
HAL Id: cea-03789094
https://cea.hal.science/cea-03789094v1

Submitted on 27 Sep 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Formal analysis approach for multi-layered system safety
and security co-engineering

Megha Quamara, Gabriel Pedroza, Brahim Hamid

To cite this version:
Megha Quamara, Gabriel Pedroza, Brahim Hamid. Formal analysis approach for multi-layered system
safety and security co-engineering. 14th International Workshop on Software Engineering for Resilient
Systems (SERENE 2022), Sep 2022, Zaragoza, Spain. pp.18-31, �10.1007/978-3-031-16245-9_2�. �cea-
03789094�

https://cea.hal.science/cea-03789094v1
https://hal.archives-ouvertes.fr


Formal Analysis Approach for Multi-layered System
Safety and Security Co-engineering

Megha Quamara1,2[0000−0001−9380−6916], Gabriel Pedroza1[0000−0002−7889−2892], and
Brahim Hamid2[0000−0002−2199−3916]

1 Université Paris-Saclay, CEA, List, F-91120, Palaiseau, France
{megha.quamara, gabriel.pedroza}@cea.fr

2 IRIT - University of Toulouse, 118 Route de Narbonne, 31062 Toulouse Cedex 9, France
brahim.hamid@irit.fr

Abstract. Critical domains (like Cyber-Physical Systems-CPSs) have witnessed
increased demand for considering both safety and security concerns during the
early phases of the System Engineering (SE) process. Particularly, in the design
phase, safety and security requirements should cascade down across different sys-
tem views till the architectural design. However, such an enrichment process is
often complex and lacks guidance to precisely specify the corresponding prop-
erties and consistently break down high-level system specifications into intricate
architecture for a rigorous analysis. To this end, we propose a formal approach
pursuing joint analysis of safety and security objectives, specialize-able across
different system views. In particular, the approach strives for a multi-layered sys-
tem representation, integrating mission, functional and component views, and li-
braries of pre-defined safety and security properties, instantiate-able at each layer.
We rely upon the meta-modeling and formal techniques for the specification, con-
ceptual modeling, formal interpretation, and verification of the system w.r.t. the
allocated properties. The overall approach is validated using Rodin as an instance
of a formal-based tool for properties’ verification.

Keywords: Safety · Security · Co-engineering · Design · Analysis · Model-Driven
Engineering · Formal Methods.

1 Introduction

Modern engineered systems, like Cyber-Physical Systems (CPSs), are becoming in-
creasingly complex due to the integration of a variety of technology, highly networked
and with heterogeneous usages and contexts. Despite their enormous potential, deploy-
ing such systems in critical applications entails the integration of safety and security
concerns in light of their mutual influence. Nevertheless, a joint analysis towards har-
monizing safety and security expertise is technically challenging. Particularly, in the
design phase, the requirements are broken down from the high-level teleological rep-
resentations to the detailed technical architecture of the System Under Design (SUD).
However, this enrichment process is often complex and lacks guidance for consistent
semantic transfer and integration of safety and security concerns/requirements. Besides,



2 M. Quamara et al.

conducting design-level properties’3 verification to increase design trustworthiness, can
be error-prone due to ambiguous properties’ specifications or biases introduced by non-
savvy engineer’s interpretation. Moreover, existing System Engineering (SE) approaches
exhibit standalone safety and security analyses in many cases [7,5]. As evident in several
safety-critical domains (e.g., automotive), an entanglement exists between safety con-
straints (e.g., messages’ latency) and security exigencies (e.g., encryption mechanisms’
overhead), and their mutual assurance needs to be verified [15]. In addition, we observe
a lack of automated tool support for integrated analysis of the system, safety, and secu-
rity properties; the disciplines of software architecture, security, and safety engineering
are still to be better interfaced regarding their methods and frameworks.

To address the problematics above, we propose a joint design and analysis approach
for three-layered system safety and security co-engineering. The work in this paper
mainly focuses on (1) the vertical integration of notions for safety and security interplay
across different modeling views of the system and (2) emphasizing the formal aspects
for properties’ representation, verification, and conflict identification. The approach re-
lies on conceptual modeling using existing modeling languages (e.g., Unified Modeling
Language (UML) [9]) to describe high-level safety and security objectives, i.e., the pos-
itive features or properties, specialize-able across different system views in the context
of a three-layered system representation: mission, functional, and component. Besides
the typical system’s structural and behavioral concerns’ analysis [3], we propose to im-
pose a defined set of safety and security objectives’ signatures at each layer to check
for design conformity and avoid potential conflicts. As a prerequisite, we define inter-
pretation rules for mapping the modeling concepts to their formal-based counterparts
relying upon mathematical logic, namely First-Order Logic (FOL) and Modal Logic
[4]. Moreover, we use Event-B [1], to obtain a more concrete specification of the sys-
tem and property conceptual model and the accompanying formal-based tool, namely
Rodin [16], to mechanize properties verification and spot inconsistencies at early mod-
eling phases. The approach is illustrated via a Connected Driving Vehicles (CDVs) use
case.

