perform certain operation(s) Oj over the system S if and
only if they have the required privileges.

TABLE II
MAPPING: PROPERTIES PROFILE ↦ FOL AND MODL

DSML element FOL and ModL

System S ∶= {M i}, i ∈ {1… n}

Mission Mi

Operation Oj , j ∈ {1… k}

OperationalAvailability (operationalSituation[Mi] ∧ ℎazardousSituation[Mi]) ⇒ accomplisℎedTℎrougℎ[Mi, Oj]
ControlledAccessibility privilege[People, S, Oj] ⇒ access[People, Oj]

C. Integrated Properties-Mission Syntax
In this section, we integrate the formal syntaxes presented

in Tables I and II to have a single formal specification.
Accordingly, a formal semantics is defined and associated
with the system missions and operations. The resulting in-
tegrated model is called Safety-Security Objective-Mission
Model (SSOMM), and its construction is described in the
following paragraphs.

In this model, we assume the local operationalization of the
system missions based on their description. In simpler terms,
system operations are derived from the mission descriptions.
Inference rules can be applied for identifying the correct

set of pre/post-conditions and environment trigger conditions
corresponding to the operations for mission accomplishment.
An operation can be performed if and only if the environ-
mentTriggerCondition holds in the event that the preCondition
also holds. This ensures the consistency with respect to the
application of the operations, and traceability between the
operations and their underlying missions. In this process, we
rely upon generative semantics that disallow all the behavioral
changes, except for the ones that are explicitly required by
the mission description [25]. In this case, the operations are
observed as restrictive executions on the state transitions of
the system. Here, only those system attributes variables that
are declared in the operationOutput clause will be affected by
the application of the operation.
The informal description associated with the mission is

decomposed into operationalSituation, hazardousEvent/secu-
rityIncident, and overallGoal for the formal representation.
Missions and operations can be formally specified using a
range of modalities (ModL), including ◦ (next),◊ (eventually),
◊≤d (bounded eventually, where d denotes the gap between
two successive occurrences), and □ (always) for capturing the
notion of future. These are defined on top of standard FOL
operators, including ∧ (conjunction), ∨ (disjunction), ¬ (nega-
tion), → (implication), and ↔ (equivalence). Particularly, we
specify missions and operations in the form of the following
predicate -

PreCondition(P) ⇒ PostCondition(Q)

Predicates of the form P ⇒ Q interpret as □(P → ◊Q).
Similarly, predicates of the form P ⇔ Q mean □(P ↔ Q).
Here, ⇒ means strongly implies and ⇔ means strongly equiv-
alent. Depending on the priority of the mission or operation
with respect to safety and security aspects, ◦ (highest priority),
◊≤d, or ◊ (lowest prority) can be used in the formal specifica-
tion. A mission allocation pattern can be defined for the allo-
cation of the mission Mi ∈M , where M = {M1,M2, ...,Mi}is a set of independent missions, to one or more relevant
operations Oj ∈ O, where O = {O1, O2, ..., Oj} is a set of
independent or dependent operations, for the accomplishment
of Mi, as follows -
((operationalSituation[Mi] ∧ ℎazardousSituation[Mi])
⇔ (preCondition[Oj] ∧ requiredT riggerCondition[Oj]))

⇒ accomplisℎedTℎrougℎ[Mi, Oj] (1)
Upon execution of the operation Oj to which the mission Miis allocated, the overallGoal of Mi becomes equivalent to the
postCondition of Oj . Formally speaking,

accomplisℎedTℎrougℎ[Mi, Oj] ⇒ (overallGoal[Mi] ⇔
postCondition[Oj]) (2)

D. Properties Conflict Identification

Conflicts between objectives can be identified by verifying
whether after mission accomplishment, there are states in

which all post-conditions are not satisfied simultaneously -
accomplisℎedTℎrougℎ[Mi, Oj1 , Oj2] ⇒ (overallGoal[Mi]

⇔ (¬postCondition[Oj1] ∨ ¬postCondition[Oj2])) (3)
The interpretation of previous formula is given by -

