N
N

N

HAL

open science

Optimal positioning of terrestrial LIDAR scanner
stations in complex 3D environments with a
multiobjective optimization method based on GPU
simulations

Gilles Rougeron, Jérémie Le Garrec, Claude Andriot

» To cite this version:

Gilles Rougeron, Jérémie Le Garrec, Claude Andriot.
scanner stations in complex 3D environments with a multiobjective optimization method based on
GPU simulations. ISPRS Journal of Photogrammetry and Remote Sensing, 2022, 193, pp.60-76.

10.1016/j.isprsjprs.2022.08.023 . cea-03777990

HAL Id: cea-03777990
https://cea.hal.science/cea-03777990

Submitted on 15 Sep 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

Optimal positioning of terrestrial LiDAR

https://cea.hal.science/cea-03777990
https://hal.archives-ouvertes.fr

Optimal positioning of terrestrial LIDAR
scanner stations in complex 3D environments
with a multiobjective optimization method
based on GPU simulations

Gilles Rougeron, Jérémie Le Garrec, Claude Andriot
Université Paris-Saclay, CEA, List, F-91120, Palaiseau, France

September 7, 2022

Abstract

Currently, the scanning of complex industrial sites is commonly per-
formed using terrestrial LIiDAR scanners. As the quality of the result-
ing point cloud depends mainly on the number and positions of LiDAR
stations, this scanning process can be preliminarily optimized by means
of a 3D model. A previous study proposed multiobjective optimization
based on the linear scalarization of three functions to maximize coverage
and overlapping of point cloud stations while minimizing their number.
Because these objectives conflict, this study proposes the use of MO-
CMA-ES, a global multiobjective optimization algorithm, to provide a full
Pareto front and allow the user to make an informed decision. Our method
is the first to rely on realistic LIDAR simulations that operate in fully 3D
complex environments and provide point clouds with optionally noisy co-
ordinates. For performance considerations, ray-traced simulations and
objective evaluations were performed using a GPU. Furthermore, clash
detection in the proximity of station positions was also considered. Af-
ter validating our method’s behavior and demonstrating its superiority
over the conventional approach in a simple case, we conducted a study
on an industrial-grade case based on a 2.7-million-triangle model, fur-
ther demonstrating our method’s effectiveness by producing a minimal
15-station solution with optimal coverage and overlapping.

Keywords— Terrestrial LIDAR, Survey Design, 3D Point Clouds, Multiobjective
Problem, Simulation Modeling, GPU Computing.

1 Introduction

As part of the digital transition related to Industry 4.0, the creation of digital twins
at equipment and industrial sites is becoming increasingly widespread. Digital twins
can be used for a wide range of purposes, from simple visualization to verification
and validation of concepts, progress monitoring, conformity measurements, or the
training of new staff. To maximize accuracy, it is necessary to carry out 3D surveys
of the geometry and appearance of installations. Among the many types of sensors
and techniques developed for this purpose, terrestrial LIDAR scanners (TLS) remain
the sensors of choice due to their high precision, high point density, and long range.

In general, owing to their complex geometries, it is necessary to conduct surveys at
multiple positions, called LIDAR stations. The scans are then postprocessed, denoised,
colorized, registered, and merged. This process generates a potentially massive 3D
point cloud that can be analyzed by means of a screen or virtual reality (VR) headset.
It can also be used for different operations such as:

e measurement of distances to a previous point cloud or digital model as a com-
ponent of progress or conformity tests,

e triangular meshing to obtain a lighter geometrical representation better suited
to collision detection for instance,

e segmentation and idealization to reach higher-level geometric representations,
such as canonical shapes, BREP-type CADs, or BIM models, in the process of
scan2BIM,

e object detection and 6DoF pose estimation of known CAD parts.

These operations can be performed using classical methods or deep learning-based
approaches [12].

The ease of exploitation of the resulting point cloud is directly related to its quality.
In particular, occlusions must be avoided. Theoretically, every element of the site,
including all equipment, should be visible to at least one of the stations. Point density
must therefore be as homogeneous as possible, and reach a minimum threshold in
the largest possible area. Precise registration requires overlap between point clouds
issued from different stations. The noise level must be as low as possible. And finally,
to minimize the amount of raw data to process and avoid breaching potential time
constraints, the number of stations should be minimal.

Today, decisions relating to the necessary amount and placement of stations de-
pend on the knowledge and experience of operators. In this study, we propose a novel
approach for designing optimal solutions through a multiobjective optimization pro-
cess. Given a 3D model of a site or equipment to scan, along with its surrounding
environment and a 3D-accessible area for TLS stations, sets of LIDAR network simula-
tions with fixed parameter values were performed to maximize the quality of surveyed
point clouds through different criteria (coverage and overlap) while minimizing the
number of stations. A Pareto front was characterized by these conflicting objectives
to be used by an expert for informed decision-making.

Our main contributions to the LiDAR optimal positioning problem are:

e A multiobjective optimization approach is formulated in a continuous search
space to provide rich resulting information;

e A method based on fast and realistic LiDAR simulations performed in a complex
3D world;

e Objectives evaluation is entirely performed on GPU;
e Solution accounts for clash detection between LiDAR stations and the 3D model.

To the best of our knowledge, this is the only method that addresses the problem
in full 3D space and evaluates point cloud quality based on simulations. Our solution
can be used indoors, outdoors, or in a combined environment.

After a brief review of related studies in Section 2, we present the LIDAR simulation
tool in Section 3. Section 4 provides a description of the 3D model’s components,
surveyed and blocking meshes, and the search area, followed by a presentation of
the continuous search space, objective evaluations, and multiobjective strategy used.
Section 5 provides the results for simple cases as a validation and characterization of
the method’s performance followed by an analysis of complex case results. Finally,
after drawing some perspectives in Section 6, we conclude the paper in Section 7.