The rest of the paper is organized as follows. Section 2 describes the conceptual
modeling of the system and safety and security properties. Section 3 presents the for-
malization of the model using FOL and Modal Logic. Section 4 describes the interpre-
tation of the formalized model into Event-B for supporting properties analysis. Section
5 reviews related works. Finally, Section 6 concludes this paper, with perspective work
directions.

2 Multi-layered System Conceptual Model

A conceptual model of a multi-layered system should capture the main concepts and
relationships for describing the system in the context of different standards and domain-
specific practices. We use UML Class diagrams to describe the conceptual model. Thus,
concepts are represented by Classes, concept attributes by Class attributes, and relation-
ships among concepts by links (e.g., association). The Package notation is used to make

3 Fundamental well-defined notions that are building blocks upon which high-level requirements
can be decomposed and characterized.



Formal Analysis Approach for Multi-layered System Safety and Security Co-engineering 3

groupings of the concepts. An excerpt of the graphical representation of the concepts
and relationships is given in Fig. 1. In the rest of this section, we outline the different
packages. Special attention is given to the concepts that show the essential features of
this work. To facilitate readability and comprehension, the attributes of the different
concepts and some of the links among the concepts are also described.

Fig. 1. Excerpt of the multi-layered system specification meta-model.

The proposed conceptual model is divided into four packages: (1) Mission, for con-
cepts related to mission engineering; (2) Functional, for concepts related to functional
engineering; (3) Component, for describing component-based engineering; and (4)
Property, for safety and security aspects capturing and analysis. The Mission package
contains concepts for offering system’s teleological view, such as the System (e.g., CDV),
Mission (system’s high-level strategic concerns, e.g., collision avoidance [SAFE_M],
ensure authorized actions [SEC_M]), Operation (for mission accomplishment, e.g.,
braking, access provisioning), Environment (comprising People or Assets), etc. The
Functional package contains all the concepts correlated with the system’s functional-
ity, such as the Function (system’s elementary tasks or services, e.g., perception- or
actuation-related), FunctionalPath (sequence of functions to realize the operation via
InformationFlows), etc. The Component package contains all the concepts for the sys-
tem’s detailed technical representation, such as the Component (self-contained compu-
tational elements/physical entities, e.g., sensor), Ports (for data exchange), Connectors
(channels for establishing communication), etc.

Finally, the Property package (see Fig. 2) contains all the concepts for safety and se-
curity properties capturing and analysis, such as the PropertyCategoryLibrary (reusable
model libraries for defining high-level properties of the system, function, component,
etc.) and PropertyCategory (classification of safety and security objectives in a given
context). The libraries are subsequently used as external models for capturing the objec-
tives as signatures. We extend some properties (e.g., Precedence [8] and Equivalence
[2]) from the literature by adapting them to the context of our approach. We call these



4 M. Quamara et al.

properties the basic ones since they play an elementary role in defining specific safety
and security objectives (e.g., Functional Integrity) associated with the target SUD.

Fig. 2. Safety and security properties’ specification meta-model.

Likewise, potential inter- or intra-relationships between safety and security objec-
tives may arise within or across the layers. Thus, we aim to establish an alignment via
links between objectives to support further analysis, including safety and security in-
terplay. We define the association (e.g., dependsUpon, conflictsWith) between these ob-
jectives. For example, operational availability (mission layer) depends upon functional
path availability (functional layer), system accessibility (mission layer) conflicts with
operational availability (mission layer), etc.

3 Logical Specification

This section presents the formalization of the multi-layered system conceptual model de-
fined in the previous section for rigorous specification and analysis of safety and security
objectives. We use FOL and Modal Logic [4] as technology-independent formalisms to
incorporate formal syntaxes for the system model and properties belonging to the de-
fined categories. They play as a pivot language that aims to facilitate model interpretation
and improve flexibility, e.g., to delegate the properties’ analysis to other tooled-formal
languages and frameworks. In our context, the analysis has been mechanized, thanks to
the Rodin framework, as presented in the next section.



Formal Analysis Approach for Multi-layered System Safety and Security Co-engineering 5

3.1 Formal Syntax for Multi-layered System Specification and Properties

The meta-model in Fig. 1 is attached with a syntax, preserving the associations and types
in the UML models (see Table 1). The formal syntax and logic defining some properties’
signatures across the layered models are introduced in Table 2 and are discussed below:

– Operational Availability: A system S in a certain operational situation should allow
for the realization of safety-critical operation(s) Op𝑗 , whenever a hazardous event
is detected.