□(accomplisℎedTℎrougℎ[Mi, Oj1 , Oj2] → ◊(overallGoal
[Mi] ⇔ (¬postCondition[Oj1] ∨ ¬postCondition[Oj2]))) (4)
No simultaneous fulfillment of post-conditions after mission
accomplishment shall indicate, in particular, a conflict between
the safety and security objectives of the system under design.
E. Model Interpretation and Formal Verification

In this section, we present the formalization of the Mission
system specification DSML, along with safety and security
objectives into Event-B. The interpretation of the Mission
and Property profiles presented in Fig. 3 into Event-B is
provided in Tables III and IV, respectively, along with the
rationale/semantics regarding the choice made with respect to
the elements and their relationships.

TABLE III
INTERPRETATION: UML MISSION DSML ↦ EVENT-B

UML Element (TYPE) Event-B Element (TYPE) Rationale

System (SET)
description dropped* *Required only for informal specification

Mission (SET)
description dropped*
operationalSituation, hazardousEvent, securityIncident,
overallGoal (VARIABLE)**
operationalSituation ∈ Mission → BOOL (INVARIANT)
hazardousEvent ∈ Mission → BOOL (INVARIANT)
securityIncident ∈ Mission → BOOL (INVARIANT)
overallGoal ∈ Mission → BOOL (INVARIANT)

*Required only for informal specification
**Split the Mission description as per the
form: PreCondition ⇒ PostCondition,
for formal analysis

Operation (SET)
operationInput, operationOutput dropped*
preCondition, postCondition, environmentTriggerCondition,
counter** (VARIABLE)
preCondition ∈ Operation → BOOL (INVARIANT)
postCondition ∈ Operation → BOOL (INVARIANT)
environmentTriggerCondition ∈ Operation → BOOL (INVARIANT)
counter ∈ ℤ ∧ (0 ≤ counter) ∧ (counter ≤ n)*** (INVARIANT)

*Required only for informal specification
**durationOfExecution is represented
with counter of integral type
***n = number of events

achieves (VARIABLE)
achieves ∈ System → Mission (INVARIANT)
achieves∼ ∈ Mission ⇸ System (INVARIANT)

A System can achieve one or more
Missions

interactsWith (VARIABLE)
interactsWith ∈ System → Environment (INVARIANT)

A System interacts with an Environment
as a whole

accomplishedThrough (VARIABLE)
accomplishedThrough ∈ Mission → Operation (INVARIANT)
accomplishedThrough∼ ∈ Operation ⇸ Mission (INVARIANT)

A Mission can be accomplished by one
or more Operations

Environment (SET)
People, Asset (CONSTANT)
People ∈ ℙ (Environment) (AXIOM)
Asset ∈ ℙ (Environment) (AXIOM)
partition(Environment, People, Asset) (AXIOM)

People and Asset partition the
Environment;
i.e., (Environment = People ∪ Asset) ∧
(People ∩ Asset = �)

Our model in Event-B contains three contexts,
viz. C0MissionView, C1MissionPropertyView, and
C2MissionUtility, for the formal declaration of mission
and property elements, along with the utility constants
for a generic representation of the elements, respectively.
Furthermore, the initial abstract specification M0MissionView
corresponding to the mission DSML, formally captures the
desired behavioral aspects of the system as model invariants
that are verified in the later refinements. We define four
events (viz. INITIALISATION, EVENT1, EVENT2, and
EVENT3) to capture the state transitions associated with

TABLE IV
INTERPRETATION: UML PROPERTY DSML ↦ EVENT-B

UML Element (TYPE) Event-B Element (TYPE)

SystemProperty (SET)
description droppeda
Objective, Danger (CONSTANT)
Objective ∈ ℙ (SystemProperty) (AXIOM)
Danger ∈ ℙ (SystemProperty) (AXIOM)
partition(SystemProperty, Objective, Danger) (AXIOM)

