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Abstract—The engineering process of systems deployed in criti-
cal domains (e.g., automotive) advocates for early-stage integrated
analysis of safety and security concerns, given their mutual
influence. Specifically, in the design phase, safety and security
requirements undergo a transition to the system architectural
design across different granular and conceptual representations.
However, such an enrichment process is often complex and
lacks preliminary guidance to consistently break down high-level
system specifications and requirements into intricate architecture
and deployment. In particular, engineers require further support
to interpret diverse system, safety, and security expertise and
facilitate the consistent passage of knowledge pertaining to these
disciplines for automated analysis. To this end, we propose
an approach to facilitate the joint design and formal analysis
of system safety and security concerns. Notably, the approach
aims for a three-layered system modeling, integrating mission,
functional and component views, and also, reusable libraries of
pre-defined safety and security properties, specialize-able across
them. We couple the Model-Driven Engineering (MDE) paradigm
and Formal Methods (FM) for the hierarchical-precise modeling,
formal interpretation, and verification of model views w.r.t.
the desired properties. The accompanying tool-chain support
for approach instantiation builds upon Papyrus as a modeling
framework and Rodin as a formal-based tool for verification.
The proposed approach is illustrated via a Connected-Driving
Vehicles (CDVs) use case.

Index Terms—safety, security, co-engineering, design, analysis,
model-driven engineering, formal methods

I. INTRODUCTION

The increasing automation level and inter-connectivity in
modern engineered systems deployed over critical domains and
public infrastructure, makes it essential to address both safety
and security-related concerns during the System Engineering
(SE) process, in light of their mutual influence. For instance,
in the automotive domain, the remote access feature offered
by the connected cars also exposes attack surfaces to impair
safety-critical functionality, e.g., via brakes jamming [1]. Thus,
the associated risks must be jointly anticipated and conflicts
must be treated during early design stages (e.g., architectural
design) to reduce the likelihood/harm and expenses of modi-
fying the overall architecture once implemented [2].

A joint analysis reconciling safety and security expertise is
technically challenging in practice due to the model’s diversity,
resulting from the stakeholders’ collaboration, heterogeneous
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requirements, frameworks/languages involved, etc. Although
several engineering approaches for safety [3] and security
[4] analyses have been proposed, they often rely on the
standalone viewpoint of safety and security disciplines. The
mutual impact of the intertwined safety constraints and secu-
rity exigencies is often not addressed, e.g., messages’ latency
vs. encryption mechanisms’ overhead, as evident in several
safety-critical domains like automotive [5] (issue P1). Partic-
ularly, in the design phase, the requirements are broken down
from the high-level teleological representations to the detailed
technical architecture of the System Under Design (SUD).
However, this enrichment process is often complex and lacks
guidance for consistent and integrated semantic transfer across
different representations, which is particularly true for safety
and security (issue P2). Besides, conducting design-level prop-
erties’! verification to increase design trustworthiness [6] can
be error-prone due to their ambiguous specifications or biases
introduced by non-savvy engineer’s interpretation (issue P3).
In addition, we observe a lack of methodological tool support
for integrated analysis of the system, safety, and security
properties; the disciplines of software architecture, security,
and safety engineering are yet to be consolidated regarding
their methods and tools (issue P4).

To address the problematics above (P1-P4), we propose a
joint design and analysis approach for safety and security co-
engineering in the context of a multi-layered system modeling,
similar to [7], with the aim to make the complexity of
engineered systems potentially addressable. The initial for-
mulation of the approach presented in this paper has been
previously published in [8]. Indeed, this work extends those
ideas for a three-layered mission-functional-component system
representation, mainly focusing on (1) the modeling aspects for
system design, (2) the formal analysis of safety and security
properties, and (3) the implementation of a tool-chain support
prototype. We propose a set of Domain-Specific Modeling
Languages (DSMLs) for the three-layered system modeling
(contribution C2) and for safety and security properties’ mod-
eling (contribution C1) to incorporate them across different
system layers. Herein, we use the widely-known Unified
Modeling Language (UML) and its profiles [9]. Moreover, we

'Fundamental well-defined notions that are the building blocks upon which
high-level requirements can be decomposed and characterized.



use Formal Methods (FMs), namely Event-B [10], to ensure
that once deployed, the system’s operation conforms to the
properties (contribution C3). As a prerequisite, we define the
mapping from the DSML notions to their namesake types in
Event-B. Besides, we use formal logic to ensure the well-
formedness of the system models and properties’ conflicts
identification, which is not fully covered in this paper due to
lack of space. We also develop a tool-chain support integrating
Model-Driven Engineering (MDE) techniques, namely Eclipse
Papyrus [11], and a formal-based tool, namely Rodin [12],
to conduct verification and spot inconsistencies (contribution
C4). The entire approach is illustrated via a Connected Driving
Vehicles (CDVs) use case.