– Functional Path Availability: A functional path FP := (F1,..., F𝑘), 𝑘 ∈ ℕ satisfies
functional path availability denoted by FunctionalPathAvailability(FP) iff:
∙ There is a preservation of the information flow between orderly execution of

functions constituting the functional path, i.e., FunctionalIntegrity(FP), and
∙ The timeliness of the execution of the functional path is ensured for a predefined

threshold Θ ∈ ℝ+, i.e., ExecutionTimeliness(FP, Θ).
– Component-Port-Connector (CPC) Availability: Given two components C𝑖 and

C𝑗 (with failure rates 𝜆𝑖 and 𝜆𝑗 , respectively), where 𝑖, 𝑗 ∈ ℕ, a connector 𝐶𝑜𝑛𝑛
(with failure rate 𝜆𝐶𝑜𝑛𝑛) connecting C𝑖 and C𝑗 , time instant 𝑡, a message 𝑚, and a
predefined threshold Δ ∈ ℝ+, the CPC availability objective is satisfied iff:
∙ Availability of components is ensured, i.e., ComponentAvailability(C𝑖, 𝜆𝑖, 𝑡),
∙ Availability of connector is ensured, i.e., ConnectorAvailability(Conn, 𝜆𝐶𝑜𝑛𝑛,
𝑡),

∙ Delivery of critical messages between the components is ensured, i.e., Even-
tualMessageDelivery(C𝑖, C𝑗 , 𝑚) (or BoundedMessageDelivery(C𝑖, C𝑗 , 𝑚, Δ)),
and

∙ There exists logical conformity of the component architecture (i.e., configura-
tion) with functional architecture.

– System Accessibility: A system S must allow and limit the access of security-
critical operation(s) Op𝑗 to only authorized entities (e.g., Operator).
Here, we integrate the formal syntaxes presented in Tables 1 and 2 to define formal

semantics for the layered elements. The FOL-based formalism of safety and security ob-
jectives’ specifications are extended using a range of modalities, including ◦ (next), ◊
(eventually), ◊≤Θ (bounded eventually, where Θ denotes the threshold or bounded gap
between two events/occurrences/actions etc.), and □ (always) for capturing the notion
of future [4]. Likewise, ∙, ⧫, ⧫≤Θ, and ■, respectively denote their past counterparts.
These are defined on top of standard FOL operators, including ∧ (conjunction), ∨ (dis-
junction), ¬ (negation), → (implication), and ↔ (equivalence). For example, predicates
of the form 𝑃 ⇒ 𝑄 can be interpreted as □(𝑃 → ◊𝑄). Similarly, predicates of the
form 𝑃 ⇔ 𝑄 can be interpreted as □(𝑃 ↔ 𝑄). Here, ⇒ means strongly implies and ⇔
means strongly equivalent.

3.2 Safety and Security Interplay

Interplay within Mission Layer. Consider a use case scenario where collision avoidance
is the high-level mission of the CDV. The manual triggering of brakes to avoid the colli-
sion situation may hinder the denial of manual operation access to the operator in cases
where safety is prioritized over security.



6 M. Quamara et al.

Table 1. Excerpt of Mapping: Three-layered conceptual model ↦ Formal syntax.
Conceptual

element
Formal syntax

System S := ({M𝑖}, Environment), 𝑖 ∈ {1…ℕ}, Environment ∈ {People, Asset}
Mission M𝑖 := ({Op𝑗}, 𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑎𝑙𝑆𝑖𝑡𝑢𝑎𝑡𝑖𝑜𝑛, ℎ𝑎𝑧𝑎𝑟𝑑𝑜𝑢𝑠𝐸𝑣𝑒𝑛𝑡, 𝑠𝑒𝑐𝑢𝑟𝑖𝑡𝑦𝐼𝑛𝑐𝑖𝑑𝑒𝑛𝑡, 𝑜𝑣𝑒𝑟𝑎𝑙𝑙𝐺𝑜𝑎𝑙), 𝑖, 𝑗 ∈ {1…ℕ}

Operation Op𝑗 := (𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝐼𝑛𝑝𝑢𝑡, 𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑂𝑢𝑡𝑝𝑢𝑡, 𝑝𝑟𝑒𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛, 𝑝𝑜𝑠𝑡𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛, 𝑒𝑛𝑣𝑖𝑟𝑜𝑛𝑚𝑒𝑛𝑡𝑇 𝑟𝑖𝑔𝑔𝑒𝑟𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛,
𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛𝑂𝑓𝐸𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛, 𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛𝑇 𝑦𝑝𝑒), 𝑗 ∈ {1…ℕ}, 𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛𝑇 𝑦𝑝𝑒 ∈ {𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛, 𝑃𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟, 𝑉 𝑎𝑙𝑢𝑒}

Function
F𝑘 := (𝑡𝑦𝑝𝑒, 𝑝𝑟𝑒𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛, 𝑡𝑟𝑖𝑔𝑔𝑒𝑟𝑇 𝑦𝑝𝑒, 𝑐𝑎𝑙𝑙𝑒𝑟, 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛𝑎𝑙𝐼𝑛𝑡𝑒𝑟𝑓𝑎𝑐𝑒𝑠, Information), 𝑡𝑦𝑝𝑒 ∈ {𝑃ℎ𝑦𝑠𝑖𝑐𝑎𝑙,
𝐿𝑜𝑔𝑖𝑐𝑎𝑙}, 𝑡𝑟𝑖𝑔𝑔𝑒𝑟𝑇 𝑦𝑝𝑒 ∈ {𝑀𝑎𝑛𝑢𝑎𝑙, 𝐶𝑜𝑛𝑡𝑟𝑜𝑙𝑆𝑖𝑔𝑛𝑎𝑙, 𝑇 𝑒𝑚𝑝𝑜𝑟𝑎𝑙𝐶𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡}, TemporalConstraint ∈
{Duration, TriggerTime}, 𝑐𝑎𝑙𝑙𝑒𝑟 ∈ {Operator, F𝑙, TemporalConstraint}, 𝑘, 𝑙 ∈ {1…ℕ}