PropertyCategory, PropertyCategoryLibrary (SET)
propertyCategoryLibrary (CONSTANT)
propertyCategoryLibrary ∈ PropertyCategoryLibrary ←←→→ PropertyCategory
(AXIOM)
propertyCategoryLibrary∼ ∈ propertyCategory ⇸ PropertyCategoryLibrary
(AXIOM)

systemProperty (CONSTANT)
systemProperty ∈ SystemProperty ←←→→ System (AXIOM)
propertyCategory (CONSTANT)
propertyCategory ∈ SystemProperty ⤖ PropertyCategory (AXIOM)

partition(SafetyObjectiveCategory, SecurityObjectiveCategory) (AXIOM)

OperationalAvailability (CONSTANT)
OperationalAvailability ∈ SafetyObjective (AXIOM)
∀m·∃o·m ∈ Mission ∧ o ∈ Operation ∧ (operationalSituation[m] = {TRUE} ∧

hazardousEvent[m] = {TRUE}) ⇒ accomplishedThrough[m] = {o} (INVARIANT)
SystemAccessibility (CONSTANT)
SystemAccessibility ∈ SecurityObjective (AXIOM)
∀p·∀s·∀o·p ∈ People ∧ s ∈ System ∧ o ∈ Operation ∧ p ↦ s ↦ o ∉ privilege
⇒ access[p ↦ o] = {FALSE} (INVARIANT)

aRequired only for informal specification.

the system missions and operations. We also define the
safety and security objectives presented in Section III-B2 in
Event-B in the form of model invariants to verify that the
defined events preserve the same during model verification.
The guards corresponding to these events restrict the values
of the variables as enabling conditions for the events. The
correctness of the safety and security proof carried out on
this machine is dependent on fifty-three Proof-Obligations
(POs)3 that are related to mission accomplishment through
the execution of operation-centric events.
F. Tool-chain Support

The implementation of tool support for the Mission layer
mainly targets system, safety, and security missions modeling
and their translation into their formal counterparts, for further
analysis and verification of safety and security objectives.
This process involves several phases that must be backed up
by system modeling (involving meta-modeling and profiling),
model-to-model interpretation, and formal verification tool
support. In this section, we introduce the two background
platforms, namely Eclipse Papyrus [11] and Rodin [12], used
in this work to make a proof-of-concept (C4) -
1) Eclipse Papyrus as Modeling Framework: For graphical

representation, modeling, and profiling of the aspects involved
in our approach, we rely upon Papyrus, a UML and SysML
modeler developed as an open source Eclipse project [11].
Salient features offered by it include - full UML 2.0 support,

3Distribution of POs: Variable initialization (22), System specification (26),
Safety and security invariants (5).

Fig. 4. Tool support architecture and related approach artifacts.

model validation, and code generation. The consistency be-
tween layers (DSMLs) is ensured by the extension mechanisms
inherited from UML. Models correctness can be checked via
extensions of Papyrus validation features.

2) Rodin for Formal Verification: Rodin is an Eclipse-based
Integrated Development Environment (IDE) and an open tool
supporting Event-B method, which facilitates mathematical
proofs and refinement on discrete state transition-based system
models [12]. In order to carry out safety and security analysis
on the system model, we rely on theorem proving supported by
Event-B via axioms and derivation rules. Indeed this process
is iterative and compatible with the refinement process that
allows model instantiation.

3) Implemented Tool-chain Architecture: Fig. 4 depicts the
tool-chain support architecture implemented to support the
safety-security co-engineering framework. Overall, it supports
seven activities that are marked with the alphabets corre-
sponding to the different phases of the proposed approach
(see Fig. 2) - (T1.1) Creation of DSML meta-models and
profiles corresponding to system missions and safety-security
objectives in Papyrus. (T1.2) Mapping of DSML profiles to
their corresponding formal syntaxes involving the use of FOL
and ModL. (T1.3) Merging of formal syntaxes leading to an
integrated SSOMM. (T1.4) Transformation of the integrated
SSOMM to Event-B to formally capture the static and dynamic
aspects of the system, along with the safety and security ob-
jectives’ semantics. This constitutes indeed the formal models
library corresponding to the Mission layer. (T1.5) Defining
the reusable safety and security objectives’ libraries at formal
model level in the form of signatures. (T1.6) Generation
of POs by Rodin corresponding to the safety and security
objective invariants. (T1.7) Analysis of undischarged POs for
identifying and fixing the underlying design issues.