The remaining paper is organized as follows. Section II
provides an overview of our proposed approach. Sections
IIT and IV respectively present the modeling of the three-
layered system, and safety and security properties. Section
V presents the formalization of the modeling languages for
properties’ verification. Subsequently, Section VI describes the
implementation of the tool-chain support. Section VII reviews
related works and positions our contribution (C1-C4). Finally,
Section VIII concludes this paper including future work.

II. GLOBAL APPROACH

A. Need for Safety and Security Co-design

The development of safety- and security-critical systems
requires a dedicated engineering process, which can rely upon
high-level modeling to define the system architecture. In a
model-driven design, analysis by verification of safety proper-
ties (e.g., availability) can be conducted over the system, sub-
systems, or components, according to the design granularity
and details present. Likewise, risk analysis to address high-
level security concerns (e.g., unauthorized access) is often
information-centric, which demands cascading down to a
detailed system view, particularly that involving components
and transmission channels. These aspects, in turn, call for
(i) a consistent passage of system-related knowledge across
different-granularity system views; (ii) the integration of prop-
erties and their consistency, preservation, and traceability; and
(iii) coordination and harmonization of collaborative work
among different stakeholders and their tasks (see Fig. 1).

However, the aspects above lead to a complex enrichment
process that often lacks methodological guidance, modeling
language (including semantics), and automated tool support for
non-savvy engineers during the integration and verification of
safety and security properties. For example, in Fig. 1, different
experts, namely Distributed System Expert, Safety Expert,
and Security Expert, elaborate a variety of models, and the
Architect should consider and harmonize their expertise/out-
comes to build the software architecture, which is the basis
for the System Developer’s tasks. These stakeholders must
reach a consensus regarding an optimal system design, but the
collaboration makes the job of the Analyst more complex, in
particular when perceiving security models at different layers,
and jointly analyzing safety- and security-related feared events
so as to produce artefacts/solutions with the expected safety
and security features at the architecture level.

B. Proposed Approach

To handle the complexity of safety and security co-design
and analysis, we propose to model the system and its properties
in the context of three-layered system modeling similar to [7].
Accordingly, the system-related aspects can be structured as
depicted in Fig. 2. Herein, Layer 1 - Mission architecture, con-
centrates on the formulation of high-level strategic concerns,
i.e., missions of the system, thereby offering a teleological
view to capture its overall purpose, Layer 2 - Functional
architecture, represents a classical functional decomposition of
the system, reflecting the design objectives correlated with its
functionality, and Layer 3 - Component architecture, focuses
on the detailed technical specification of the target system
wherein it is decomposed into a set of components.
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Fig. 2. Overall three-layered modeling approach.

With the three-layered model as its foundation, the approach
encompasses the “safety- and security-by-design” principle,
disambiguation in properties’ specification, and early detection
of conflicts between properties in the SE process. This is
accomplished via (1) modeling of detailed system aspects and
safety and security properties, (2) formalization of both system



aspects and properties, (3) integration of formalized model
elements, and (4) verification of properties via interpretation
into a delegated formal tool. Once formalized, the properties’
specifications (instantiated at the three model layers) remain
generic enough to be accommodated as reusable libraries.

The approach detailed in the forthcoming sections relies
upon MDE and formal techniques as the primary means for
addressing the issues P1-P4.