Information Information ∈ {FunctionalInput (or I𝑘), FunctionalOutput (or O𝑘)}, 𝑘 ∈ {1…ℕ}

InformationFlow InformationFlow := ({(O𝑖, I𝑗) Δ
= (F𝑖, F𝑗)} | FunctionalOutput[F𝑖] = O𝑖, FunctionalInput[F𝑗] = I𝑗), 𝑖, 𝑗 ∈

{1…ℕ}

FunctionalPath FP := (F1,…,F𝑘) | ∀(F𝑘, F𝑘+1), ∃ (O𝑘, I𝑘+1) ∈ {(O𝑖, I𝑗)}, 𝑖, 𝑗, 𝑘 ∈ {1…ℕ}

Component C𝑚:= ({P𝑛}, 𝑡𝑦𝑝𝑒, 𝑓𝑎𝑖𝑙𝑢𝑟𝑒𝑅𝑎𝑡𝑒, 𝑔𝑖𝑣𝑒𝑛𝑇 𝑖𝑚𝑒), 𝑚, 𝑛 ∈ {1…ℕ}, 𝑡𝑦𝑝𝑒 ∈ {𝐴𝑡𝑜𝑚𝑖𝑐, 𝐶𝑜𝑚𝑝𝑜𝑠𝑖𝑡𝑒}

Port P𝑛:= (𝑘𝑖𝑛𝑑), 𝑛 ∈ {1…ℕ}, 𝑘𝑖𝑛𝑑 ∈ {𝐼𝑛𝑝𝑢𝑡, 𝑂𝑢𝑡𝑝𝑢𝑡}

Connector Conn:= (𝑐𝑜𝑛𝑛𝑇 𝑦𝑝𝑒, P𝑛, P𝑜, CommunicationStyle), 𝑐𝑜𝑛𝑛𝑇 𝑦𝑝𝑒 ∈ {𝐵𝑢𝑠, 𝑃 𝑖𝑝𝑒, 𝐶ℎ𝑎𝑛𝑛𝑒𝑙}, 𝑛, 𝑜 ∈ {1…ℕ}

In such cases, conflicts between safety (namely operational availability) and security
(namely system accessibility) objectives can be identified by analyzing the predicates.
More concretely, for any states in which all post-conditions are not satisfied simultane-
ously. For example, consider the following predicate at the mission layer specification,
where Op1:= braking and Op2:= access provisioning, respectively denote the safety and
security-critical operations performed by the CDV for the accomplishment of the mis-
sion M1: collision avoidance:

𝑎𝑐𝑐𝑜𝑚𝑝𝑙𝑖𝑠ℎ𝑒𝑑𝑇ℎ𝑟𝑜𝑢𝑔ℎ[M1, Op1, Op2] ⇒ (𝑜𝑣𝑒𝑟𝑎𝑙𝑙𝐺𝑜𝑎𝑙[M1] ⇔
(¬𝑝𝑜𝑠𝑡𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛[Op1] ∨¬𝑝𝑜𝑠𝑡𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛[Op2]))

Using the semantics defined in Section 3.1, the above predicate is specified as:
□(𝑎𝑐𝑐𝑜𝑚𝑝𝑙𝑖𝑠ℎ𝑒𝑑𝑇ℎ𝑟𝑜𝑢𝑔ℎ[M1, Op1, Op2] → ◊(𝑜𝑣𝑒𝑟𝑎𝑙𝑙𝐺𝑜𝑎𝑙[M1] ↔

(¬𝑝𝑜𝑠𝑡𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛[Op1] ∨¬𝑝𝑜𝑠𝑡𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛[Op2])))
Thus, no simultaneous fulfillment of post-conditions belonging to Op1 and Op2 after

mission accomplishment shall indicate, in particular, a conflict between the safety and
security objectives of the SUD.
Interplay across Mission and Functional Layers. Consider a situation when the trig-
ger condition of an operation becomes true within the duration of another operation’s
execution. For example, the premature deployment of the vehicle’s airbag during brak-
ing, which is still in progress without effective crash condition. In such cases, the conflict
may occur at the level of high-level mission specification since the two missions’ overall
goals may have conflicting requirements.



Formal Analysis Approach for Multi-layered System Safety and Security Co-engineering 7

Table 2. Excerpt of Mapping: Properties’ metamodel ↦ Formal syntax.

