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Optimizing and extending the functionality of EXARL for scalable reinforcement learning

 

Introduction REINFORCEMENT LEARNING (RL)

• A subset of machine learning wherein an agent interacts and learns from its environment according to some policy (mapping of states to actions) with the overall goal of achieving a maximum reward over time (Figure 1). • Used in games, computer vision applications, and increasingly in scientific disciplines to solve control problems (specifically those that can be formulated as a Markov Decision Process). • The actions an agent can take can be continuous (e.g. move according to some applied torque) or discrete (e.g. move left or right). • In contrast to many RL examples, where the environment responses are easy to compute, the environments used in scientific RL studies are often complex and take substantial computation time to run, even in parallel. • The ability to scale these computations to multiple nodes can aid in considerably reducing computation time, allowing for more robust testing and prototyping of ideas.

EASILY EXTENDABLE ARCHITECTURE FOR REINFORCEMENT LEARNING (EXARL)

• A scalable RL framework for scientific applications.

• Provides customizable environments, agents, and workflows, which help improve performance and reduce execution time. • The agent is divided into actors and learners.

• The actors are responsible for interacting with the environment and generating trajectories (training data). • These trajectories are fed into the learners, which update the policy. • The updated policy is shared with the actors, which perform the suitable to maximize the reward. • Similar to IMPALA architecture, the actors and learners are decoupled in order to scale the reinforcement learning (Figure 2).

Additional Agents

Figure 2. EXARL architecture.

Conclusions & Future Work

• EXARL is a scalable reinforcement learning framework for complex scientific environments. 

Methodology MULTI-LEARNER ASYNCHRONOUS WORKFLOW

• All actors send training data (trajectories) to the master learner after interacting with the environment. • The master learner then distributes batches of data to the remaining learners to perform distributed training. • The updated policy from all learners is sent to all the actors. 

RMA QUEUE WORKFLOW

• Each actor has a local queue data structure remotely accessible by all learners, implemented using RMA windows. • Each group of actors is assigned to a specific learner (allowing to limit the number of simultaneous accesses to the same queue). • Learners can retrieve training data from these queues and share the updated weights via a global RMA window. • Actors and learners are synchronized using passive target RMA locks and the training part is performed in parallel using Horovod. 
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Performance Improvements SCALING MULTI-LEARNER WORKFLOWS

• Results: Preliminary experiments demonstrated good scalability up to 1024 processes (32 processes per node) on ExaBooster environment (as shown in Figure 12). 

RMA QUEUE WORKFLOW

• Results: Total execution time decreased by 77% while using 20 learners and 120 actors on 4 nodes, and by 84% while using 200 actors and 40 learners (8 nodes). EXARL framework can't guarantee that behavior. • To correct for that, we add the "v-trace" algorithm to the loss functions. This correction assumes the ratio between the two policies is always equal to one.

EXABOOSTER ENVIRONMENT

• Control problem for FNAL particle accelerator at FermiLab (Figure 3). 

RMA WINDOW SELECTION

• In Multi-learner RMA workflow, learners get training data from the actor's RMA window. • Current approach: Each learner randomly selects one of the actor's RMA window. This can lead to slower convergence. • Proposed approach: Allocate a set of actor RMA windows to each learner (Figure 5). • Advantage: Guarantees no learner reads from the same actor's RMA window, thus optimizing training.

OPTIMIZING DATA GENERATION PIPELINE

• Calculating the Bellman optimality equation on each experience is expensive (90% of computation time) while using Deep Q-Network (DQN) agent. • Optimization: Offload data-generation on remaining environment processes (Figure 8). • Learners that exhaust all 'active' actors (e.g. Learner 3 in Fig. 7) assist other learners by training on the batch data from the latter's actor queue. • A "shared bitmap" indicates which actors are active preventing getting data from an empty queue. 

SEED WORKFLOW

• Our SEED implementation obtained similar results to current IMPALA implementation (Figure 16). • The neural network model used for these experiments was relatively small. Therefore, the amount of transferred data during an iteration is similar in both implementations.

ADVANTAGE ACTOR CRITIC WITH V-TRACE

• 
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 1622 Figure 16. Results for data generation pipeline improvements.

Figure 6 .

 6 Figure 6. RMA queue workflow schematic.

Figure 4 .

 4 Figure 4. Multi-learner asynchronous workflow schematic.

Figure 13 .

 13 Figure 13. Scaling results of Multi-learner workflows on Darwin Testbed Cluster.

Figure 15 .•

 15 Figure 15. Results for RMA queue scaling

  • Reinforcement learning is used to control particle beam quality (i.e. reduce beam losses) in real time. • Keeps the beam field from spreading (thus degrading the beam quality) by regulating the magnetic current of the booster. • Discrete action environment: magnetic field can either be increased or decreased. • Original work developed by PNNL, FNAL, University of California San Diego, Columbia University.

Figure 19 .

 19 Figure 19. Performance of A2C/A3C versus DQN for CartPole environment. Note that DQN does not converge, whilst A2C/A3C with v-trace does.

Figure 3 .

 3 Figure 3. FNAL particle accelerator complex at FermiLab with particle beam booster ring shown.

Figure 8 .

 8 Figure 8. Data generation optimization process. Left shows previous implementation, right shows updated workflow.

Figure 11 .

 11 Figure 11. (Asynchronous) Advantage Actor Critic agent schematic. The v-trace algorithm is added to the loss functions of the critic and actor networks.
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 1412 Figure 14. Convergence comparison of two window selection policies of Multi-learner RMA workflow used on ExaBooster environment.

Figure 18 .

 18 Figure 18. Performance of A2C/A3C with and without v-trace for CartPole environment. Note that A2C/A3C without v-trace does not converge, whilst A2C/A3C with v-trace does.

Figure 21 .

 21 Figure 21. Performance of DDPG versus TD3.

Figure 1 .

 1 Figure 1. Basics of reinforcement learning.

Figure 7 .

 7 Figure 7. RMA queue workflow with shared bitmap implementation details.

•

  Inspired from SEED architecture and based on MPI P2P routines. • Lower bandwidth requirements relative to base model. • Only one copy of the model → there is no issue of copies going out of sync.

  Results: (Asynchronous) Advantage Actor Critic (A2C/A3C) performs poorly without v-trace on the OpenAI gym CartPole environment but outperforms Deep Q-Network (DQN) when v-trace is added. Note that "convergence" in the CartPole environment is 200. • A2C/A3C also converges faster in ExaBooster environment than DQN. • These results are consistent with the literature, ie.A2C/A3C is expected to be the state-of-the-art after DQN.
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 20591017 Figure 20. Performance of A2C/A3C (blue, orange) against DQN (green, red) for ExaBooster environment. Here A2C/A3C converges faster than DQN.

Future work: Evaluate our improvements on complex

  

	• Demonstrated improved scalability performance
	using efficient RMA communication patterns.
	• Expanded the capability of EXARL by including
	additional agents like A2C/A3C and TD3
	• Explored algorithmic improvements such as v-trace
	and prioritized experience replay.
	•

• Improved upon the existing framework by accelerating the data generation pipeline for faster convergence. scientific environments and scale our framework on large-scale systems.

Tests run on Darwin cluster with Intel Broadwell (36 cores) + IB ConnectX-4
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