IV. CASE STUDY: CONNECTED DRIVING VEHICLES

In this section, we present the use case of autonomous
Connecting Driving Vehicles (CDVs), as a domain-specific
CPSs application towards technical demonstration and evalua-
tion of the proposed approach (C5). CDVs are both safety- and
security-critical, as their malfunctioning behavior with respect
to the design intent is hazardous towards the system and its
environment [26]. Moreover, their high-networked architecture
offers exposure of their functionalities to potentially hostile
players. Notwithstanding the extensive ongoing engineering
effort in the field, further work is still needed regarding
methodological guidance for integrated safety and security
verification to increase CDVs design trustworthiness.

A. Use Case Scenario

In the scope of this work, we assume the applicability of
CDVs in limited perimeter areas; e.g., as shuttle buses in
airport terminals, parks, and playgrounds [27]. Furthermore,
we consider a realistic scenario of a converging road plan
inspired by [28], as shown in Fig. 5. In this scenario, there
are first two vehicles, denoted by CDV1 and CDV2, both
in driving mode and approaching each other in different but
converging roads with non-negligible speed. Another third
vehicle CDV3 is in the same lane and direction as CDV1, but
just behind it. In order to stay on the road lane, these vehicles
follow virtual guides placed over the road. For the sake of
simplicity, the aspects related to the road guides detection
and the communication at the system level are disentangled.
We also assume that CDVs in the scenario are in self-driving
mode and with no possibility of any operational take over by
passengers or the operator [29]. In the following sub-sections,
we present the CDV mission model, and its formalization
through instantiation in Event-B.

Fig. 5. Use case scenario: Converging road plan.

B. Mission Model of Connected Driving Vehicles
We consider a typical CDV as an atomic system intended

to achieve a set of operational, safety, and security missions
that are specified, as follows -

1) Operational Mission Specification: The specification of
a high-level operational mission (OPER_M) of a CDV system,
that follows the generic language syntax proposed in Section
III-A1 and provided as input in natural language format to the
overall approach, is as follows -

[OPER_M] A CDV should allow transportation of the
passengers from one place to another.

2) Identification of Safety Hazards and Security Threats:
We follow a preliminary approach based on ISO 26262 Haz-
ards Analysis and Risks Assessment (HARA) [20] and threat
analysis [6] to identify the safety hazards and security threats,
respectively, with respect to OPER_M. For each identified haz-
ardous scenario, we determine the Automotive Safety Integrity
Levels (ASIL) by evaluating the three risk impact factors (i.e.,
Exposure, Controllability, and Severity). Likewise, we type
each of the identified threats based on STRIDE threat model.
An excerpt of our analysis results is presented in Table V.
These are considered as input for the specification of safety
and security missions at design time.

TABLE V
RESULT OF PRELIMINARY HAZARD AND THREAT ANALYSIS

Safety hazard Description Accident ASIL

SH1: Unintended
acceleration

Two CDVs approaching each other on converging
roads with non-negligible speed

A CDV is side-collided
leading to rollover D (E4, C3, S3)

Security threat Description Attack STRIDE category

ST1: Unauthorized
operations

Hostile party performing unauthorized actions
within on-board CDV architecture

Introduction of malware in
CDV’s computing facilities Elevation of privilege

3) Safety and Security Missions Specification and Model-
ing: Relying on the syntax presented in Section III-A1, an
excerpt of the safety and security missions specifications, in
correspondence to SH1 and ST1 in Table V, is provided -

∙ [SAFE_M1] A moving CDV should stop whenever an
obstacle is detected.

∙ [SEC_M1] An operational CDV should only allow access
to authorized actions being performed by its operator.