Conceptual element Formal syntax

OperationalAvailability (𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑎𝑙𝑆𝑖𝑡𝑢𝑎𝑡𝑖𝑜𝑛[M𝑖] ∧ ℎ𝑎𝑧𝑎𝑟𝑑𝑜𝑢𝑠𝐸𝑣𝑒𝑛𝑡[M𝑖]) ⇒ 𝑎𝑐𝑐𝑜𝑚𝑝𝑙𝑖𝑠ℎ𝑒𝑑𝑇ℎ𝑟𝑜𝑢𝑔ℎ[M𝑖, Op𝑗]

FunctionalPathAvailability

a) FunctionalIntegrity(FP):
FunctionalPrecedence(F𝑘, F𝑘+1), ∀𝑘 ∈ {1...ℕ-1}: F𝑗 ⇒ F𝑖

InformationEquivalence(O𝑘, I𝑘+1), ∀𝑘 ∈ {1...ℕ-1}: I𝑗 ⇔ O𝑖

b) ExecutionTimeliness(FP, Θ): 𝒸𝒸(F1, F1, 𝑡1, I1) ⇒Θ 𝒸𝒸(F𝑘−1, F𝑘, 𝑡2𝑘, O𝑘)

CPCAvailability

a) ComponentAvailability(C𝑖, 𝜆𝑖, 𝑡) b) ConnectorAvailability(Conn, 𝜆𝐶𝑜𝑛𝑛, 𝑡)
c) EventualMessageDelivery(C𝑖, C𝑗 , 𝑚): 𝑠𝑒𝑛𝑑(C𝑖, 𝑚) ⇒ 𝑟𝑒𝑐𝑒𝑖𝑣𝑒(C𝑗 , 𝑚)
(or BoundedMessageDelivery(C𝑖, C𝑗 , 𝑚, Δ)): 𝑠𝑒𝑛𝑑(C𝑖, 𝑚) ⇒Δ 𝑟𝑒𝑐𝑒𝑖𝑣𝑒(C𝑗 , 𝑚)
d) Logical conformity of component architecture with functional architecture

SystemAccessibility 𝑝𝑟𝑖𝑣𝑖𝑙𝑒𝑔𝑒[Operator, S, Op𝑗] ⇒ 𝑎𝑐𝑐𝑒𝑠𝑠[Operator, Op𝑗]

In such cases, conflicts between objectives can be identified during the operations’
(i.e., Op𝑗) realization to accomplish different missions. Hence, for the overall system
model at the mission layer, the following predicate is violated:

𝑒𝑛𝑣𝑖𝑟𝑜𝑛𝑚𝑒𝑛𝑡𝑇 𝑟𝑖𝑔𝑔𝑒𝑟𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛[Op𝑗] ⇒ 𝑝𝑟𝑒𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛[Op𝑗]
Using the semantics provided in our context, this predicate is specified as:

□(𝑒𝑛𝑣𝑖𝑟𝑜𝑛𝑚𝑒𝑛𝑡𝑇 𝑟𝑖𝑔𝑔𝑒𝑟𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛[Op𝑗] → ⧫(𝑝𝑟𝑒𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛[Op𝑗]))
To illustrate the interplay with the functional layer, we consider a functional path

comprising a set of functions (i.e., F𝑘) and the link realizedBy between the operations
and the functions. Herein, the assurance of functional integrity for the functional path
realizing a sequence of operations is assumed. However, the delay introduced by any
constituent function during execution may violate functional path freshness, influencing
the timely realization of the operations. Hence, the above mission-layer predicate can be
analyzed with the details offered by the functional layer using the following predicate:

(𝑡𝑟𝑖𝑔𝑔𝑒𝑟𝑇 𝑖𝑚𝑒[F1] > 0 ∧ 𝑡𝑟𝑖𝑔𝑔𝑒𝑟[F2]) ⇒ (𝑡𝑟𝑖𝑔𝑔𝑒𝑟𝑇 𝑖𝑚𝑒[F1] + 𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛 <
𝑡𝑟𝑖𝑔𝑔𝑒𝑟𝑇 𝑖𝑚𝑒[F2])

Using the semantics provided in our context, this predicate can be specified as:
□((𝑡𝑟𝑖𝑔𝑔𝑒𝑟𝑇 𝑖𝑚𝑒[F1] > 0 ∧ 𝑡𝑟𝑖𝑔𝑔𝑒𝑟[F2]) → (𝑡𝑟𝑖𝑔𝑔𝑒𝑟𝑇 𝑖𝑚𝑒[F1] + 𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛 <

𝑡𝑟𝑖𝑔𝑔𝑒𝑟𝑇 𝑖𝑚𝑒[F2]))
Interplay within Component Layer. Consider a scenario comprising three system com-
ponents, viz. C1:= processing unit, C2:= multi-function control unit, and C3:= brake
actuator, engaged in transmitting a message 𝑚:= braking command, from C1 to C3 via
C2, i.e., C1 ⟶𝑚 C2 and C2 ⟶𝑚 C3. Herein, we consider eventual message delivery,
influencing CPC Availability, and Non-duplication, influencing message freshness, as
the safety and security objectives to be respectively satisfied. We assume that all these



8 M. Quamara et al.

components are legitimate. However, if C2 misbehaves and becomes faulty, it may tam-
per with 𝑚 to 𝑚′, leading to the following flow: C1 ⟶𝑚 C2 and C2 ⟶𝑚′ C3.

Thus, even after tampering, the non-duplication objective is satisfied as none of the
recipients (viz. C2 and C3) undergo the repeated transmission of the message. However,
the eventual message delivery for𝑚 is not satisfied as C3, the intended recipient, does not
receive the original message𝑚. Hence, in such scenarios, the safety and security analysis
should not be conducted as standalone but integrated for the assurance of corresponding
objectives, especially across the full chain of transmission.