C. Illustrative Use Case

To illustrate the approach, we consider autonomous Con-
nected Driving Vehicles (CDVs) as a safety-security criti-
cal application case. We assume CDVs deployed in limited
perimeter areas such as shuttle buses in airport terminals.
Furthermore, we investigate a realistic converging road plan
scenario shown in Fig. 3, and inspired from [13]. In this
scenario, two CDVs are in self-driving mode, moving towards
the intersection point by following the virtual guides with
non-negligible speed. For simplicity, the aspects related to
road guides’ detection and system-level communication are
disentangled.
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Fig. 3. Use case scenario: Multiple CDVs in a converging road plan.
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III. THREE-LAYERED SYSTEM MODELING

The three-layered system modeling environment comprises
one DSML per layer (contribution C2). This facilitates the
separation of concerns across layers, regarding system fea-
tures and properties, rather than treating them in a single-
featured view. The three DSMLs are implemented as UML
meta-models and profiles to provide a standardized modeling
environment and are detailed in the following sub-sections.
An excerpt of the graphical representation of the concepts and
relationships is given in Fig. 4.

A. Three-layered System Meta-Model

1) Mission Layer: The Mission layer meta-model defines
concepts for the engineering of system purposes. Some of
the representative elements constituting the “mission view”
offered by this model are semantically inherited from the
state-of-the-art artifacts proposed for rigorously defining the
missions [13]-[17].

Recalling the use case scenario in Section II-C, we define a
CDV as an atomic System that interacts with its Environment,
including People, Assets, through a physical and logical
border. The CDVs are intended to achieve a set of critical
missions, like collision avoidance [SAFE_M] and grant only
authorized actions [SEC_M]. Thus, Missions represent the
system’s high-level purposes or finality related to some behav-
ior, constraint, or feature. Given an operational situation, like
in the converging road map in Fig. 3, the mission statement
reflects an obligation comprising modal verbs, like must, will,
should, and is related to hazardous events, like unintended
acceleration, and also security incidents, like unauthorized
operation, taken as inputs. Operations like braking, access
provisioning, and the alike, represent the strategy/implemen-
tation steps performed by the CDV for the accomplishment
of the missions [SAFE_M] and [SEC_M]. operationlnput and
operationOutput respectively represent the operation-specific
stimuli and response, crossing the border between the system
and its environment. pre/postCondition and environmentTrig-
gerCondition respectively capture the descriptive and prescrip-
tive conditions associated with the operation’s application. For
example, the decreasing distance between the CDV and its
obstacle beyond a certain threshold should trigger the braking
operation.

2) Functional Layer: The Functional layer meta-model
defines concepts related to the engineering of behaviours. To
model system functions at detailed-level, some representative
elements from the literature [18], [19] are considered to define
the “functional view” of the model as follows.

Function represents elementary behaviors like perception-
or actuation-related, which are performed/provided by the
SUD, commonly expressed in the active verb form. trigger-
Type represents the type of trigger: Manual, ControlSignal,
or TemporalConstraint, i.e., the external stimulus activating
a function. Accordingly, a function caller can be a system
Operator, an external Function, or a TemporalConstraint,
respectively. A Functionallnterface represents the interaction
point between the functions for their invocation via Infor-
mation exchange. A FunctionalPath represents a sequence
of functions like obstacle detection — position inference —
deceleration, that realize the system’s operations via Infor-
mationFlows, e.g., the dynamics of the obstacle. The first and
last functions in the sequence represent the system’s boundary
functions involving its interaction with the environment.

3) Component Layer: The Component layer meta-model
defines concepts related to the engineering of components
(logical/physical). In the present context, we reuse the
Component-Port-Connector (CPC) model presented in [20],
with message passing-based communication primitives. It pro-
vides a recognized way of visualizing the system’s structural
and behavioral aspects, constituting the “component view” of
the model.

A Component represents the self-contained computation
elements/physical entities like camera, processing unit, brake
actuator, constituting the system (i.e., the CDV). Each com-
ponent uses different ports (Port) for data exchange. The
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Fig. 4. Three-layered system specification meta-model: Excerpt showing fundamental notions captured.

kind of the port, typed as PortKind, constrains the semantics
of Input and Output interactions between the components.
The Connector establishes a connection between two or
more components via communication ports. MsgPassing rep-
resents the CommunicationStyle involving message transmis-
sion between components via sending/receiving actions. Other
possible communication styles defining the communication
behavior may include broadcast or multicast.