2 Previous work

The "art gallery problem" is a fundamental problem that entails minimizing the num-
ber of guards that collectively observe a whole art gallery. This problem has been the
subject of numerous theoretical studies and practical applications, the most impor-
tant of which relate to view-planning. The problem can be approached in two ways
depending on whether an environmental model is available. In the model-free case,
space is discovered through observation, and next best-view solutions (NBV) are com-
monly applied in an online setting. By contrast, sensor network design is generally
performed offline for cases with a known model. Recent surveys, dedicated to the
camera placement problem in surveillance applications [21] and the reconstruction of
3D CAD models of objects [26], demonstrate that most proposed solutions boil down
to solving an NP-hard set cover problem (SCP), which entails finding the smallest
sequence of positions that covers a space.

For TLS networks, the authors of [2] raised the problem of planning for scanning
(P4S) and reviewed the most recent studies. The specificity of P4S relates to the sensor
characteristics and criteria used to qualify a 3D point cloud, including coverage com-
pleteness, accuracy, spatial density, and registrability. Most previous studies [32, 19, 5]
operated in a 2D environment, where planar walls were simplified to line segments, and
the search area was discretized in a set of possible positions. These studies generally
employed a simple or modified greedy approach, which, although suboptimal, provides
reasonable local optimal solutions to the SCP problem. This approach locates an ini-
tial position with the highest coverage, and successively adds new positions with the
highest additional contributions until the global estimated quality of the point cloud
stops improving. Surface visibility, point density, accuracy, and overlap are estimated
through geometric considerations such as the line of sight, distance from position, and
incident angle to segments. Interactive approaches in which an expert contributes to
the greedy optimization process were proposed in [1]. In [9], the authors implemented
a greedy approach on a GPU with both coverage and overlap estimations. In [19],
LiDAR and artificial target positions used to ease registration were optimized using a
hierarchical strategy followed by a modified greedy method.

Of the few studies [31, 39, 25| that operated in a 3D environment, the last used
a voxel grid to estimate coverage. Its search area was a 2D regular planar grid with
candidate positions, possibly at different heights.

In [22], a deep reinforcement learning (DRL) approach was used to locate the
optimal set of view poses allowing the scanning of a 3D CAD model with a depth
camera sensor placed on a robotic arm. An agent attempted to maximize its reward
by finding successive positions that yielded the highest improvement in coverage, until
a given maximal number of poses was reached. The covered surface area was estimated
using a noisy camera simulation performed on a GPU, and a voxelized representation
of the 3D CAD model. Several DRL algorithms were compared for both discrete and
continuous search spaces. Much like the greedy approach, this method works well in
practice but yields suboptimal results.

Instead of progressively adding sensors, several studies approached the problem
by optimizing the global network sensor positions while minimizing their number.
In [6], in the context of indoor environment surveying, a set of candidate points was
distributed over a floorplan map with a 2D discrete grid, and the coverage problem was
solved with an exact approach via integer linear programming (ILP). By constraining
the connectivity of the LIDAR network graph, overlapping is solved using mixed integer
linear programming (MILP). Although this approach incurs an exponential complexity
in the worst case, it is generally applicable in practice.

Other studies employed heuristic-based optimization methods to explore the entire
search space, and did not exhibit the worst-case problem. The present study falls under
this category. In the field of video cameras, the authors of [35] proposed a two-step

method. Starting from an initial huge set of cameras with given positions, orientations,
and parameters, providing almost perfect coverage, the first step consists of finding the
minimal subset allowing 80% of the maximal observed coverage to be reached. In the
second step, the positions and orientations of a given number of cameras are allowed to
move in a continuous search space to improve coverage. Both optimization steps rely
on the modified particle swarm optimization (PSO) method. For TLS networks, in
[20], a genetic algorithm (GA) was used that finds a network with numerous positions
providing full coverage, and gradually removed positions until a minimal threshold is
reached. In [18], the performances of GA, PSO, and simulated annealing (SA) were
compared in a single given environment. Both aforementioned studies operated in a
2D world with positions spread over a discrete area.

In [4], the authors proposed the simultaneous optimization of coverage and over-
lapping while minimizing the number of stations. This multiobjective optimization
is performed by a GA method with fitness value F for a given network of stations s,
resulting from the linear scalarization of three functions, as expressed by Equation 1.

F(s) = MI(s) + Aa®(s) + A3A(s) (1)
where:

e I'(s) denotes the coverage value.

o O(s) =2 Nmawz — 1 is a function that decreases with an increase in
Nstations, the number of active stations for a given network, given all networks
having N,qq stations,

e A(s) = g where Cc is the number of connected components in the LiDAR

station visibility graph.
[])\1 = Az =04 and)\3 =0.2

Because all three functions have a range of [0,1] and the sum of weights \; is 1,
F is also in the range of [0,1]. The GA seeks to maximize this fitness function by
evolving a population of station networks in a 2D continuous search space. One can
remark that the optimal solution is dependent on the three function formulations and
weights, as changes in any of these yield a new optimal solution. By contrast, the
multiobjective approach described in this paper provides the user with a Pareto front,
allowing the solution to better match the requirements. Furthermore, our approach is
based on realistic 3D LiDAR simulations that account for considerably more complex
environments.

3 LiDAR simulation
3.1 Related studies

Many LiDAR simulation tools are available today, and are commonly used to test
the performance of new sensors, benchmark point-cloud algorithms, and create rich
datasets for deep learning methods. In robotics, they can be used for sensor-based
motion planning [28]. For autonomous vehicle simulation, they enable the verification
of whether fixed or moving obstacles can be efficiently detected (see [7] and [27]).
In these fields, speed is generally favored to realism, as there is a need for online
simulations. In [24], the authors present a method that accounts for the rolling-shutter
effect of a moving vehicle carrying LiDARs, and the motion blur of moving obstacles.

However, simulation tools for time-of-flight terrestrial LIDAR are often used offline,
and they range from simple to physically-based models. Blensor [11] was an early
attempt to create a tool integrated into the Blender software that relies on ray casting.
An implementation of a similar tool with GPU computation using Nvidia Optix was

Up Up

Rotating Horizontal wide angle
plane "~ gj

! -

~~ — ~ 1 —
~~ [—
™~ . - S — .
Lidar Position ———> Vertical wide angle / 2
— A N '
_— _— ~
- — i 1~
“~ ! ™~ ~
= 1 h ~
. |
™~ S i
,,,,,,,,, ~._ Laserbeam “-Openjng ray
s angle!
~._ground__—""

Figure 1: LiDAR station geometry.

reported in [23]. More realistic models were implemented by Helios [37], which can
consider the laser beam divergence and emitted signal waveform. This allows for the
detection of multiple points in a single direction, corresponding to multiple signal
peaks, for time-of-flight LiDARs. Finally, in DIRSIG [10], a physical simulation code
was implemented based on complex models of source, transport, light with material
interaction, and receiver.

