Megha Quamara
email: megha.quamara@cea.fr

Gabriel Pedroza
email: gabriel.pedroza@cea.fr

Brahim Hamid
email: brahim.hamid@irit.fr

Formal analysis

Keywords: Safety, Security, Co-engineering, Design, Analysis, Model-Driven Engineering, Formal Methods

whether they are published or not. The documents may come

Introduction

Modern engineered systems, like Cyber-Physical Systems (CPSs), are becoming increasingly complex due to the integration of a variety of technology, highly networked and with heterogeneous usages and contexts. Despite their enormous potential, deploying such systems in critical applications entails the integration of safety and security concerns in light of their mutual influence. Nevertheless, a joint analysis towards harmonizing safety and security expertise is technically challenging. Particularly, in the design phase, the requirements are broken down from the high-level teleological representations to the detailed technical architecture of the System Under Design (SUD). However, this enrichment process is often complex and lacks guidance for consistent semantic transfer and integration of safety and security concerns/requirements. Besides, conducting design-level properties' 3 verification to increase design trustworthiness, can be error-prone due to ambiguous properties' specifications or biases introduced by nonsavvy engineer's interpretation. Moreover, existing System Engineering (SE) approaches exhibit standalone safety and security analyses in many cases [START_REF] De Miguel | Integration of safety analysis in modeldriven software development[END_REF][START_REF] Chattopadhyay | Autonomous vehicle: Security by design[END_REF]. As evident in several safety-critical domains (e.g., automotive), an entanglement exists between safety constraints (e.g., messages' latency) and security exigencies (e.g., encryption mechanisms' overhead), and their mutual assurance needs to be verified [START_REF] Pedroza | AVATAR: A SysML environment for the formal verification of safety and security properties[END_REF]. In addition, we observe a lack of automated tool support for integrated analysis of the system, safety, and security properties; the disciplines of software architecture, security, and safety engineering are still to be better interfaced regarding their methods and frameworks.

To address the problematics above, we propose a joint design and analysis approach for three-layered system safety and security co-engineering. The work in this paper mainly focuses on (1) the vertical integration of notions for safety and security interplay across different modeling views of the system and (2) emphasizing the formal aspects for properties' representation, verification, and conflict identification. The approach relies on conceptual modeling using existing modeling languages (e.g., Unified Modeling Language (UML) [START_REF] Fuentes-Fernández | An introduction to UML profiles[END_REF]) to describe high-level safety and security objectives, i.e., the positive features or properties, specialize-able across different system views in the context of a three-layered system representation: mission, functional, and component. Besides the typical system's structural and behavioral concerns' analysis [START_REF] Bau | Security modeling and analysis[END_REF], we propose to impose a defined set of safety and security objectives' signatures at each layer to check for design conformity and avoid potential conflicts. As a prerequisite, we define interpretation rules for mapping the modeling concepts to their formal-based counterparts relying upon mathematical logic, namely First-Order Logic (FOL) and Modal Logic [START_REF] Bull | Basic modal logic[END_REF]. Moreover, we use Event-B [START_REF] Abrial | Rodin: an open toolset for modelling and reasoning in Event-B[END_REF], to obtain a more concrete specification of the system and property conceptual model and the accompanying formal-based tool, namely Rodin [START_REF] Rodin | Rodin Platform[END_REF], to mechanize properties verification and spot inconsistencies at early modeling phases. The approach is illustrated via a Connected Driving Vehicles (CDVs) use case.

The rest of the paper is organized as follows. Section 2 describes the conceptual modeling of the system and safety and security properties. Section 3 presents the formalization of the model using FOL and Modal Logic. Section 4 describes the interpretation of the formalized model into Event-B for supporting properties analysis. Section 5 reviews related works. Finally, Section 6 concludes this paper, with perspective work directions.