4) Vertical Integration between the Layered Model: The
structural and semantic linking is done by the association
between the layered elements, ensuring consistency between
the corresponding representations and preserving properties’
traceability. For instance, sensing operation at the mission
layer is realized by obstacle detection function at the functional
layer, which in turn, is allocated to a sensor at the compo-
nent layer. Likewise, an information flow between obstacle
detection and position inference functions may be conveyed
by the connector between the sensor and the processing
unit components. According to this allocation, inputs/outputs
associated with the functional interfaces are implicitly mapped
to their respective ports. An operator can manually call upon
a function like braking and realize the interaction between the
system and its environment. This is a choice that simplifies
the structuring and configuration of layers.

B. Three-layered System UML Profiles

The three-layered system UML profiles define all the neces-
sary stereotypes to model the concepts presented in the three
DSMLs in a UML environment. For instance, we introduce
a set of stereotypes like «System», «Mission», «Operation»,
«Environment», extending the UML meta-class Class to model
the mission-layer notions. The durationType attribute of an op-
eration is represented by the tagged value durationType, whose
values are provided by the enumeration «DurationType».

Likewise, the system functionality is modeled by «Func-
tion» stereotype, extending the UML meta-class Action that
captures both caller (call behavior action) and callee (opaque
actions) functions. The attributes zype and triggerType of a
function are defined as a tagged value enumeration to respec-
tively define the type of the function and the trigger associated
with it. The type of these attributes is «7riggerType» and
«FunctionType». The attribute functionallnterfaces is modeled
with the stereotype «Functionallnterface», which extends both
Parameter and Interface meta-classes. Likewise, the attribute
caller is represented via the stereotype «Caller», extending the
meta-class Class. To model the input and output information
accepted and produced by the function, we define the stereo-
types «Functionallnput» and «FunctionalOutput», respectively
extending the InputPin and OutputPin meta-classes. To model
the link between functions via the flow of information across
them, we define «InformationFlow» stereotype, extending the
UML meta-class Association.

Finally, the « Component», «Port», and «Connector» stereo-
types, respectively extend the UML meta-classes Component,
Port, and Connector. Their respective types are captured using
the enumeration tagged values, stereotyped as «Component-
Type», «PortKind», and «ConnectorType».

IV. SAFETY AND SECURITY PROPERTIES

This section presents an overview of the modeling aspects
for integrated specification and analysis of safety and security
properties (contribution C1). The full extent of the libraries’
contents is not shown due to lack of space.

A. Properties Meta-Model

The three-layered system model includes the “property
view” and “property category view”, shown in Fig. 5, which
extend the views presented in Section III-A. They represent the
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Fig. 5. Safety and security properties’ specification meta-model.

reusable model libraries typed as PropertyCategoryLibrary,
containing high-level properties related to the system, func-
tions/functional path, and components/connectors. Property-
Category represents the classification of safety and security
objectives. The libraries are subsequently used as external
templates for capturing the objectives as signatures.

1) Safety and Security Properties Specification: We extend
some properties from the literature like Precedence [21],
Equivalence [22], by adapting them to the context of our
approach. For instance, Precedence imposes a partial ordering
among the elements, applicable to functions/functional paths,
components/connectors, and whenever two or more elements
perform sequentially. Likewise, Equivalence between two ele-
ments represents an equivalence between their states/attributes.
We call these properties basic ones since they play an elemen-
tary role in defining specific safety and security objectives
associated with the target SUD. For instance, Functional
Integrity ensures the preservation of the information flow
between an ordered execution of functions in a functional path.

Regarding safety properties, we extend the notion of Avail-
ability [16] as Operational Availability objective at the mission
layer, according to which “a system in a certain operational
situation shall allow for the realization of safety-critical op-
eration(s), whenever a hazardous event is detected.” Herein,
the execution of the operations must be in alignment with the
accomplishment of the safety-critical missions, for instance,
the realization of sensing operation for obstacle detection in
autonomous driving vehicles to avoid crashes. Furthermore,
the notion of availability is specialized to Functional Path
Availability and Component-Port-Connector (CPC) Availabil-
ity objectives at the functional and component layers, respec-
tively. Likewise, regarding security properties, we extend the
notion of Controlled Accessibility [23] as System Accessibility
objective at the mission layer, according to which “a system
must allow and limit the access of security-critical operation(s)
to only authorized entities.”