Because multiobjective optimization requires many simulations of station net-
works, where tens of millions of points are recorded for each station, we decided to
implement our tool on the GPU to reach an acceptable computation time. Our method
is based on a simple ray-casting approach, and provides rich results that are further
utilized on a GPU to rapidly evaluate objective values. Realism can be improved by
adding noise.

3.2 Our LiDAR simulation tool

Simulation inputs To scan the surrounding environment, a terrestrial LIDAR is
generally placed on a tripod under several geometric parameters, as shown in Figure
1. Once these parameters are set, the survey is initiated. A rotating mirror enables
the vertical deviation of the laser beam around the station in a plane, while a step-by-
step engine progressively rotates this plane. Globally, the survey samples an almost
perfectly spherical region around the station position.

The LiDAR simulation input parameters included the following:

e Positional coordinates

e Upward direction, assumed to be vertical

e Height, or distance from position to floor

e Horizontal wide angle (generally 360°)

e Vertical wide angle (generally less than 360° with an angle opening downward)
e Horizontal and vertical step angles

e Distance range [dmin, dmaa]

While simulating a network of LiDAR stations, all parameters were fixed with
the exception of LiDAR positions. The geometrical input model of the simulation
tool consisted of triangular meshes with vertex normals. These meshes can be derived
from a BREP CAD model or previous coarse point cloud scan. They can transform by

means of translation, rotation, and scaling, and have attached materials that contain
a diffuse reflection coefficient.

Simulation The implemented LiDAR model employed ray casting. The code was
based on the Nvidia Optix 7 library, allowing access to the power of ray tracing hard-
ware support. The LiDAR simulation tool was integrated into the Unity 3D platform.

A ray was launched for each laser beam direction. When the ray hit a surface, the
following results were obtained (see Figure 2):

e point position, or the first intersection point identified. It is computed in world
space but can be transformed into a local LIDAR coordinate system.

e point color: An equirectangular panoramic image is first rendered around the
current station and transferred to the GPU as a texture. Then, during the
LiDAR simulation, for each ray direction hitting a surface, a point color is
obtained by bilinear texture color interpolation.

e point normal, obtained by bilinear interpolation of the hit triangle’s vertex nor-
mals with (s,t) barycentric coordinates of intersected points. It is oriented
toward the direction of the incident ray.

o reflectivity: Following Lambertian law, it is equal to R(I - (—N)), where R is
the diffuse coefficient of the material associated with the intersecting mesh, I is
the direction of the incident ray, N is the point normal, and - is the dot product
operation

e mesh id: The ID of the triangle’s mesh, which remains at -1 if no hit occurs.

The computations of point color, normal, and reflectivity are optional. On the
GPU, different output buffers were pre-allocated to fit the number of rays.

3.3 Noise

Noise model The geometric noise of a point cloud may have several origins, such
as electronic noise on the sensor, interaction with the atmosphere, or complex inter-
action of the laser beam with a surface. In this study, we conducted realistic but
not physically-based LiDAR simulations. Therefore, we employed tables provided by
LiDAR constructors, thus allowing the evaluation of noise amplitude for perfectly ac-
curate measures (see Table 1). As can be seen, noise amplitude increases with higher
distance and lower reflectivity. By using a Lambertian diffuse law to evaluate reflec-
tivity (see Section 3.2), we reached global agreement with the increase in the incident
angle to the intersection point normal, as noted in [33].

Reflectivity \Distance 5m 10m 20m 40m 60m
Black 8% 0.5mm | 0.6mm | 0.7mm | 2.5mm | 5.0mm
Grey 21% 0.4mm | 0.5mm | 0.6mm | 0.8mm | 2.0mm
White 89% 0.3mm | 0.4mm | 0.5mm | 0.6mm | 1.0mm

Table 1: Noise amplitude of Leica RTC 360 for a single measurement, depending
on the distance and reflectivity of the obstacle.

Noise computation method During simulation, each intersection point was
randomly moved along the ray following a zero-mean Gaussian distribution, in which
the standard deviation o value was computed by interpolating the values of the con-
structor amplitude table.

For computational performance, this initial table was transformed via interpola-
tion and extrapolation into a regular oversampled table. Its inputs were normalized

(a) A 3D mesh model with a ter-
restrial LIDAR, positioned in front
of it.

(c) Rendered panoramic image from LiDAR

(b) Point cloud colors. o
position.

(e) Normals color map.
A cubic model was in-
ternally scanned using
LiDAR.

(d) Point cloud normals in false
colors.

() Reflectivity
! grayscale.

(f) Point cloud reflectivity.

(i) Model mesh ID 6. (j) Model mesh ID 7.
(h) Point cloud mesh IDs in false

colors.

Figure 2: Simulated LiDAR scan. A madel with dimensions of 65.5 m x 50 m x
15.5 m was placed on a 100 m x 100 m surface. The model contains 17 meshes.

distance and reflectivity, both in the range of [0, 1]. We chose a sampling step of 0.01,
which allowed the creation of a 101 x 101 table that was transferred as a texture map
to the GPU for fast o evaluation by bilinear interpolation. Algorithm 1 summarizes
the methods used.

Algorithm 1 Noise computation. Operations in blue are performed on GPU.