Multi-layered System Conceptual Model

A conceptual model of a multi-layered system should capture the main concepts and relationships for describing the system in the context of different standards and domainspecific practices. We use UML Class diagrams to describe the conceptual model. Thus, concepts are represented by Classes, concept attributes by Class attributes, and relationships among concepts by links (e.g., association). The Package notation is used to make groupings of the concepts. An excerpt of the graphical representation of the concepts and relationships is given in Fig. 1. In the rest of this section, we outline the different packages. Special attention is given to the concepts that show the essential features of this work. To facilitate readability and comprehension, the attributes of the different concepts and some of the links among the concepts are also described. Property, for safety and security aspects capturing and analysis. The Mission package contains concepts for offering system's teleological view, such as the System (e.g., CDV), Mission (system's high-level strategic concerns, e.g., collision avoidance [SAFE_M], ensure authorized actions [SEC_M]), Operation (for mission accomplishment, e.g., braking, access provisioning), Environment (comprising People or Assets), etc. The Functional package contains all the concepts correlated with the system's functionality, such as the Function (system's elementary tasks or services, e.g., perception-or actuation-related), FunctionalPath (sequence of functions to realize the operation via InformationFlows), etc. The Component package contains all the concepts for the system's detailed technical representation, such as the Component (self-contained computational elements/physical entities, e.g., sensor), Ports (for data exchange), Connectors (channels for establishing communication), etc.

Finally, the Property package (see Fig. 2) contains all the concepts for safety and security properties capturing and analysis, such as the PropertyCategoryLibrary (reusable model libraries for defining high-level properties of the system, function, component, etc.) and PropertyCategory (classification of safety and security objectives in a given context). The libraries are subsequently used as external models for capturing the objectives as signatures. We extend some properties (e.g., Precedence [START_REF] Dwyer | Patterns in property specifications for finite-state verification[END_REF] and Equivalence [START_REF] Babel | On the semantics of communications when verifying equivalence properties[END_REF]) from the literature by adapting them to the context of our approach. We call these properties the basic ones since they play an elementary role in defining specific safety and security objectives (e.g., Functional Integrity) associated with the target SUD. Likewise, potential inter-or intra-relationships between safety and security objectives may arise within or across the layers. Thus, we aim to establish an alignment via links between objectives to support further analysis, including safety and security interplay. We define the association (e.g., dependsUpon, conflictsWith) between these objectives. For example, operational availability (mission layer) depends upon functional path availability (functional layer), system accessibility (mission layer) conflicts with operational availability (mission layer), etc.

Logical Specification

This section presents the formalization of the multi-layered system conceptual model defined in the previous section for rigorous specification and analysis of safety and security objectives. We use FOL and Modal Logic [START_REF] Bull | Basic modal logic[END_REF] as technology-independent formalisms to incorporate formal syntaxes for the system model and properties belonging to the defined categories. They play as a pivot language that aims to facilitate model interpretation and improve flexibility, e.g., to delegate the properties' analysis to other tooled-formal languages and frameworks. In our context, the analysis has been mechanized, thanks to the Rodin framework, as presented in the next section.

Formal Syntax for Multi-layered System Specification and Properties

The meta-model in Fig. 1 is attached with a syntax, preserving the associations and types in the UML models (see Table 1). The formal syntax and logic defining some properties' signatures across the layered models are introduced in Table 2 and are discussed below:

-Operational Availability: A system S in a certain operational situation should allow for the realization of safety-critical operation(s) Op 𝑗 , whenever a hazardous event is detected. -Functional Path Availability: A functional path FP := (F 1 ,..., F 𝑘), 𝑘 ∈ ℕ satisfies functional path availability denoted by FunctionalPathAvailability(FP) iff:

• There is a preservation of the information flow between orderly execution of functions constituting the functional path, i.e., FunctionalIntegrity(FP), and -System Accessibility: A system S must allow and limit the access of securitycritical operation(s) Op 𝑗 to only authorized entities (e.g., Operator).

Here, we integrate the formal syntaxes presented in Tables 1 and2 to define formal semantics for the layered elements. The FOL-based formalism of safety and security objectives' specifications are extended using a range of modalities, including • (next), ◊ (eventually), ◊ ≤Θ (bounded eventually, where Θ denotes the threshold or bounded gap between two events/occurrences/actions etc.), and □ (always) for capturing the notion of future [START_REF] Bull | Basic modal logic[END_REF]. Likewise, •, ⧫, ⧫ ≤Θ , and ■, respectively denote their past counterparts. These are defined on top of standard FOL operators, including ∧ (conjunction), ∨ (disjunction), ¬ (negation), → (implication), and ↔ (equivalence). For example, predicates of the form 𝑃 ⇒ 𝑄 can be interpreted as □(𝑃 → ◊𝑄). Similarly, predicates of the form 𝑃 ⇔ 𝑄 can be interpreted as □(𝑃 ↔ 𝑄). Here, ⇒ means strongly implies and ⇔ means strongly equivalent.