Hence, in our context, for the overall system model targeting the component layer
details, the aforementioned aspect can be analyzed via the following predicate:

𝑠𝑒𝑛𝑑(C𝑖, 𝑚) ⇒ 𝑟𝑒𝑐𝑒𝑖𝑣𝑒(C𝑗 , 𝑚) ∧¬(𝑟𝑒𝑐𝑒𝑖𝑣𝑒(C𝑖, 𝑚))
𝑠𝑒𝑛𝑑(C𝑖, 𝑚) ⇒ 𝑟𝑒𝑐𝑒𝑖𝑣𝑒(C𝑗 , 𝑚)

Using the semantics provided before, the predicate above can be specified as follows:
□(𝑠𝑒𝑛𝑑(C𝑖, 𝑚) → ◊(𝑟𝑒𝑐𝑒𝑖𝑣𝑒(C𝑗 , 𝑚)) ∧¬(⧫(𝑟𝑒𝑐𝑒𝑖𝑣𝑒(C𝑖, 𝑚))))
□(𝑠𝑒𝑛𝑑(C𝑖, 𝑚) → ◊(𝑟𝑒𝑐𝑒𝑖𝑣𝑒(C𝑗 , 𝑚)) ∧¬(⧫(𝑟𝑒𝑐𝑒𝑖𝑣𝑒(C𝑗 , 𝑚))))

The first predicate is not expected to be satisfied; otherwise, the message sent by
C2 to C3 is not the same as the one sent by C1 to C2. The second predicate should be
satisfied whenever the uniqueness of the message is expected to occur.

4 Formal Specification and Analysis in Event-B

In this section, we consider interpreting the system and properties’ meta-models and
logical specification in the previous section into Event-B [1].
Structural Elements. The multi-layered system model is represented in Event-B via a
set of contexts and machines refined within each layer. The contexts are used for the
formal declaration of conceptual model elements, both structural and properties, along
with the utility constants for generic representation of the elements. Herein, the key
elements like Mission, Function, Component, and enumerations are defined as Event-B
sets, while their attributes are represented as constants. Likewise, axioms capture the
relationship between the elements and their attributes. To model the relation between
a set 𝕊 (e.g., Environment) and its sub-sets s1, s2,…, s𝑛 represented as constants (e.g.,
People, Asset), we use the 𝑝𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛 operator, i.e., 𝑝𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛(𝕊, s1, s2,…, s𝑛). An excerpt
of this interpretation is depicted in Listing 1.1.
CONTEXT C1MissionView , C2FunctionView , C3ComponentView // for each layer
SETS System , Mission , Environment , Operation , Function , Information ,

TriggerType , Component , Port , Connector , CommunicationStyle ,
ConnectorType

CONSTANTS People , Asset , Manual , ControlSignal , TemporalConstraint ,
FunctionalPath , funcInfo , MsgPassing , Bus , Pipe , Channel , uses , connects

AXIOMS
partition(Environment , People , Asset) // Mission layer



Formal Analysis Approach for Multi-layered System Safety and Security Co-engineering 9

partition(TriggerType , Manual , ControlSignal , TemporalConstraint) //
Functional layer

FunctionalPath ∈ Function → Function
funcInfo ∈ Function ←←→→ Information
funcInfo∼ ∈ Information ⇸ Function
partition(CommunicationStyle , MsgPassing) // Component layer
partition(ConnectorType , Bus , Pipe , Channel)
uses ∈ Component → Port
uses∼ ∈ Port ⇸ Component
connects ∈ Connector → Port
connects∼ ∈ Port ⇸ Connector

Listing 1.1. Interpretation excerpt: Three-layered system model in Event-B.

Furthermore, machine specifications formally capture the desired behavioral aspects
of the system as model invariants. The abstract machine specification provides an initial
setup for the Event-B model that can be refined with concrete details. A machine sees a
context to use its axioms in conjunction as hypotheses in the mathematical proofs. We
define events in the machines targeting each layer to capture the state transitions asso-
ciated with the application of operations, function execution, and CPC-based message
transmission. Listing 1.2 depicts an excerpt of this interpretation for the mission layer.
MACHINE M1MissionView
SEES C4MissionUtility // Context for utility constants , e.g., s1, m1 , o1
VARIABLES operationalSituation , hazardousEvent , overallGoal ,

environmentTriggerCondition , achieves , counter , accomplishedThrough ,
interactsWith

EVENTS HazardousEventPresence
WHEN

operationalSituation = {m1 ↦ TRUE}
hazardousEvent = {m1 ↦ FALSE}
overallGoal = {m1 ↦ FALSE}
environmentTriggerCondition = {o1 ↦ FALSE}
achieves = {s1 ↦ m1}
counter > 0 // An integer counter for capturing timeout

THEN
hazardousEvent ≔ {m1 ↦ TRUE}
environmentTriggerCondition ≔ {o1 ↦ TRUE}
accomplishedThrough ≔ {m1 ↦ o1}
interactsWith ≔ {s1 ↦ a1}
counter ≔ counter − 1

Listing 1.2. Excerpt of an Event-B machine at the mission layer specification.