2) Properties Interplay Modeling: Potential inter- or intra-
relationships between safety and security objectives may arise
within a layer or across layers. Thus, we aim to establish
an alignment via links between objectives to support further
analysis, including safety and security interplay. We define
associations between these objectives like dependsUpon, con-
flictsWith, similar to the ones used by the pattern community

to define pattern relationships [24]. For example, operational
availability, at the mission layer, depends upon functional path
availability, at the functional layer. System accessibility at the
mission layer, conflicts with operational availability at the same
layer, etc. In essence, the links provide the means to declare
dependencies and conflicts between properties.

B. Properties UML Profiles

To model safety and security properties at the three layers
ensuring their integration w.r.t. notions therein defined, we
introduce stereotypes like «SystemProperty», «FunctionProp-
erty», «ComponentProperty», extending the UML Class. The
stereotype «PropertyCategoryLibrary» models the library of
safety and security properties. The specification of correspond-
ing objectives is represented using stereotypes like «Oper-
ationalAvailability» and «SystemAccessibility», which extend
the stereotypes «SafetyObjectiveCategory» and «SecurityOb-
JjectiveCategory». Finally, the relationship among properties is
specified by the «Relationship» stereotype, extending the UML
Class. The actual values of relationship type are defined in the
enumeration «RelationshipType» as a tagged value.

V. FORMALIZATION FOR SPECIFICATION AND ANALYSIS IN
EVENT-B

We consider the interpretation into Event-B of the three-
layered system DSMLs shown in Fig. 4, the properties’ DSML
in Fig. 5, and the properties conflict identification introduced
in Section IV-A2 (contribution C3).

a) System Specification: The three-layered system model
is represented in Event-B via a set of contexts and machines,
refined within each layer. The contexts are used for formal
declaration of DSML structural elements, along with the utility
constants for their generic representation. Herein, the key ele-
ments like Mission, Function, Component, and enumerations
are defined as Event-B sets, while their attributes, e.g., caller,
type, are represented as constants. Likewise, axioms capture
the relationship between the elements and their attributes, and
define the type of the attributes. To model the relation between
aset S (e.g., PortKind) and its sub-sets sy, s,,..., 5, represented
as constants (e.g., Input, Output), the partition operator is
used: partition(S, sy, $3,..., S,).

Based upon this, an excerpt of the instantiation of the three-
layered system model concerning the CDV scenario at the



mission layer is presented in Listing 1. Herein, the extends
keyword is used for inheriting the constants and axioms from
C4MissionUtility to C7MissionViewlnstance.

CONTEXT C7MissionViewInstance
EXTENDS C4MissionUtility // Context for utility
constants, e.g., sl1, ml, ol
CONSTANTS CDV1, SAFE_M, SEC_M, CDV2,
AccessProvisioning
AXIOMS
CDV1 € System
SAFE_M € Mission A SEC_M € Mission A Mission = {
SAFE_M, SEC_M}
CDV2 € Asset
Braking € Operation A AccessProvisioning €
Operation A Operation = {Braking,
AccessProvisioning}

Braking,

Listing 1. Excerpt of Event-B context at mission layer in the CDV scenario.

Furthermore, machine specifications formally capture the
desired behavioral aspects of the system as model invariants.
A machine sees a context to use its axioms in conjunction as
hypotheses in the mathematical proofs. We define events in the
machines targeting each layer to capture the state transitions
associated with the application of operations, function execu-
tion, and CPC-based message transmission. The guards in the
when section, corresponding to the events, restrict the values
of the system’s attribute variables as enabling conditions for
the events. Triggering an event leads to the updating of
the variables (e.g., achieves, counter) via the deterministic
assignment :=. An excerpt of this interpretation for the mission
layer concerning the CDV scenario is depicted in Listing 2.

MACHINE MlMissionView
SEES C4MissionUtility

VARIABLES operationalSituation, hazardousEvent,
environmentTriggerCondition, achieves, counter,
accomplishedThrough, interactsWith

EVENTS HazardousEventPresence

STATUS ordinary

WHEN
operationalSituation = {ml ~ TRUE}
hazardousEvent = {ml ~ FALSE}

environmentTriggerCondition = {0l +— FALSE}

achieves = {sl — ml}
counter > 0

THEN
hazardousEvent := {ml +— TRUE}
environmentTriggerCondition := {0l +~ TRUE}
accomplishedThrough := {ml +— ol}
interactsWith = {sl — al}
counter := counter — 1

like =, <, and quantifiers like V, 3 between propositions.
An excerpt of the Event-B interpretation for the Operational
Availability objective is given in Listing 3.