Safety and Security Interplay

Interplay within Mission Layer. Consider a use case scenario where collision avoidance is the high-level mission of the CDV. The manual triggering of brakes to avoid the collision situation may hinder the denial of manual operation access to the operator in cases where safety is prioritized over security. In such cases, conflicts between safety (namely operational availability) and security (namely system accessibility) objectives can be identified by analyzing the predicates. More concretely, for any states in which all post-conditions are not satisfied simultaneously. For example, consider the following predicate at the mission layer specification, where Op 1 := braking and Op 2 := access provisioning, respectively denote the safety and security-critical operations performed by the CDV for the accomplishment of the mission M 1 : collision avoidance:

InformationFlow InformationFlow := ({(O 𝑖 , I 𝑗) Δ = (F 𝑖 , F 𝑗)} | FunctionalOutput[F 𝑖] = O 𝑖 , FunctionalInput[F 𝑗] = I 𝑗), 𝑖, 𝑗 ∈ {1… ℕ} FunctionalPath FP := (F 1 ,…,F 𝑘) | ∀(F 𝑘 , F 𝑘+1), ∃ (O 𝑘 , I 𝑘+1) ∈ {(O 𝑖 , I 𝑗)},
𝑎𝑐𝑐𝑜𝑚𝑝𝑙𝑖𝑠ℎ𝑒𝑑𝑇 ℎ𝑟𝑜𝑢𝑔ℎ[M 1 , Op 1 , Op 2] ⇒ (𝑜𝑣𝑒𝑟𝑎𝑙𝑙𝐺𝑜𝑎𝑙[M 1] ⇔ (¬𝑝𝑜𝑠𝑡𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛[Op 1] ∨¬𝑝𝑜𝑠𝑡𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛[Op 2]))
Using the semantics defined in Section 3.1, the above predicate is specified as:

□(𝑎𝑐𝑐𝑜𝑚𝑝𝑙𝑖𝑠ℎ𝑒𝑑𝑇 ℎ𝑟𝑜𝑢𝑔ℎ[M 1 , Op 1 , Op 2] → ◊(𝑜𝑣𝑒𝑟𝑎𝑙𝑙𝐺𝑜𝑎𝑙[M 1] ↔ (¬𝑝𝑜𝑠𝑡𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛[Op 1] ∨¬𝑝𝑜𝑠𝑡𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛[Op 2])))
Thus, no simultaneous fulfillment of post-conditions belonging to Op 1 and Op 2 after mission accomplishment shall indicate, in particular, a conflict between the safety and security objectives of the SUD.

Interplay across Mission and Functional Layers. Consider a situation when the trigger condition of an operation becomes true within the duration of another operation's execution. For example, the premature deployment of the vehicle's airbag during braking, which is still in progress without effective crash condition. In such cases, the conflict may occur at the level of high-level mission specification since the two missions' overall goals may have conflicting requirements. In such cases, conflicts between objectives can be identified during the operations' (i.e., Op 𝑗) realization to accomplish different missions. Hence, for the overall system model at the mission layer, the following predicate is violated:

𝑒𝑛𝑣𝑖𝑟𝑜𝑛𝑚𝑒𝑛𝑡𝑇 𝑟𝑖𝑔𝑔𝑒𝑟𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛[Op 𝑗] ⇒ 𝑝𝑟𝑒𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛[Op 𝑗]
Using the semantics provided in our context, this predicate is specified as:

□(𝑒𝑛𝑣𝑖𝑟𝑜𝑛𝑚𝑒𝑛𝑡𝑇 𝑟𝑖𝑔𝑔𝑒𝑟𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛[Op 𝑗] → ⧫(𝑝𝑟𝑒𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛[Op 𝑗]))
To illustrate the interplay with the functional layer, we consider a functional path comprising a set of functions (i.e., F 𝑘) and the link realizedBy between the operations and the functions. Herein, the assurance of functional integrity for the functional path realizing a sequence of operations is assumed. However, the delay introduced by any constituent function during execution may violate functional path freshness, influencing the timely realization of the operations. Hence, the above mission-layer predicate can be analyzed with the details offered by the functional layer using the following predicate:

(𝑡𝑟𝑖𝑔𝑔𝑒𝑟𝑇 𝑖𝑚𝑒[F 1] > 0 ∧ 𝑡𝑟𝑖𝑔𝑔𝑒𝑟[F 2]) ⇒ (𝑡𝑟𝑖𝑔𝑔𝑒𝑟𝑇 𝑖𝑚𝑒[F 1] + 𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛 < 𝑡𝑟𝑖𝑔𝑔𝑒𝑟𝑇 𝑖𝑚𝑒[F 2])
Using the semantics provided in our context, this predicate can be specified as:

□((𝑡𝑟𝑖𝑔𝑔𝑒𝑟𝑇 𝑖𝑚𝑒[F 1] > 0 ∧ 𝑡𝑟𝑖𝑔𝑔𝑒𝑟[F 2]) → (𝑡𝑟𝑖𝑔𝑔𝑒𝑟𝑇 𝑖𝑚𝑒[F 1] + 𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛 < 𝑡𝑟𝑖𝑔𝑔𝑒𝑟𝑇 𝑖𝑚𝑒[F 2]))
Interplay within Component Layer. Consider a scenario comprising three system components, viz. C 1 := processing unit, C 2 := multi-function control unit, and C 3 := brake actuator, engaged in transmitting a message 𝑚:= braking command, from C 1 to C 3 via C 2 , i.e., C 1 ⟶ 𝑚 C 2 and C 2 ⟶ 𝑚 C 3 . Herein, we consider eventual message delivery, influencing CPC Availability, and Non-duplication, influencing message freshness, as the safety and security objectives to be respectively satisfied. We assume that all these components are legitimate. However, if C 2 misbehaves and becomes faulty, it may tamper with 𝑚 to 𝑚 ′ , leading to the following flow: C 1 ⟶ 𝑚 C 2 and C 2 ⟶ 𝑚 ′ C 3 . Thus, even after tampering, the non-duplication objective is satisfied as none of the recipients (viz. C 2 and C 3) undergo the repeated transmission of the message. However, the eventual message delivery for 𝑚 is not satisfied as C 3 , the intended recipient, does not receive the original message 𝑚. Hence, in such scenarios, the safety and security analysis should not be conducted as standalone but integrated for the assurance of corresponding objectives, especially across the full chain of transmission.

Hence, in our context, for the overall system model targeting the component layer details, the aforementioned aspect can be analyzed via the following predicate:

𝑠𝑒𝑛𝑑(C 𝑖 , 𝑚) ⇒ 𝑟𝑒𝑐𝑒𝑖𝑣𝑒(C 𝑗 , 𝑚) ∧¬(𝑟𝑒𝑐𝑒𝑖𝑣𝑒(C 𝑖 , 𝑚)) 𝑠𝑒𝑛𝑑(C 𝑖 , 𝑚) ⇒ 𝑟𝑒𝑐𝑒𝑖𝑣𝑒(C 𝑗 , 𝑚)
Using the semantics provided before, the predicate above can be specified as follows:

□(𝑠𝑒𝑛𝑑(C 𝑖 , 𝑚) → ◊(𝑟𝑒𝑐𝑒𝑖𝑣𝑒(C 𝑗 , 𝑚)) ∧¬(⧫(𝑟𝑒𝑐𝑒𝑖𝑣𝑒(C 𝑖 , 𝑚)))) □(𝑠𝑒𝑛𝑑(C 𝑖 , 𝑚) → ◊(𝑟𝑒𝑐𝑒𝑖𝑣𝑒(C 𝑗 , 𝑚)) ∧¬(⧫(𝑟𝑒𝑐𝑒𝑖𝑣𝑒(C 𝑗 , 𝑚))))
The first predicate is not expected to be satisfied; otherwise, the message sent by C 2 to C 3 is not the same as the one sent by C 1 to C 2 . The second predicate should be satisfied whenever the uniqueness of the message is expected to occur.

Formal Specification and Analysis in Event-B

In this section, we consider interpreting the system and properties' meta-models and logical specification in the previous section into Event-B [START_REF] Abrial | Rodin: an open toolset for modelling and reasoning in Event-B[END_REF].

Structural Elements. The multi-layered system model is represented in Event-B via a set of contexts and machines refined within each layer. The contexts are used for the formal declaration of conceptual model elements, both structural and properties, along with the utility constants for generic representation of the elements. Herein, the key elements like Mission, Function, Component, and enumerations are defined as Event-B sets, while their attributes are represented as constants. Likewise, axioms capture the relationship between the elements and their attributes. To model the relation between a set 𝕊 (e.g., Environment) and its sub-sets s 1 , s 2 ,…, s 𝑛 represented as constants (e.g., People, Asset), we use the 𝑝𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛 operator, i.e., 𝑝𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛(𝕊, s 1 , s 2 ,…, s 𝑛). An excerpt of this interpretation is depicted in Listing 1.1. Furthermore, machine specifications formally capture the desired behavioral aspects of the system as model invariants. The abstract machine specification provides an initial setup for the Event-B model that can be refined with concrete details. A machine sees a context to use its axioms in conjunction as hypotheses in the mathematical proofs. We define events in the machines targeting each layer to capture the state transitions associated with the application of operations, function execution, and CPC-based message transmission. Listing 1.2 depicts an excerpt of this interpretation for the mission layer.