{PRE-COMPUTATION}
From initial constructor table, create a regular oversampled noiseTable
Transfer it as texture map to GPU
{COMPUTATION}
{[dmin; dmas] is the LIDAR range}
{I is the incident ray direction; R is the diffuse reflection coefficient}
for each intersectionPoint found do
distance < Norm(lidarPosition, intersectionPoint)
normalizedDistance < %‘m
N <« Interpolated AndOrientedNormal At (intersectionPoint)
reflectivity <— R(I - (—N))
o < BilinearInterpolation(noiseTable, normalizedDistance, reflectivity)
€ + RandomValueWithGaussianDistribution(0, o)
intersectionPoint <— intersectionPoint + €/
end for

4 Optimization of LIDAR positioning

The general positioning optimization method relies on multiobjective optimization
based on LiDAR simulations computed using the proposed tool. The elements of
the method and their associated algorithms are presented in the following sections:
surveyed and blocking meshes in Section 4.1, search area in Section 4.2, clash detection
around LiDAR stations in Section 4.3, and search space in Section 4.4. The three
evaluated objectives are introduced in Section 4.5: coverage, overlap, and station
number. The basic principles of the chosen optimization methods — CMA-ES for mono-
objective problems and MO-CMA-ES for multiobjective problems — are presented in
Section 4.6.

4.1 Surveyed and blocking 3D triangular meshes

When scanning a complete site, the entire 3D model must be covered. However,
specific equipment and areas of complex industrial environments are often surrounded
by elements that limit their visibility and accessibility. For instance, a machine tool
may be surrounded by other machines or architectural elements, such as barriers or
posts. In the context of our application, the user specifies the part of the model to
be scanned. These models are referred to as surveyed meshes, whereas the remaining
models are referred to as blocking meshes. Although both mesh types can intersect
rays and be used for clash detection, only the intersection points of rays with surveyed
meshes contribute to coverage and overlapping objectives (see Section 4.5).

During the initialization step, we voxelized the surveyed meshes’ surfaces by im-
plementing the method described in [30] on a CPU. We used a cubic box whose length
corresponds to the largest extent of the bounding box of all surveyed meshes. Given
the size provided by the user, the voxel size is defined as

box _length

3 2)

voxel _size =

where d is the smallest integer such that voxel size < user size. It should be noted
that the user size should be selected so that voxelization is really surfacic. For instance,
it should be smaller than the wall thickness if both faces are visible. However, the
voxel size must not be too small, as explained in Section 4.5.1.

Any voxels that intersect triangles are stored in memory with an associative map,
whose keys are the Morton keys of an octree with constant depth d. This list of full
voxel keys (referred to as surveyed geometry voxels throughout this paper) is sorted
and stored in a GPU memory buffer.

4.2 Search area

The search area is the accessible area where LiDAR stations can be positioned. Its
surface is not intersectable, although it often coincides with a blocking surface (e.g.,
the ground), and it is a 3D triangular mesh with u;,v; coordinates attached to its
vertices. The search area can be represented by any parametric surface, and may
contain slopes, curves, bumps, holes, and similar features. The triangular mesh may
even have different connected components to represent a set of surfaces (the different
stairs of a building, for instance) as long as the u;,v; coordinates of the vertices do
not overlap.

Optimization occurs as LiDAR stations evolve in this search area. Provided a
vertical height and 2D coordinate point (u, v) with continuous values, a given station’s
position can be computed on the CPU by finding a triangle with vertex 4,7,k and
coordinates u;, vi, uj,v;, ur and vy such that

u=(1—s—1t)u; + su; + tug
v=(1—s—1t)v; + sv; + tvg

(3)

where s and ¢ are the barycentric coordinates of a point within the triangle such
that
0<s<1,0<t<land0<s+t<l1 (4)

To efficiently search this triangle and compute values of s and ¢, a quadtree is built
on the triangular mesh of the search area in the 2D (u,v) space. The quadtree spans
[Umin, Umaz] and [Umin, Umaz], corresponding to the overall search coordinates, and its
root node contains all mesh triangles. The build is recursive, as each node is subdivided
into four, and each triangle is distributed into one or more child nodes. The process
terminates for a given node when the number of triangles becomes smaller than the
maximum allowed, or a given maximum depth is reached. During the triangle search,
this enables the quick pruning of nodes that do not contain (u,v) coordinates. For the
remaining nodes, the searched triangle, if it exists, is found by inverting Equation 5
and ensuring that s and ¢ obey Equation 4. If no triangle is found, a hole is present, in
which case the LIDAR station is not simulated and does not contribute to the objective
evaluation. The inverse equations are as follows:

(v —vi)(ue — wi) — (u— ui) (Ve — vi)

(vj — vi)(uk — wi) — (uj — u;) (v — vi)
L lmu) = —w)s (0= v) = (o)~ w)s ©)

If we denote the triangle vertices as P;, P;, and Py, then the LIDAR position in 3D is
lidar Position(u,v) = (1 — s — t)P; + sP; + tPx + h up (6)

where h is the LIDAR height above the ground and up the vertical direction in world
coordinates. In our case, all terrestrial LIDARs were assumed to remain vertical. In
other contexts, a 3D triangular local normal mesh may be used.

4.3 Clash detection

LiDAR stations should not be too close, or even intersect the surveyed or blocking
geometries. In practice, an on-site operator should be able to move in the proximity of
the TLS tripod. Therefore, a cylindrical security volume is used around each station.
For simplicity, this volume is approximated by a set of two spheres, as shown in Figure
3. The first sphere is at height k1 above the ground, whereas the second is at height hs.
Both spheres have a radius of . To avoid contact with the ground, » should remain
smaller than h;. Using the Embree library from Intel, an acceleration structure is
created on a CPU containing surveyed and blocking meshes. For each LiDAR station,
the minimal distance from each sphere center C; and C2 to the meshes is computed
using an rtcPointQuery Embree function call. If one of the minimal distances is smaller
than the sphere radius, the station simulation is skipped and does not contribute to
the objective evaluation.

Figure 3: Security volume around each station. Left is front view, right is above
view.

4.4 Search space

The search space is the space in which an optimization algorithm operates. If the
number of stations N is given, as in a FIX-type problem, its dimension is 2N, as each
candidate solution of the population, or network of LiDAR stations, is represented by
a coordinate vector (u1,v1,..un,vn). The LiIDAR positions in 3D are computed on
the CPU for each station i (1 < ¢ < N) using the method described in Section 4.2.