Properties Specification. We define the safety and security objectives presented in Sec-
tion 3.1 in Event-B as model invariants to verify that the defined events satisfy them dur-
ing system model verification at different layers. Herein, the invariants are represented
as the combination of state variables (i.e., the concept attributes) and logic symbols,
i.e., propositions (e.g., ⇒, ⇔) and predicates (e.g., ∀, ∃) between them. The guards re-
strict the values of the variables as enabling conditions for the events. An excerpt of the
Event-B interpretation for the Operational Availability objective is given in Listing 1.3.
INVARIANTS
∀m.∃o.m∈ Mission ∧ o ∈ Operation ∧ (operationalSituation [{m}] = {TRUE} ∧

hazardousEvent [{m}] = {TRUE}) ⇒ accomplishedThrough [{m}] = {o}

Listing 1.3. Operational availability objective as Event-B invariant.



10 M. Quamara et al.

Of particular interest here, objectives like Functional Path Availability are defined
as extensions of basic properties like Functional Precedence, Information Equivalence,
and Execution Timeliness. Then they are captured in Event-B via invariant decomposi-
tion, where each basic property is associated individually with an invariant.
Properties Analysis. To reason and verify the invariants, we rely upon mathematical
proofs comprising a set of rules. These rules are based upon the convention of Proof-
Obligations (POs) supported by the Rodin platform. A PO is generated for every invari-
ant that can be affected by an event, i.e., the invariant contains variables that an event
can change. The hypothesis for these POs relies upon the satisfaction of all the invari-
ants (including behavioral, safety and security objectives, and gluing) and the validity of
the guards restricting the values of the variables before the triggering of events in every
reachable state of the system. The correctness of the instantiated model is dependent on
ninety-one POs4 that are related to mission accomplishment through the execution of
the operation, function, and CPC-centric events.

To illustrate the analysis, we present the extraction of the PO for the satisfaction of
the operational availability objective as an invariant, relying upon two invariants INV1
and INV2, and a theorem THM, as follows:
1. MissionAllocation (INV1): ∀m ∈ Mission, ∃o ∈ Operation ∣ ((operationalSitua-

tion[m] ∧ hazardousEvent[m]) ⇔ (preCondition[o] ∧ environmentTriggerCondi-
tion[o])) ⇒ accomplishedThrough[m] = o; holds for all the events.

2. MissionConsistency (INV2): ∀m ∈ Mission, (operationalSituation[m] ∧¬ haz-
ardousEvent[m]) ⇒ ¬ overallGoal[m]; holds for all the events.

3. MissionAccomplishment (THM): ∀m ∈ Mission, o ∈ Operation ∣ (accom-
plishedThrough[m] = o) ⇒ (postCondition[o] ⇔ overallGoal[m]); a derived axiom
that relies upon INV1 and INV2.
Likewise, the properties’ conflict identification predicate presented in Section 3.2,

for instance, at the mission layer, is presented in the Listing 1.4 as an Event-B invariant.
INVARIANTS
∀m.∃o1.∃o2.m ∈ Mission ∧ o1 ∈ Operation ∧ o2 ∈ Operation ∧ accomplishedThrough

[{m}] = {o1, o2} ⇒ (overallGoal [{m}] = {TRUE} ∧ (¬postCondition [{o1}] =
{TRUE} ∨¬postCondition [{o2}] = {TRUE}))

Listing 1.4. Mission layer properties conflict identification predicate as Event-B invariant.
For the safety and security missions SAFE_M and SEC_M, respectively, in the use

case (see Section 2), the PO corresponding to the invariant in Listing 1.4 is discharged,
depicting a potential conflict between braking and access provisioning operations. The
reason can be attributed to the lack of privilege to the operator to realize the braking
operation manually (i.e., Operator ↦ CDV1 ↦ Braking ∉ privilege).

5 Related Work and Positioning

So far, numerous solutions have been proposed in the literature to address safety and se-
curity concerns during the SE process (e.g., [17]). However, the challenge is reconciling

4 Distribution of POs: Variable initialization (32), System specification (48), Safety and security
invariants (11).



Formal Analysis Approach for Multi-layered System Safety and Security Co-engineering 11

interdisciplinary knowledge, domain-oriented goals, and standalone practices towards
effective co-engineering. This section dwells on some related works and positions our
approach, emphasizing system conceptual modeling frameworks, design and analysis
methods, and tooled-formal methods.

The mission is defined as a context-oriented and multi-paradigmatic concept in [13]
(e.g., goal and object-oriented) that facilitates entanglement of system functionality with
architectural design process. In light of this, the authors in [6] presented a mission-based
process for wave development cycle, thus resulting in less generic than our approach.
Nonetheless, these works cover only the requirement engineering phase. To address
high-level functional specification and application of safety-oriented practices during
critical systems’ design, Design Space Exploration (DSE) capabilities are used in [18].
Component-based design techniques and frameworks are proposed concerning safety
[14] and security [5] requirements in automotive CPSs applications by modeling and
analyzing real-time component interactions. Our work is aligned with these X-by-design
approaches and aims, additionally, to provide generic and specializable means to inte-
grate safety and security aspects irrespective of the design flow (top-down or bottom-up).