MACHINE M1MissionView

SEES C 4 M i s s i o n U t i l i t y // Context for utility constants , e . g . , s1 , m1 , o1 VARIABLES operationalSituation , hazardousEvent , overallGoal , Properties Specification. We define the safety and security objectives presented in Section 3.1 in Event-B as model invariants to verify that the defined events satisfy them during system model verification at different layers. Herein, the invariants are represented as the combination of state variables (i.e., the concept attributes) and logic symbols, i.e., propositions (e.g., ⇒, ⇔) and predicates (e.g., ∀, ∃) between them. The guards restrict the values of the variables as enabling conditions for the events. An excerpt of the Event-B interpretation for the Operational Availability objective is given in Listing 1.3. Of particular interest here, objectives like Functional Path Availability are defined as extensions of basic properties like Functional Precedence, Information Equivalence, and Execution Timeliness. Then they are captured in Event-B via invariant decomposition, where each basic property is associated individually with an invariant.

Properties Analysis. To reason and verify the invariants, we rely upon mathematical proofs comprising a set of rules. These rules are based upon the convention of Proof-Obligations (POs) supported by the Rodin platform. A PO is generated for every invariant that can be affected by an event, i.e., the invariant contains variables that an event can change. The hypothesis for these POs relies upon the satisfaction of all the invariants (including behavioral, safety and security objectives, and gluing) and the validity of the guards restricting the values of the variables before the triggering of events in every reachable state of the system. The correctness of the instantiated model is dependent on ninety-one POs4 that are related to mission accomplishment through the execution of the operation, function, and CPC-centric events.

To illustrate the analysis, we present the extraction of the PO for the satisfaction of the operational availability objective as an invariant, relying upon two invariants INV1 and INV2, and a theorem THM, as follows: Likewise, the properties' conflict identification predicate presented in Section 3.2, for instance, at the mission layer, is presented in the Listing 1.4 as an Event-B invariant.

INVARIANTS ∀m.∃o1.∃o2.m ∈ Mission ∧ o1 ∈ Operation ∧ o2 ∈ Operation ∧ a c c o m p l i s h e d T h r o u g h [{ m }] = { o1 , o2 } ⇒ (overallGoal [{ m }] = { TRUE } ∧ (¬postCondition [{ o1 }] = { TRUE } ∨¬postCondition [{ o2 }] = { TRUE }))
Listing 1.4. Mission layer properties conflict identification predicate as Event-B invariant.

For the safety and security missions SAFE_M and SEC_M, respectively, in the use case (see Section 2), the PO corresponding to the invariant in Listing 1.4 is discharged, depicting a potential conflict between braking and access provisioning operations. The reason can be attributed to the lack of privilege to the operator to realize the braking operation manually (i.e., Operator ↦ CDV1 ↦ Braking ∉ privilege).

Related Work and Positioning

So far, numerous solutions have been proposed in the literature to address safety and security concerns during the SE process (e.g., [START_REF] Vistbakka | Towards a formal approach to analysing security of safetycritical systems[END_REF]). However, the challenge is reconciling interdisciplinary knowledge, domain-oriented goals, and standalone practices towards effective co-engineering. This section dwells on some related works and positions our approach, emphasizing system conceptual modeling frameworks, design and analysis methods, and tooled-formal methods.