If optimization also attempts to minimize the number of stations, as in a MIN-type
problem, then each candidate solution has a number of valid stations Nsiqtions between
two user-provided values Npin and Np,qz, which can be roughly estimated based on
the extent and complexity of surveyed geometry. Because the optimization libraries
used in our implementation (see Section 4.6) do not allow the mixing of floating-point
and integer-value coordinates, a floating value coordinate o between 0 and 1 is added
to all candidate solutions, resulting in a search space of dimension 2N,,qr + 1. The
number of stations evaluated for a given candidate is

Nstations = Tounded(Nmin + a(Nmaz - Nmzn)) (7)
If the (u,v) coordinates in the search area are bounded by [umm,umm«] and
[Umin; Umaz], then the optimizations are constrained by the following bounds:

o [(Wmin, Vmin, --Umins Umin)s (Umaz, Umaz, --Umazs Umaz)], tWo (2N) vectors for a
given number of stations,

L4 [(umin7 Umin, --Umin, Umin, 0)7 (umaz7 Umaz, --Umaz, Umaz, 1)}; two (2Nmar+1) vec-
tors in case we seek to minimize the number of stations.

10

4.5 Objectives

To assess the quality of scans provided by each candidate solution, up to three param-
eters were evaluated. The following objectives must be optimized.

4.5.1 Coverage

Coverage was measured through local point density estimation in each surveyed ge-
ometry voxel cell. The user provided a density value, generally expressed as the point
spacing every n mm. Assuming that points were locally distributed on a regular grid,
which implies a surfacic density of 1 point every n?mm?, and that voxel volumes were
locally intersected by a single planar surface with area voa:el_size2, a goal density,
representing the number of points per voxel with floating point values, can be com-
puted as the ratio WSZTMRQ After each simulation, the surveyed geometry voxel
point count voxel density (denoted voxelDensityBuf in Algorithm 2) increased by
the number of points it contained. Finally, after all stations were simulated, coverage
was estimated using the following formula:
N’U

Coverage = (8)
where N, denotes the total number of surveyed geometric voxels (sg_vozels). It
should be noted that vozel size must exceed the point spacing n so that the required
number of points per voxel goal density is at least 1.

Coverage value is in the [0, 1] range, where the maximal value of 1 corresponds to
a situation where all surveyed voxel densities have reached the density goal. Coverage
measures local densities as well as the visibility of global surveyed geometry. This
formula naturally forces the optimization method to spread stations throughout the
search area. Because the ratio % is limited to 1, it penalizes solutions with
useless local over-densities that result from an excessive number of stations covering
the same area. Furthermore, as point density decreases with distance to the LiDAR
position and grazing angles, the station positions should not be too far from the
surveyed geometry, or at too large angles of incident rays with normals.

Coverage was computed on a GPU with CUDA Thrust code without transferring
point cloud data to CPU RAM. Each point coordinate was converted into a Morton
key value that was binary searched in the surveyed geometry voxel key buffer. Subse-
quently, the point keys were counted through a histogram algorithm, resulting in the
addition of a point count per voxel. Once the simulations of all LIDAR stations were
completed, coverage was computed using a simple additive reduction of the threshold
density ratios. A 3D cartography can be exported by visualizing these density ratios
using false colors.

4.5.2 Overlap

After a scanning survey of a real site, the point clouds of each LiDAR station are
registered iteratively or globally (see [15] for a recent survey regarding this topic).
When no artificial targets are added, high overlapping between scans improves the
precision of this process by increasing the number of feature-matching pairs.

The first step of the overlap estimation method for a given candidate solution
consists of evaluating the overlapping of each of its two stations ¢ and j. To ac-
complish this, a list of stations is determined for each surveyed geometry voxel. It
should be noted that a simple condition for voxel observation is to contain at least
one point from the simulated point cloud of a given station. In practice, to preserve
memory and maintain GPU efficiency, instead of building a real list, a 64-bit long inte-
ger voxel stations_ID, initially set to 0, is associated with each surveyed geometry

11

voxel!. This value is denoted by voxelStationsIDBuf in Algorithm 2. For each point
within a point cloud, after determining the surveyed geometry voxel key that contains
it, vozxel _stations ID is modified as follows:

vozel _stations_ID < voxel _stations_ID OR lbs(1,i — 1) (9)

where i is the station index in [1, Nstations], and lbs is the left-bit shift operation. The
visibility of a given surveyed geometry voxel by station ¢ can then be represented by
the variable voxel wvisible;, whose value is 1 if

vozel _stations_ID AND lbs(1,1 —1) #0 (10)

and 0 otherwise.
The overlapping of stations ¢ and j is evaluated using

ng vowels VOTEl _visible; AN D vozxel _visible;

Overlap;,; = (11)

ng_wzels vozel _visible; OR voxel _wvisible;

with a real value in the range of [0, 1], where 0 corresponds to no overlap at all, and 1
corresponds to a perfect overlap.

Because of the symmetry of the formula Owerlap;; = Overlap;,;, and because
Overlap;,; = 1, only the NS‘“”""S(1\;5‘““'""“9_1) overlap couples have to be evaluated.

This generates an undirected weighted graph in which the adjacency matrix coef-
ficients are Owerlap;,;, with the exception of Overlap;,;, which are set to 0 because,
by convention, nodes are not connected to themselves. We evaluated the overlap of a
candidate solution as the average clustering coefficient of this graph. This coefficient
indicates the degree to which graph nodes are related. Intuitively, given a node triplet
(4,4, k), the coefficient indicates the probability that j and k are connected assuming
¢ is connected to both j and k.

For an unweighted graph with N nodes, where all adjacency coefficients A; ; are
either 0 or 1, the average clustering coefficient is

1 N
1

Ci = ki(k; — 1) ;Ai’in’kAj’k

(12)

where k; is the degree of node i.

Several generalizations of weighted graphs have been proposed (see [36]). We
decided to use the formula suggested in [29] because it is fast and numerically stable.
It also presents desirable properties, such as general versatility, continuity with the
unweighted formula, and robustness to noise. This leads to the following equation:

1 Nstations

Overlap Owverlap;

=1 (13)
1 >« Overlap; jOverlap;,kOverlap;,k

Nstations

Overlap; =
pi mazij(Overlapi;) 32, ;. Overlap;,jOverlap i

which is the overlap for a given candidate solution with a value in the range of [0, 1].