c) Properties Analysis: We rely upon mathematical
proofs comprising a set of rules to reason and verify the
invariants. These rules are based upon the convention of
Proof-Obligations (POs) supported by the Rodin platform [12].
A PO is generated for every invariant that can be affected
by an event. The hypothesis for these POs relies upon the
satisfaction of all the invariants, including behavioral, safety
and security objectives, and gluing. In addition, the guards
restricting the values of the variables are validated before
triggering events in every reachable state of the system. The
correctness of the instantiated CDV model is dependent on
ninety-one POs, which are related to mission accomplishment
through the execution of the operation, function, and CPC-
centric events (POs’ distribution: 32 Variable initialization, 48
System specification, 11 Safety and security invariants).

To illustrate property analysis, we present an extraction of
the PO for the satisfaction of the operational availability as an
invariant, relying upon two invariants, INV1 and INV2, and a
theorem THM, as follows:

1) MissionAllocation (INV1): Vm € Mission, Jo0 €
Operation | ((operationalSituation[m] A hazardousEv-
ent[m]) < (preCondition[o] A environmentTriggerCon-
dition[o])) = accomplishedThrough[m] = o; holds for
all the events.

2) MissionConsistency (INV2): Vm € Mission, (opera-
tionalSituation[m] A— hazardousEvent[m]) = - over-
allGoal[m]; holds for all the events.

3) MissionAccomplishment (THM): Vm € Mission, o €
Operation | (accomplishedThrough[m] = o) = (post-
Condition[o] < overallGoal[m]); a derived axiom that
relies upon INV1 and INV2.

Likewise, the predicate corresponding to the properties’

conflict identification, mentioned in Section IV-A2, is shown
in the Listing 4 as an Event-B invariant at the mission layer.

INVARIANTS
Vm.3ol.d02.m € Mission A ol € Operation A 02 €

Operation A accomplishedThrough[{m}] = {ol, 02}
= (overallGoal[{m}] = {TRUE} A (-postCondition
[{ol}] = {TRUE} V-postCondition[{o2}] = {TRUE}))

Listing 2. Excerpt of Event-B machine at mission layer in the CDV scenario.

b) Properties Specification: We interpret the safety and
security objectives presented in Section IV-Al in Event-B as
model invariants to verify that the defined events satisfy the
same during system model verification at different layers.

INVARIANTS

Vm.do.m€ Mission A o € Operation A (
operationalSituation[{m}] = {TRUE} A
hazardousEvent [{m}] = {TRUE}) =
accomplishedThrough[{m}] = {0}

Listing 3. Operational availability objective as an Event-B invariant.

Herein, the invariants are represented as the combination
of state variables, i.e., the concept attributes, logic symbols

Listing 4. Conflict identification invariant for mission layer properties.

For the safety and security missions SAFE_M and SEC_M,
respectively, introduced in Section III-Al for the CDV sce-
nario, the PO corresponding to the invariant in Listing 4 is
discharged, depicting a potential conflict between braking and
access provisioning operations. This can be due to the lack
of privilege for the operator to realize the braking operation
manually, i.e., Operator » CDV1 — Braking & privilege.

VI. TOOL-CHAIN SUPPORT

Fig. 6 depicts the tool-chain support architecture used
in our work, comprising the following two primary blocks
(contribution C4):
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a) Development of Safety and Security Modeling Frame-
work: This block supports the following five activities: (Al.1)
involves the creation of the DSML profiles for the three-
layered system and safety and security properties in Papyrus
[11]. These profiles are further interpreted to their corre-
sponding formal syntaxes, involving the use of the Event-B
method [10] and Rodin [12] (A1.2) [NB: The work concerning
logic-based formalism of the DSMLs as a pivot language
facilitating this interpretation, is already conducted; however,
not shown in this paper]. Furthermore, reusable libraries of
safety (e.g., Availability) and security objectives (e.g., Con-
trolledAccessibility) are defined as signatures in the context of
the formal meta-model (A1.3). Rodin automatically generates
POs corresponding to the safety and security objectives in-
variants (Al.4). Undischarged POs are interactively analyzed
to identify and fix the underlying issues (A1.5).

b) Integration into the Engineering Process: This block
includes user-oriented features and supports the following
three activities: (A2.1) allows the software architect to model a
three-layered system and properties conforming to the DSML
profiles in (A1.1). Subsequently, (A2.2) enables the generation
of Event-B formal models via refinement/interpretation of
the already developed meta-models in (A1.2). Finally, safety
and security objectives specifications are integrated (A2.3) by
reusing and adapting the libraries defined in (A1.3).