Tooled-formal methods, when used in the engineering process of safety- and
security-critical systems, increase confidence in the aspects, e.g., properties, defined
by the respective standards [11,12]. Several works demonstrate the use of the Event-B
formal method for rigorous analysis of safety [10] and security [17] concerns. However,
these works are constrained by the granularity level and concepts chosen for modeling
what imposes requirements to be specified at the same level. The independent formal
interpretation of the layers facilitates engineers to use them in standalone or coupled
mode, adequate for granularity and analysis needs. Being technology-agnostic, the pro-
posed approach provides further flexibility regarding the choice of specification/model-
ing languages and Validation and Verification (V&V) tool support.

6 Conclusion and Perspectives

We have proposed a joint design and analysis formal approach for integrated specifi-
cation, modeling, and verification of safety and security properties. In this work, we
mainly focused on the formalization aspects to address the ambiguities associated with
the properties’ specification and their interpretation w.r.t. the system design to conduct
provable, sound analyses. To this end, the approach leveraged multi-layered system con-
ceptual modeling, targeting high-level mission, functional, and detailed CPC-related
concepts and their relationships. Indeed, the incorporated notions include properties’
categories and signatures, a basis for joint safety and security analyses. Subsequently,
the logical specification of the conceptual model was described using set theories, FOL,
and Modal Logic as technology-independent formalisms. Based on this formalization,
a model interpretation into Event-B was defined to conduct automated verification of
safety and security objectives’ signatures. However, being aware of the possibility of
more complex configurations, like use cases calling upon a large set of objectives (e.g.,
those within the Freshness category), we plan to explore and analyze them to increase
the approach’s confidence. We are also interested in investigating the negative view of
the properties where fault/failure/hazard and threat models are introduced.



12 M. Quamara et al.

References

1. Abrial, J.R., et al.: Rodin: an open toolset for modelling and reasoning in Event-B. Interna-
tional journal on software tools for technology transfer 12(6), 447–466 (2010)

2. Babel, K., Cheval, V., Kremer, S.: On the semantics of communications when verifying equiv-
alence properties. Journal of Computer Security 28(1), 71–127 (2020)

3. Bau, J., Mitchell, J.C.: Security modeling and analysis. IEEE Security & Privacy 9(3), 18–25
(2011)

4. Bull, R., Segerberg, K.: Basic modal logic. In: Handbook of philosophical logic, pp. 1–88.
Springer (1984)

5. Chattopadhyay, A., Lam, K.Y., Tavva, Y.: Autonomous vehicle: Security by design. IEEE
Transactions on Intelligent Transportation Systems (2020)

6. Cherfa, I., Belloir, N., Sadou, S., Fleurquin, R., Bennouar, D.: Systems of systems: From
mission definition to architecture description. Systems Engineering 22(6), 437–454 (2019)

7. De Miguel, M.A., Briones, J.F., Silva, J.P., Alonso, A.: Integration of safety analysis in model-
driven software development. IET software 2(3), 260–280 (2008)

8. Dwyer, M.B., Avrunin, G.S., Corbett, J.C.: Patterns in property specifications for finite-state
verification. In: Proceedings of the 21st international conference on Software engineering.
pp. 411–420 (1999)

9. Fuentes-Fernández, L., Vallecillo-Moreno, A.: An introduction to UML profiles. UML and
Model Engineering 2(6-13), 72 (2004)

10. Hong, Z., Lili, X.: Application of software safety analysis using event-b. In: 2013 IEEE Sev-
enth International Conference on Software Security and Reliability Companion. pp. 137–144.
IEEE (2013)

11. ISO 26262-1:2018 Road vehicles — Functional safety. https://www.iso.org/
standard/43464.html (2018)

12. ISO/IEC 27000:2018 Information technology — Security techniques — Information security
management systems. https://www.iso.org/standard/73906.html (2018)

13. Letier, E., Van Lamsweerde, A.: Deriving operational software specifications from system
goals. ACM SIGSOFT Software Engineering Notes 27(6), 119–128 (2002)

14. Masrur, A., Kit, M., Matěna, V., Bureš, T., Hardt, W.: Component-based design of cyber-
physical applications with safety-critical requirements. Microprocessors and Microsystems
42, 70–86 (2016)

15. Pedroza, G., Apvrille, L., Knorreck, D.: AVATAR: A SysML environment for the formal
verification of safety and security properties. In: 2011 11th Annual International Conference
on New Technologies of Distributed Systems. pp. 1–10. IEEE (2011)

16. Rodin: Rodin Platform (2021), https://wiki.event-b.org/
17. Vistbakka, I., Troubitsyna, E.: Towards a formal approach to analysing security of safety-

critical systems. In: 2018 14th European Dependable Computing Conference (EDCC). pp.
182–189. IEEE (2018)

18. Wan, J., Canedo, A., Al Faruque, M.A.: Cyber–physical codesign at the functional level for
multidomain automotive systems. IEEE Systems Journal 11(4), 2949–2959 (2015)

https://www.iso.org/standard/43464.html
https://www.iso.org/standard/43464.html
https://www.iso.org/standard/73906.html

	Formal Analysis Approach for Multi-layered System Safety and Security Co-engineering