It should be noted that, because the notion of the clustering coefficient relies on
triplets of station connections, it contributes to the possible detection of numerous
feature matching pairs between point clouds. This should ensure robust and precise
global registration.

I Nymax can therefore not exceed 64 in our current implementation.

12

In our implementation, voxel station visibility was evaluated on the GPU after each
LiDAR simulation. The adjacency matrix coefficients were computed on the CPU by
dividing the results of additive reductions performed on the GPU. The final formula
(13) was evaluated on the CPU.

4.5.3 Number of stations

In an MIN problem, the objective that minimizes the number of stations is evaluated
for each candidate solution as the value of its a coordinate. This value is bounded by
0 and 1, where 0 corresponds to Nmin and 1 corresponds to Npae (see Equation 7).

4.5.4 Optimization problem types

A global optimum must be found in the search space that corresponds to a maximum
for coverage and overlap, and a minimum for « (i.e., the number of stations). As these
objectives are all in the [0, 1] range, the problem is converted into the minimization of
1 — Coverage, 1 — Overlap, and a.

Instead of always optimizing these three objectives, we addressed four optimization
problems that correspond to different combinations: COVERAGE FIX, COVER-
AGE_OVERLAP_FIX, COVERAGE_ MIN, and COVERAGE OVERLAP_MIN.
Table 2 presents the characteristics of these problems.

Optimization problem Objectives to minimize Optimization type
1 - Coverage | 1 - Overlap | a | Mono-objective | Multiobjective
COVERAGE_FIX v v
COVERAGE_OVERLAP_FIX v v v
COVERAGE _MIN v v v
COVERAGE OVERLAP MIN v v v v

Table 2: Different optimization problem types addressed.

COVERAGE _FIX is presented in this paper primarily for pedagogical purposes,
whereas the other three problems provided the most interesting results. In practice,
as discussed in Sections 5.1.2 and 5.2, for a given test case, a variety of multiobjective
optimization steps are performed to efficiently explore the search space. Decisions to
guide the search and select the best compromise must be made after each step based
on user criteria.

It should be noted that multiobjective optimization often includes conflicting ob-
jectives. In the context of this study, an increase in coverage requires a large number
of LiDAR stations to be spread in the search area, while an increase in overlap is
associated with grouping. For MIN optimization, the number of stations should be
reduced.

4.6 Optimization methods

For the COVERAGE _FIX problem, we decided to use CMA-ES [13], which is a pow-
erful global mono-objective, derivative-free method based on an evolutionary strategy.
Each iteration updates the covariance matrix of a multivariate normal distribution
in R¥*™ where dim is the dimension of the search space. This is highly efficient
because it enables learning from a second-order model of the underlying objective
function, which is similar to the approximation of the inverse Hessian matrix in the
quasi-Newton method in classical optimization. See [14] for a comparison with other
optimization methods on a benchmark. In addition, this approach has very few param-
eters to set, namely the number of iterations, population size, and standard deviation

13

sigma initial value?.

For the last three problems listed in Table 2, many multiobjective optimization
methods can be used [8], among which the most common are NGSA II, NGSA III,
and MOEA/D. Nevertheless, we selected MO-CMA-ES ([34], [17]), as it inherits the
benefits of its mono-objective version, including a rapid convergence rate and the same
number of required parameters. Furthermore, it uses the hypervolume between the
Pareto front and a reference point (the unit vector in our case) as a performance
indicator. This proves useful when it comes to knowing when to stop iterating, as
it tends to converge asymptotically to a maximum value. It should be noted here
that as the variables we seek to minimize (1 — coverage, 1 — overlap, and «) all
have minimal values of 0, the maximal theoretical hypervolume corresponds to a unit
square in the case of bi-objective optimization (COVERAGE OVERLAP_FIX and
COVERAGE_MIN), and a unit cube in the case of tri-objective optimization (COV-
ERAGE_OVERLAP_MIN).

We used libemaes [3] for the implementation of CMA-ES, and Shark [16] for that
of MO-CMA-ES. The optimizations were constrained as described in Section 4.4. For
CMA-ES, the initial population was derived from a single network of initial LiDAR
positioning provided by the user, whereas for MO-CMA-ES, it was randomly generated
in the search space.

Algorithm 2 globally sums up the LiDAR positioning optimization method em-
ployed in this study.

5 Results

5.1 Simple cases
5.1.1 Noise impact

In this first test, a LIDAR was positioned in front of three surveyed walls represented
by simple rectangles (see Figure 4). The wall material was assigned a diffuse-coefficient
value of 0.1. Two LiDAR simulations followed by coverage estimation were performed
without noise, and then performed again with noise. We used the noise parameters
listed in Table 1, and standard deviations ranged from 0.5 to 2 mm at normal incidence.
The user and voxel sizes were set to 1 cm. Point spacing was set at 1 point every 6
mm, which implies a goal density of 2.8 points per voxel.

Wwo noise | w noise

number of points 383 659 | 383 659

number of points on surface | 383 659 | 371 637
Coverage 0.308 0.299

Table 3: Evaluation results.

Table 3 indicates that the number of points found on the wall surface (i.e., in the
surveyed geometry voxels) in the presence of noise was smaller than the total number
of points. Because outliers do not contribute to coverage and overlap objective values,
simulation coverage with noise was slightly lower than that without noise. Figures 5a
and 5b denote outliers in red. Although the point density is smaller on distant walls,
these outliers are proportionally more abundant.

Adding noise to LiDAR simulations for positioning optimization introduces an
effect that tends to reinforce global trends. Solution candidates with a high noise
level — that is, with LiDAR positions too far away from the surveyed geometry, or

2For the results presented in Section 5, this value was set to 0.5.

14

Algorithm 2 General Multiobjective Optimization Algorithm.
Operations in blue are performed on GPU.