The mission is defined as a context-oriented and multi-paradigmatic concept in [START_REF] Letier | Deriving operational software specifications from system goals[END_REF] (e.g., goal and object-oriented) that facilitates entanglement of system functionality with architectural design process. In light of this, the authors in [START_REF] Cherfa | Systems of systems: From mission definition to architecture description[END_REF] presented a mission-based process for wave development cycle, thus resulting in less generic than our approach. Nonetheless, these works cover only the requirement engineering phase. To address high-level functional specification and application of safety-oriented practices during critical systems' design, Design Space Exploration (DSE) capabilities are used in [START_REF] Wan | Cyber-physical codesign at the functional level for multidomain automotive systems[END_REF]. Component-based design techniques and frameworks are proposed concerning safety [START_REF] Masrur | Component-based design of cyberphysical applications with safety-critical requirements[END_REF] and security [START_REF] Chattopadhyay | Autonomous vehicle: Security by design[END_REF] requirements in automotive CPSs applications by modeling and analyzing real-time component interactions. Our work is aligned with these X-by-design approaches and aims, additionally, to provide generic and specializable means to integrate safety and security aspects irrespective of the design flow (top-down or bottom-up).

Tooled-formal methods, when used in the engineering process of safety-and security-critical systems, increase confidence in the aspects, e.g., properties, defined by the respective standards [11,[START_REF]Information technology -Security techniques -Information security management systems[END_REF]. Several works demonstrate the use of the Event-B formal method for rigorous analysis of safety [START_REF] Hong | Application of software safety analysis using event-b[END_REF] and security [START_REF] Vistbakka | Towards a formal approach to analysing security of safetycritical systems[END_REF] concerns. However, these works are constrained by the granularity level and concepts chosen for modeling what imposes requirements to be specified at the same level. The independent formal interpretation of the layers facilitates engineers to use them in standalone or coupled mode, adequate for granularity and analysis needs. Being technology-agnostic, the proposed approach provides further flexibility regarding the choice of specification/modeling languages and Validation and Verification (V&V) tool support.

Conclusion and Perspectives

We have proposed a joint design and analysis formal approach for integrated specification, modeling, and verification of safety and security properties. In this work, we mainly focused on the formalization aspects to address the ambiguities associated with the properties' specification and their interpretation w.r.t. the system design to conduct provable, sound analyses. To this end, the approach leveraged multi-layered system conceptual modeling, targeting high-level mission, functional, and detailed CPC-related concepts and their relationships. Indeed, the incorporated notions include properties' categories and signatures, a basis for joint safety and security analyses. Subsequently, the logical specification of the conceptual model was described using set theories, FOL, and Modal Logic as technology-independent formalisms. Based on this formalization, a model interpretation into Event-B was defined to conduct automated verification of safety and security objectives' signatures. However, being aware of the possibility of more complex configurations, like use cases calling upon a large set of objectives (e.g., those within the Freshness category), we plan to explore and analyze them to increase the approach's confidence. We are also interested in investigating the negative view of the properties where fault/failure/hazard and threat models are introduced.

Fig. 1 .

 1 Fig. 1. Excerpt of the multi-layered system specification meta-model.

Fig. 2 .

 2 Fig. 2. Safety and security properties' specification meta-model.

CONTEXT 1 . 1 .

 11 C1MissionView , C2FunctionView , C3 C om po n en t Vi ew // for each layer SETS System , Mission , Environment , Operation , Function , Information , TriggerType , Component , Port , Connector , CommunicationStyle , ConnectorType CONSTANTS People , Asset , Manual , ControlSignal , TemporalConstraint , FunctionalPath , funcInfo , MsgPassing , Bus , Pipe , Channel , uses , connects AXIOMS partition (Environment , People , Asset) // Mission layer partition (TriggerType , Manual , ControlSignal , T e m p o r a l C o n s t r a i n t) // Functional layer Fun ctiona lPath ∈ Function → Function funcInfo ∈ Function ← ← → → Information funcInfo∼ ∈ Information ⇸ Function partition (CommunicationStyle , MsgPassing) // Component layer partition (ConnectorType , Bus , Pipe , Channel) uses ∈ Component → Port uses∼ ∈ Port ⇸ Component connects ∈ Connector → Port connects∼ ∈ Port ⇸ Connector Listing Interpretation excerpt: Three-layered system model in Event-B.

1 Listing 1 . 2 .

 112 H a z a r d o u s E v e n t P r e s e n c e WHEN o p e r a t i o n a l S i t u a t i o n = { m1 ↦ TRUE } haz ardous Event = { m1 ↦ FALSE } overallGoal = { m1 ↦ FALSE } e n v i r o n m e n t T r i g g e r C o n d i t i o n = { o1 ↦ FALSE } achieves = { s1 ↦ m1 } counter > 0 // An integer counter for capturing timeout THEN haz ardous Event ≔ { m1 ↦ TRUE } e n v i r o n m e n t T r i g g e r C o n d i t i o n ≔ { o1 ↦ TRUE } a c c o m p l i s h e d T h r o u g h ≔ { m1 ↦ o1 } interactsWith ≔ { s1 ↦ a1 } counter ≔ counter -Excerpt of an Event-B machine at the mission layer specification.