We consider the above mission specifications and the se-
mantics presented in Section III-C to instantiate the DSMLs
presented in Section III-A1 according to the CDV scenario.
For the sake of brevity, only an excerpt of this instantiation
for SAFE_M1 is presented in Fig. 6.

Fig. 6. UML profile instantiation of the safety mission SAFE_M1.

C. Formal Verification of Safety and Security Objectives
Since the Event-B interpretation of the Mission layer of

system specification is generic (see Section III-E), it can be
instantiated to incorporate the specific details of a concrete
system according to the application domain. In the light of
the considered use case, we define two Event-B contexts,
C3MissionViewInstance and C4MissionPropertyViewInstance,
to instantiate the mission and property specification views
presented in Sections III-A1 and III-A2, respectively. In these
contexts, we define constants, along with axioms to type these
constants and define their relationships with the carrier sets.
An excerpt of the context C3MissionViewInstance is depicted
in Listing 1.
CONTEXT C3MissionViewInstance
EXTENDS C2MissionUtility
CONSTANTS CDV1, SAFE_M1, SEC_M1, CDV2, Sensing,

Braking, IdentityChecking, AccessProvisioning
AXIOMS

CDV1 ∈ System
SAFE_M1 ∈ Mission ∧ SEC_M1 ∈ Mission ∧ Mission =

{SAFE_M1, SEC_M1}
CDV2 ∈ Asset
Sensing ∈ Operation ∧ Braking ∈ Operation ∧

IdentityChecking ∈ Operation ∧
AccessProvisioning ∈ Operation ∧ Operation =
{Sensing, Braking, IdentityChecking,
AccessProvisioning}

Listing 1. Excerpt of C3MissionViewInstance context.
We also define a concrete machineM1MissionLayerInstance

to refine the abstract machine M0MissionView (refer to Section
III-E) in the form of an instantiation specific to this use case
scenario. We specify gluing invariants for maintaining the

consistency between the variables belonging to the abstract
and concrete system. Specifically, the events Moving_CDV,
Obstacle_Detection, and Ensure_Braking of the
concrete machine refine the events EVENT1, EVENT2, and
EVENT3, respectively, of the abstract machine. Listing 2
shows an excerpt of the event Obstacle_Detection in
Event-B.
Obstacle_Detection REFINES EVENT2
WHEN

operSit = {SAFE_M1 ↦ TRUE}
hazEvent = {SAFE_M1 ↦ TRUE}
preSensing = {Sensing ↦ TRUE}
envTrigSensing = {Sensing ↦ TRUE}
achieves = {CDV1 ↦ SAFE_M1}
interactsWith = {CDV1 ↦ CDV2}
accomplishedThrough = {SAFE_M1 ↦ Braking}

THEN
preSensing ≔ {Sensing ↦ FALSE}
postSensing ≔ {Sensing ↦ TRUE}
envTrigBraking ≔ {Braking ↦ TRUE}
accomplishedThrough ≔ {SAFE_M1 ↦ Braking}
preBraking ≔ {Braking ↦ TRUE}

Listing 2. Excerpt of Obstacle_Detection event.
POs corresponding to the guard strengthening and validation

of the gluing invariants, prove the correctness of the instanti-
ated model. The safety (operational availability) and security
(system accessibility) objectives are represented as following
Event-B invariants -
(System availability) ∀m·∃o·m ∈ Mission ∧ o ∈ Operation
∧ (operationalSituation[m] = {TRUE} ∧ hazardousEvent[m]

= {TRUE}) ⇒ accomplishedThrough[m] = {o}
(Controlled accessibility) ∀p·∀s·∀o·p ∈ People ∧ s ∈
System ∧ o ∈ Operation ∧ p ↦ s ↦ o ∉ privilege ⇒

access[p ↦ o] = {FALSE}
V. RELATED WORK AND POSITIONING

In this section, we highlight salient features of some related
works and position our approach, emphasizing system model-
ing frameworks and DSMLs, design approaches, formal-based
techniques, and tool support.