{PARAMETERS}
{lidarParameters, surveyed/blocking meshes, mesh materials, computeNoise}
{userSize, pointSpacing, search area mesh, h LIDAR height}
{h1, ha,r security volume parameters around LiDAR}
{MO-CMA-ES parameters: M population size, nblterMax number of iterations, and
sigma initial standard deviation}
{N number of stations for FIX optimization, [Nmin, Nmasz] for MIN optimization}
{INIT}
Init raytracing (Nvidia Optix pipeline and acceleration structure), allocate Cuda
buffers: point cloud positions, colors, normals, reflectivities and mesh ids
if computeNoise then
Init oversampled noiseTable and transfer it onto GPU (§3.3)
end if
vozelSize < ComputeVoxelSize(surveyed meshes, userSize) (§4.1)
Voxelize surveyed meshes and transfer result as GPU Cuda Buffer voxelKeysBuf
Allocate cuda buffers voxelDensityBuf, voxelStationsIDBuf (§4.1)
Create quadtree for search area uv coordinates (§4.2)
Create acceleration structure for clash detection (§4.3)
goal Density < ComputeGoalDensity(voxelSize, pointSpacing) (§4.5.1)
{INIT Multiobjective OPTIMIZATION POPULATION}
for p=1to M do
Init solution candidates coordinates randomly (§4.6)
{nbCoordinates are 2N (u,v) (FIX) or 2Nmae (u,v) + 1 (o) (MIN) (§4.4)}
end for
{Multiobjective OPTIMIZATION}
nblter < 0
while (nblter < nblterMax) do
for p =1 to M do
Nstations < N (FIX) or Npmin + &(Nmaz — Nmin) (MIN)
voxelDensityBuf < 0, voxelStationsIDBuf + 0
for i = 1 to Nstations do
if u; and v; found in triangle T of the search area triangle mesh (§4.2),
then
lidarPosition < UVtoXYZ(T, wu;, v; , h)
C1 + IJV’EOXYZ(T7 Uiy Vi h1), Co + Ij\/tOXYvZ(T7 Uiy Vi hg)
if NOT Clash(C1, Ca, r, surveyed/blocking meshes) (§4.3), then
pointCloud < SimulationLidar(lidarPosition, lidarParameters, sur-
veyed/blocking meshes, meshes materials, computeNoise, noiseTable)
(§3.2)
voxelDensityBuf <« ContribNbPoints(pointCloud, voxelKeysBuf)
(§4.5.1)
voxelStationsIDBuf < ContribStationID(pointCloud, voxelKeysBuf)
(§4.5.2)
end if
end if
end for
{EVALUATE OBJECTIVE VALUES FOR CANDIDATE p}
coverage, < Coverage(voxelDensityBuf, goal Density) (§4.5.1)
overlap, < Overlap(voxelStationsIDBuf) (§4.5.2)
nbStations, < « (§4.5.3)
end for
UpdatePopulation(M, sigma) (§4.6)
nblter <— nblter + 1
end while

-
(1

Figure 4: Scene with three walls, 5 m wide and 2.5 m high, placed at 10 m
(center) and 30 m (sides) from a LiDAR station.

(a) Outliers on wall at 10 m. (b) Outliers on wall at 30 m.

Figure 5: Impact of noise on coverage evaluation.

with grazing incident ray directions that generate small reflectivity values due to the
Lambertian model used (see Section 3.3) — are penalized.

5.1.2 Four walls test case

Presentation of the test case In the second test, the scene contained four
planar perpendicular walls placed on a surface such that they formed a hollow square
(see Figure 6). The walls were the surveyed geometry and the floor was the search
area. The surveyed mesh model contained 400 triangles.

The user size was set to 10 cm, and the computed surveyed geometry voxel size
was 7.8 cm. The point spacing was fixed at 1 point every 1 cm, which implied a
goal density of 61.3 points per voxel. The LiDAR had a 360° horizontal wide angle,
300° vertical wide angle, and step angle of 0.1°, which corresponds to more than 5
million rays launched per station. The LiDAR height was 1.5 m. All simulations were
performed without noise.

Coverage optimization for a fixed number of stations Using a COV-
ERAGE_FIX optimization based on mono-objective CMA-ES for a network of four
LiDAR stations, the best coverage reached after 200 iterations on a population of ten
candidate solutions was 0.89. The same result was obtained regardless of the initial
LiDAR position when performing several successive runs. The simulation and coverage
estimation for each candidate required approximately 16 ms, for a total computation

16

(a) Scene with four walls, 10 m wide 3 m (b) Search area.
high, placed on a 40 m x 40 m floor with
four TLS.

Figure 6: Simple four-wall scene.

(a) Best coverage. (b) Coverage cartography.

Threshold voxel density ratio

0.33 0.66

Figure 7: COVERAGE _FIX optimization for four stations.

time® of 30 s. The resulting simulation for the best candidate solution is shown in
Figure 7a, and its coverage cartography is displayed in Figure 7b.

This first result was not satisfactory, as the overlap for the optimal four-station
configuration was 0, because the point clouds do not share any points on the surveyed
geometry. Therefore, the question is how many stations are necessary and sufficient
to reach almost complete coverage with more overlap.

Multiobjective optimization with a linear scalarization approach The
method proposed in [4] was implemented with the following differences to allow fair

comparisons:
e I" was evaluated using our density-based coverage estimation method (see Sec-
tion 4.5.1).

3In this study, all computations were performed on a Nvidia RTX 3090 GPU 24 GB RAM
board.

17

Nmaxz—Nstation

e @, the function of the number of stations, was changed to Phi = 2 Nmae=Nmin —
1 so that Phi = 0 for Nstam’oﬂs = Nmaac and Phi =1 for Nstations = Nmzn

e The CMA-ES mono-objective method was used instead of the GA to maximize
the fitness.

Otherwise, the function A allowing the measurement of LIDAR station graph visibility,
as well as the weights \;, remained unchanged (see Section 2). Ny and Npqe were
fixed at 4 and 12 stations, respectively.

Using a population of 36 candidate solutions, the best solution found after 150
iterations performed in 75 s presented a fitness of 0.93. As shown in Figure 8, there
was a slight variation in the solution obtained previously, with four stations moving
away from the walls. Its coverage value I" was 0.83, ® was 1 as the candidate had
Nmin = 4 stations, and A was also 1 because of only one connected component as
each station is within the visual range of at least an other one. The overlap value was
still 0 because the simulated point clouds did not share any points.