INVARIANTSListing 1 . 3 .

 13 ∀m.∃o.m∈ Mission ∧ o ∈ Operation ∧ (o p e r a t i o n a l S i t u a t i o n [{ m }] = { TRUE } ∧ haz ardous Event [{ m }] = { TRUE }) ⇒ a c c o m p l i s h e d T h r o u g h [{ m }] = { o } Operational availability objective as Event-B invariant.

1 .

 1 MissionAllocation (INV1): ∀m ∈ Mission, ∃o ∈ Operation | ((operationalSituation[m] ∧ hazardousEvent[m]) ⇔ (preCondition[o] ∧ environmentTriggerCondition[o])) ⇒ accomplishedThrough[m] = o; holds for all the events. 2. MissionConsistency (INV2): ∀m ∈ Mission, (operationalSituation[m] ∧¬ haz-ardousEvent[m]) ⇒ ¬ overallGoal[m]; holds for all the events. 3. MissionAccomplishment (THM): ∀m ∈ Mission, o ∈ Operation | (accom-plishedThrough[m] = o) ⇒ (postCondition[o] ⇔ overallGoal[m]); a derived axiom that relies upon INV1 and INV2.

 • The timeliness of the execution of the functional path is ensured for a predefined threshold Θ ∈ ℝ

+ , i.e., ExecutionTimeliness(FP, Θ). -Component-Port-Connector (CPC) Availability: Given two components C 𝑖 and C 𝑗 (with failure rates 𝜆 𝑖 and 𝜆 𝑗 , respectively), where 𝑖, 𝑗 ∈ ℕ, a connector 𝐶𝑜𝑛𝑛 (with failure rate 𝜆 𝐶𝑜𝑛𝑛) connecting C 𝑖 and C 𝑗 , time instant 𝑡, a message 𝑚, and a predefined threshold Δ ∈ ℝ + , the CPC availability objective is satisfied iff: • Availability of components is ensured, i.e., ComponentAvailability(C 𝑖 , 𝜆 𝑖 , 𝑡), • Availability of connector is ensured, i.e., ConnectorAvailability(Conn, 𝜆 𝐶𝑜𝑛𝑛 , 𝑡), • Delivery of critical messages between the components is ensured, i.e., Even-tualMessageDelivery(C 𝑖 , C 𝑗 , 𝑚) (or BoundedMessageDelivery(C 𝑖 , C 𝑗 , 𝑚, Δ)), and • There exists logical conformity of the component architecture (i.e., configuration) with functional architecture.

Table 1 .

 1 Excerpt of Mapping: Three-layered conceptual model ↦ Formal syntax. TriggerTime}, 𝑐𝑎𝑙𝑙𝑒𝑟 ∈ {Operator, F 𝑙 , TemporalConstraint}, 𝑘, 𝑙 ∈ {1… ℕ} Information Information ∈ {FunctionalInput (or I 𝑘), FunctionalOutput (or O 𝑘)}, 𝑘 ∈ {1… ℕ}