A light-weight pattern-based technique based on KAOS
framework is proposed in [25], for deriving software’s oper-
ational specifications from system’s high-level goals. Similar
to our work, it relies on a multi-paradigm specification lan-
guage for incremental reasoning on partial models (i.e., goal,
object, agent, and operation). Nonetheless, it only covers the
requirement engineering phase. A variety of works, like [5],
[30], rely on DSMLs, implemented as UML/SysML profiles,
for modeling software systems together with desired safety
or security aspects and detecting inconsistencies, often in a
separate manner. Other approaches, like [31], incorporate both
safety and security properties, but adopt a fixed modeling view
not covering other layers (nor design steps, like allocation) as
in our approach. The authors in [19] presented a mission-based
process, strengthening the links between analysis and archi-
tecture design stages, and adapted it to the wave development
cycle, thus resulting less generic than our approach.

A functional-layer fine-grained co-design methodology for
automotive CPSs is proposed in [32] to capture the specifica-
tion of high-level functions through Design Space Exploration
(DSE). A component-based design technique is presented in
[33] to address safety requirements in CPSs applications, using
modeling and analysis of real-time component-layer interac-
tions. Likewise, following the security-by-design principle, the
authors in [6] proposed a framework for capturing security
objectives in autonomous systems. Our work is aligned with
these X-by-design approaches and aims, additionally, to pro-
vide generic and specializable means to integrate safety and
security aspects irrespective of the design flow (top-down or
bottom-up).
In some recent efforts, formal logics, like FOL and temporal

logic, are used for rigorous specification of safety and security
properties [22], [34], [35]. Some of these works (e.g., [34]) are
nonetheless less oriented to cover integrated specification of
high-level safety and security properties. As drawback, works
in this category are often constrained either by the underlying
formal language (not able to represent required properties) or
by lack of guidance to apply them at different layers (or even
impossibility), thus preventing outcomes reusability.
A main concern demanding tool support is the passage from

semi-formal structured models to their formal specification.
Some of the cited works address the use of Event-B as
formal method and tool for the analysis of system’s safety and
security concerns [35] [36]. These works can be constrained by
the granularity level and concepts chosen for modeling what
imposes requirements to be specified at the same level. In case
another layer is needed for modeling, further guidance is still
required to interpret models into a formal logics.
The distinctive features of the approach herein proposed lay

in three main axes and strive to reduce previous gaps. First, the
multi-layered approach is amenable to cover different phases
of critical systems development irrespective of the design flow
(top-down or bottom-up) being thus more generic. Second,
along with ensuring consistent design flow, the multilayered
approach also allows engineers to select a single layer adequate
to the modeling granularity and analysis needs, thus resulting
flexible enough. Since each layer comes with its respective
formal interpretation, it can be used in both standalone or
coupled mode with other layers. Third, the overall approach
is agnostic of the underlying tool-chain technology only de-
veloped for proof-of-concept purposes. Notwithstanding this
choice, the tool-chain integrates mechanisms that facilitate
approach extension and specialization. All these distinctive
features are encompassed with the capabilities to specify
and model -predefined- safety and security properties, and to
verify them. The support for early identification and systematic
analysis of their inter-dependencies and conflicts is a plus.

VI. CONCLUSION AND PERSPECTIVES
In this paper, we propounded a multi-layered design ap-

proach for integrated specification and verification of safety
and security properties. The approach is instantiated for
mission-centric systems via modeling of their missions and

safety and security objectives. The design is conducted at
two levels - 1) semi-formal; relying upon technology-agnostic,
generic, and standardized modeling languages, and 2) formal;
based upon formal syntaxes, rules, and semantics. A model
transformation was defined for interpretation of Mission mod-
els into Event-B specifications in order to conduct automated
verification of safety and security objectives’ signatures. The
feasibility of the approach was proven by applying it to a
CDVs use case borrowed from the transportation domain. The
approach contributes to the reusability of safety and security
objectives’ signatures across different design projects. Being
generic and mostly automated, it facilitates model transfor-
mation towards other formal frameworks, thus alleviating the
complexity of manually integrating formal analysis of safety
and security aspects into the design phase.