VII. RELATED WORK AND POSITIONING

This section dwells on some related works and positions
our contributions, emphasizing system modeling frameworks,
design and analysis approaches, and formal techniques/tools.

The authors in [15] presented a mission-based process
strengthening the links between analysis and architecture de-
sign stages, and adapted it to the wave development cycle,
thus resulting in less generic than our approach. A functional-
layer co-design methodology for automotive systems is pro-
posed in [25] that captures high-level functional specifica-
tion and explicit partitioning of physics and control using
Design Space Exploration (DSE) capabilities. Component-

safety-security objectives
library by reuse

Ij Automated

Overview of the tool architecture developed to support co-engineering of safety and security: Integrated design and formal analysis.

based design techniques and frameworks are presented in the
literature concerning safety [26] and security [4] requirements
via modeling and analysis of real-time component interactions
in the automotive domain. Our work is aligned with these
X-by-design approaches and aims, additionally, to provide
generic and specializable means to integrate safety and se-
curity aspects across different layered representations of the
target SUD holistically, irrespective of the design flow (top-
down or bottom-up).

The use of DSMLs implemented as UML/SysML meta-
models and profiles is widespread for modeling software-based
systems incorporating desired safety [27] and security [28]
aspects and inconsistencies’ detection, often in a standalone
manner. Some approaches, e.g., [5], incorporate both safety
and security properties, however, adopt a fixed modeling view
not covering other layers, nor design steps, like allocation, as
in our approach.

Several works demonstrate the applicability of the Event-
B method for rigorous analysis of safety [29] and security
[30] concerns. However, these works are constrained by the
granularity level and concepts chosen for modeling, which
imposes requirements specification at the same level. If another
modeling layer is needed, further guidance is required to
integrate and interpret models into formal specifications.

The multifaceted approach proposed herein strives to reduce
the previous gaps across four main axes. First, it is amenable
to cover different phases of critical systems’ development
irrespective of the design flow (top-down or bottom-up) being
thus more generic. Second, the properties are defined and
integrated, according to the three-layered system model, of-
fering, in addition, sound analysis across different granular
representations of the SUD. Third, the layers’ independent
formal interpretation facilitates engineers to use them in stan-
dalone or coupled mode, also adequate for multi-stakeholder
usage. Lastly, being technology-agnostic, it provides flexibility
for the choice of modeling languages and tool support for
verification. These distinctive features are encompassed with
the capabilities to specify and model predefined safety and
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defined and integrated so far. The approach is extensible and
includes guidance to operationalize properties’ instantiation
and verification. The methodological support for early iden-
tification and systematic analysis of their inter-dependencies
and conflicts is a key feature.

VIII. CONCLUSION AND PERSPECTIVES

We have proposed an approach for co-engineering of safety
and security, covering co-design and formal analysis. The work
is mainly focused on both system and properties modeling
via a three-layered system representation, comprising high-
level mission, functional, and detailed component views. The
design is conducted at two language levels: 1) semi-formal;
relying upon technology-agnostic, generic, and standardized
constructs to create system DSMLs, and 2) formal; relying
upon formal syntax, semantics, and rules for precise speci-
fication of properties and reasoning. A model interpretation
was defined to map system and property models into Event-
B specifications to conduct automated verification of safety
and security objectives’ signatures and conflicts solving. The
approach is illustrated via a CDV use case from the automotive
domain. The approach contributes to the reusability of signa-
tures of safety and security objectives across different design
projects. Being generic and mostly automated, it facilitates
model interpretation towards other formal frameworks, thus
alleviating the complexity of manually integrating formal
analysis of safety and security aspects into the design phase.

Among the perspectives to improve the approach, we can
mention increasing coverage of safety and security proper-
ties libraries, further formal means for conflicts identification
and resolution, and formalizing vertical links to propagate
verification results across layers. The negative vision of the
properties is still to be introduced: fault/failure/hazard and
threat models shall corroborate the soundness in safety and
security objectives fulfillment versus feared events.
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