	Conceptual	Formal syntax
	element	
	System	S := ({M 𝑖 }, Environment), 𝑖 ∈ {1… ℕ}, Environment ∈ {People, Asset}
	Mission	M 𝑖 := ({Op 𝑗 }, 𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑎𝑙𝑆𝑖𝑡𝑢𝑎𝑡𝑖𝑜𝑛, ℎ𝑎𝑧𝑎𝑟𝑑𝑜𝑢𝑠𝐸𝑣𝑒𝑛𝑡, 𝑠𝑒𝑐𝑢𝑟𝑖𝑡𝑦𝐼𝑛𝑐𝑖𝑑𝑒𝑛𝑡, 𝑜𝑣𝑒𝑟𝑎𝑙𝑙𝐺𝑜𝑎𝑙), 𝑖, 𝑗 ∈ {1… ℕ}
	Operation	Op 𝑗 := (𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝐼𝑛𝑝𝑢𝑡, 𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑂𝑢𝑡𝑝𝑢𝑡, 𝑝𝑟𝑒𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛, 𝑝𝑜𝑠𝑡𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛, 𝑒𝑛𝑣𝑖𝑟𝑜𝑛𝑚𝑒𝑛𝑡𝑇 𝑟𝑖𝑔𝑔𝑒𝑟𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛,
		𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛𝑂𝑓 𝐸𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛, 𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛𝑇 𝑦𝑝𝑒), 𝑗 ∈ {1… ℕ}, 𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛𝑇 𝑦𝑝𝑒 ∈ {𝐹 𝑢𝑛𝑐𝑡𝑖𝑜𝑛, 𝑃 𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟, 𝑉 𝑎𝑙𝑢𝑒}
		F 𝑘 := (𝑡𝑦𝑝𝑒, 𝑝𝑟𝑒𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛, 𝑡𝑟𝑖𝑔𝑔𝑒𝑟𝑇 𝑦𝑝𝑒, 𝑐𝑎𝑙𝑙𝑒𝑟, 𝑓 𝑢𝑛𝑐𝑡𝑖𝑜𝑛𝑎𝑙𝐼𝑛𝑡𝑒𝑟𝑓 𝑎𝑐𝑒𝑠, Information), 𝑡𝑦𝑝𝑒 ∈ {𝑃 ℎ𝑦𝑠𝑖𝑐𝑎𝑙,
	Function	𝐿𝑜𝑔𝑖𝑐𝑎𝑙}, 𝑡𝑟𝑖𝑔𝑔𝑒𝑟𝑇 𝑦𝑝𝑒 ∈ {𝑀𝑎𝑛𝑢𝑎𝑙, 𝐶𝑜𝑛𝑡𝑟𝑜𝑙𝑆𝑖𝑔𝑛𝑎𝑙, 𝑇 𝑒𝑚𝑝𝑜𝑟𝑎𝑙𝐶𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡}, TemporalConstraint ∈
		{Duration,

Table 2 .

 2 Excerpt of Mapping: Properties' metamodel ↦ Formal syntax. 𝑖] ∧ ℎ𝑎𝑧𝑎𝑟𝑑𝑜𝑢𝑠𝐸𝑣𝑒𝑛𝑡[M 𝑖]) ⇒ 𝑎𝑐𝑐𝑜𝑚𝑝𝑙𝑖𝑠ℎ𝑒𝑑𝑇 ℎ𝑟𝑜𝑢𝑔ℎ[M 𝑖 , Op 𝑗] 𝑘 , F 𝑘+1), ∀𝑘 ∈ {1...ℕ-1}: F 𝑗 ⇒ F 𝑖 𝒸𝒸(F 1 , F 1 , 𝑡 1 , I 1) ⇒ Θ 𝒸𝒸(F 𝑘-1 , F 𝑘 , 𝑡 2𝑘 , O 𝑘)

	Conceptual element	Formal syntax
	OperationalAvailability (𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑎𝑙𝑆𝑖𝑡𝑢𝑎𝑡𝑖𝑜𝑛[M FunctionalPathAvailability a) FunctionalIntegrity(FP): FunctionalPrecedence(F CPCAvailability a) ComponentAvailability(C	

InformationEquivalence(O 𝑘 , I 𝑘+1), ∀𝑘 ∈ {1...ℕ-1}:

I 𝑗 ⇔ O 𝑖 b) ExecutionTimeliness(FP, Θ): 𝑖 , 𝜆 𝑖 , 𝑡) b) ConnectorAvailability(Conn, 𝜆 𝐶𝑜𝑛𝑛 , 𝑡) c) EventualMessageDelivery(C 𝑖 , C 𝑗 , 𝑚): 𝑠𝑒𝑛𝑑(C 𝑖 , 𝑚) ⇒ 𝑟𝑒𝑐𝑒𝑖𝑣𝑒(C 𝑗 , 𝑚) (or BoundedMessageDelivery(C 𝑖 , C 𝑗 , 𝑚, Δ)): 𝑠𝑒𝑛𝑑(C 𝑖 , 𝑚) ⇒ Δ 𝑟𝑒𝑐𝑒𝑖𝑣𝑒(C 𝑗 , 𝑚) d)

Logical conformity of component architecture with functional architecture SystemAccessibility 𝑝𝑟𝑖𝑣𝑖𝑙𝑒𝑔𝑒[Operator, S, Op 𝑗] ⇒ 𝑎𝑐𝑐𝑒𝑠𝑠[Operator, Op 𝑗]

Fundamental well-defined notions that are building blocks upon which high-level requirements can be decomposed and characterized.

Distribution of POs: Variable initialization (32), System specification (48), Safety and security invariants (11).