Since the approach introduced in this paper is a work-
in-progress, our next actions will focus on its instantiation
with respect to the remaining Functional and Architectural
layers of system specification (refer to Fig. 1). Furthermore,
we plan to strengthen vertical integration between the lay-
ered DSMLs (specifically, Mission-Functional and Functional-
Architectural) via identification of potential relationships and
establishment of links between the corresponding elements.
For that purpose, we must seek for solutions to ensure prop-
erties’ preservation across different layers.

REFERENCES
[1] E. A. Lee, “Cyber physical systems: Design challenges,” in 2008 11th

IEEE international symposium on object and component-oriented real-
time distributed computing (ISORC). IEEE, 2008, pp. 363–369.

[2] M. Wolf and D. Serpanos, “Safety and security in cyber-physical systems
and internet-of-things systems,” Proceedings of the IEEE, vol. 106, no. 1,
pp. 9–20, 2017.

[3] J. A. Estefan et al., “Survey of model-based systems engineering
(MBSE) methodologies,” Incose MBSE Focus Group, vol. 25, no. 8,
pp. 1–12, 2007.

[4] S. Zafar and R. G. Dromey, “Integrating safety and security requirements
into design of an embedded system,” in 12th Asia-Pacific Software
Engineering Conference (APSEC’05). IEEE, 2005, pp. 8–pp.

[5] M. A. De Miguel, J. F. Briones, J. P. Silva, and A. Alonso, “Integration
of safety analysis in model-driven software development,” IET software,
vol. 2, no. 3, pp. 260–280, 2008.

[6] A. Chattopadhyay, K.-Y. Lam, and Y. Tavva, “Autonomous vehicle:
Security by design,” IEEE Transactions on Intelligent Transportation
Systems, 2020.

[7] G. Pedroza, “Towards Safety and Security Co-engineering: Challenging
Aspects for a Consistent Intertwining,” in Security and Safety Interplay
of Intelligent Software Systems. Springer, 2018, pp. 3–16.

[8] L. Fuentes-Fernández and A. Vallecillo-Moreno, “An introduction to
UML profiles,” UML and Model Engineering, vol. 2, no. 6-13, p. 72,
2004.

[9] E. M. Clarke and J. M. Wing, “Formal methods: State of the art and
future directions,” ACM Computing Surveys (CSUR), vol. 28, no. 4, pp.
626–643, 1996.

[10] J. Bau and J. C. Mitchell, “Security modeling and analysis,” IEEE
Security & Privacy, vol. 9, no. 3, pp. 18–25, 2011.

[11] CEA, “Eclipse Papyrus Modeling Environment,” 2021,
https://www.eclipse.org/papyrus/.

[12] J.-R. Abrial et al., “Rodin: an open toolset for modelling and reasoning
in Event-B,” International journal on software tools for technology
transfer, vol. 12, no. 6, pp. 447–466, 2010.

[13] D. Sanderson, J. C. Chaplin, and S. Ratchev, “A Function-Behaviour-
Structure design methodology for adaptive production systems,” The
International Journal of Advanced Manufacturing Technology, vol. 105,
no. 9, pp. 3731–3742, 2019.

[14] C. Heitmeyer, J. Kirby, B. Labaw, M. Archer, and R. Bharadwaj,
“Using abstraction and model checking to detect safety violations in
requirements specifications,” IEEE Transactions on software engineer-
ing, vol. 24, no. 11, pp. 927–948, 1998.

[15] J. P. Bowen, “Z: A formal specification notation,” in Software specifi-
cation methods. Springer, 2001, pp. 3–19.

[16] R. Milner, Communicating and mobile systems: the pi calculus. Cam-
bridge university press, 1999.

[17] A. Dardenne, A. Van Lamsweerde, and S. Fickas, “Goal-directed re-
quirements acquisition,” Science of computer programming, vol. 20, no.
1-2, pp. 3–50, 1993.

[18] D. G. Firesmith, “Common concepts underlying safety security and sur-
vivability engineering,” Carnegie-Mellon Univ Pittsburgh PA Software
Engineering Inst, Tech. Rep., 2003.

[19] I. Cherfa, N. Belloir, S. Sadou, R. Fleurquin, and D. Bennouar, “Systems
of systems: From mission definition to architecture description,” Systems
Engineering, vol. 22, no. 6, pp. 437–454, 2019.

[20] “ISO 26262-1:2018 Road vehicles — Functional safety,” https://www.
iso.org/standard/43464.html, 2018.

[21] “ISO/IEC 27000:2018 Information technology — Security techniques
— Information security management systems,” https://www.iso.org/
standard/73906.html, 2018.

[22] Q. Rouland, B. Hamid, and J. Jaskolka, “Specification, detection, and
treatment of STRIDE threats for software components: Modeling, formal
methods, and tool support,” Journal of Systems Architecture, vol. 117,
p. 102073, 2021.

[23] M. Al-Kuwaiti, N. Kyriakopoulos, and S. Hussein, “A comparative
analysis of network dependability, fault-tolerance, reliability, security,
and survivability,” IEEE Communications Surveys & Tutorials, vol. 11,
no. 2, pp. 106–124, 2009.

[24] R. Bull and K. Segerberg, “Basic modal logic,” in Handbook of
philosophical logic. Springer, 1984, pp. 1–88.

[25] E. Letier and A. Van Lamsweerde, “Deriving operational software
specifications from system goals,” ACM SIGSOFT Software Engineering
Notes, vol. 27, no. 6, pp. 119–128, 2002.

[26] D. Dominic, S. Chhawri, R. M. Eustice, D. Ma, and A. Weimerskirch,
“Risk assessment for cooperative automated driving,” in Proceedings of
the 2nd ACM workshop on cyber-physical systems security and privacy,
2016, pp. 47–58.

[27] S. Zhiwei et al., “Map free lane following based on low-cost laser
scanner for near future autonomous service vehicle,” in 2015 IEEE
Intelligent Vehicles Symposium (IV). IEEE, 2015, pp. 706–711.

[28] D. Firesmith, “Engineering safety-and security-related requirements for
software-intensive systems,” Carnegie-Mellon Univ Pittsburgh PA Soft-
ware Engineering Inst, Tech. Rep., 2007.

[29] B. Smith, “Summary of levels of driving automation for on-road
vehicles,” Center for Internet and Society, Stanford Law School, vol. 1,
2013.

[30] L. Apvrille and Y. Roudier, “SysML-Sec: A SysML environment for
the design and development of secure embedded systems,” APCOSEC,
Asia-Pacific Council on Systems Engineering, pp. 8–11, 2013.

[31] G. Pedroza, L. Apvrille, and D. Knorreck, “AVATAR: A SysML
environment for the formal verification of safety and security properties,”
in 2011 11th Annual International Conference on New Technologies of
Distributed Systems. IEEE, 2011, pp. 1–10.

[32] J. Wan, A. Canedo, and M. A. Al Faruque, “Cyber–physical codesign at
the functional level for multidomain automotive systems,” IEEE Systems
Journal, vol. 11, no. 4, pp. 2949–2959, 2015.

[33] A. Masrur, M. Kit, V. Matěna, T. Bureš, and W. Hardt, “Component-
based design of cyber-physical applications with safety-critical require-
ments,” Microprocessors and Microsystems, vol. 42, pp. 70–86, 2016.

[34] B. Lacerda and P. U. Lima, “Petri net based multi-robot task coordination
from temporal logic specifications,” Robotics and Autonomous Systems,
vol. 122, p. 103289, 2019.

[35] I. Vistbakka and E. Troubitsyna, “Towards a formal approach to
analysing security of safety-critical systems,” in 2018 14th European
Dependable Computing Conference (EDCC). IEEE, 2018, pp. 182–
189.

[36] Z. Hong and X. Lili, “Application of software safety analysis using
event-b,” in 2013 IEEE Seventh International Conference on Software
Security and Reliability Companion. IEEE, 2013, pp. 137–144.