(a) Candidate with best fitness. (b) Coverage cartography.

Threshold voxel density ratio

0 0.33 0.66 1

Figure 8: Candidate with best fitness found with a multiobjective linear scalar-
ization approach.

Fitness maximization enables the maximization of ® and A at the cost of a coverage
value I" lower than that obtained with our COVERAGE _FIX optimization (0.83 as
opposed to 0.89). In fact, to increase I', the optimizer needs to either bring the
stations closer to the walls, which lowers visibility and hence A, or to increase the
number of stations, which lowers ®. With the given weight values, both solution types
are discarded, as they provide suboptimal fitness. If the user requires better coverage
(almost perfect coverage, for instance), the has to increase the coverage weight A1 and
decrease all other weights, thus indirectly setting his preferences.

Our method is much more informative because it provides a Pareto front for so-
lution candidates, which allows the user to easily interpret results and determine the
best compromise. Finally, we believe that our overlap estimation objective, as formal-
ized in Section 4.5.2, is more adequate than the proposed A function for measuring
the registrability of LIDAR station point clouds.

Our multiobjective approach We proceeded in two steps. First, a COVER-
AGE _MIN multiobjective optimization was performed with Npin = 4 and Nyaz =
12. The population was set to 200 candidate solutions, and 250 iterations were per-
formed for a total computational time of 928 s. The final hypervolume reached was 0.95

18

(with a maximum of 1, as shown in Section 4.6). Figure 9 illustrates the convergence
of the Pareto front.

go,a
z
03
0,2
01
0
SEEEEEEEEEEEEEEEEE EEEREE
Nb iterations
(a) Hypervolume.
12 12
L L 11 J L
10 |- © CTOOTD - 10 - o
2 @00 © E °
2 g
E 81 o a T‘S 8 ®
w0 wn
= =
Z 4
6 - 6 amm |
o a» e -
4 Py Il Il 4 Il Il 600 ENeN e ((s))
0 02 04 06 08 1 0 02 0400 08 1
Coverage Coverage
(b) Pareto front after 10 iterations. (c) Pareto front after 250 iterations.

Figure 9: COVERAGE MIN for 4 to 12 stations.

As seen in Figure 9c, an increase in the number of stations beyond eight is not
necessary because coverage of almost 1 is already reached. Indeed, the best can-
didate solution for eight stations reached a coverage of 0.982 and overlap of 0.26.
Therefore, to find the best compromise on coverage and overlap, a second COVER-
AGE_OVERLAP_ FIX multiobjective computation was launched with a fixed number
of eight stations. The population size was again 200, and the number of iterations was
300. After computing for 1082 s, a hypervolume value of 0.97 was reached. Figure 10
shows both the hypervolume and final Pareto front.

1 s wmoe
1
09 0.8 |-
08
07
@
Eo,c 2 0.6
So, =
204 4
z © 04f
03
0,2
01 0.2
0
ﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁ N YE R EN T RAR G
ARFe3ENRE8IRe588885% FRBRY
SSS328E2RRSALRRE
Nb iterations 0 - - - -
0 0.2 0.4 0.6 0.8 1

Coverage
(a) Hypervolume. ¢
(b) After 300 iterations.

Figure 10: COVERAGE OVERLAP FIX for eight stations.

19

As can be seen in Figure 10b, the candidate that produced the best coverage, a
point in blue on the lower-right, reached an almost perfect value of 0.99. However,
because the station positions were too scattered, the overlap was only 0.16. By con-
trast, the candidate with the best overlap of 1.00, a point in red in the upper-middle
part, reached a coverage of only 0.50 because the LiDAR positions were too grouped.
A good compromise can be reached by choosing a candidate solution on the final
Pareto front with coverage 0.98, slightly below the maximum, and an overlap of 0.75
(a reddish orange point in the upper-right part).

(a) Best coverage. (b) Coverage cartography.

Threshold voxel density ratio

0 0.33 0.66 1

Figure 11: Best compromise for eight stations.

Figure 12: Best compromise overlap weighted graph.

Figure 11 shows the LiDAR positions and cartography coverage of the candidate
solution. Figure 12 shows the overlap weighted graph drawn around the four walls.
Ounly connections with significant weights (> 0.01) are represented. All other connec-
tions are either strictly 0, as the point clouds do not share any points, or very small,
as only points in the voxels of the wall edges are shared. The graph contains two
connected components, each of which groups positions into triplets, which, as noted in
Section 4.5.2, allows for more robust and precise global registration. The two compo-
nents corresponding to the point clouds can be registered with the help of edge points
shared between positions 2 and 8, and 4 and 5.

20

5.2 Complex case

The 3D model shown in Fig. 13 represents a small industrial site that contains
pipes, tanks, platforms, and relatively thin structures such as ladders, stairs, and
railings. As in the original model, closed volumes such as tanks are thick, inner
triangles were removed to avoid creating invisible voxels. The resulting model has 2.7
million triangles.

This surveyed model was placed on the ground with an embankment connected by
a slope to its central flat part. The search area was composed of nonplanar ground
together with different parts of the elevated platform model. Figures 13b and 13c
illustrate this area in 3D and 2D (u,v) coordinates, respectively. It should be noted
that in 2D parametric coordinates, the area of the ground is normalized, and the
platform element areas have the same ratios relative to the ground as in 3D coordinates.
Therefore, the (u,v) parametric coordinates encompass a rectangular area in the range
[0,1.15]x[0, 1]. The search area mesh contains 1400 triangles.

(a) Industrial site in green (15 m x 14.5 (b) Search area in 3D.
m x 4.5 m). The ground (40 m x 40 m)
has an embankment 2.3 m high.

(c) Search area in 2D (u,v) coor-
dinates.

Figure 13: Complex model.

The LiDAR simulation parameters are listed in Table 4.

Point spacing was set to 1 point every 5 mm. The horizontal and vertical step
angles allowed this spacing at a 10 m distance. More than 65 million rays were launched
per station. The user size was 1 cm, and the voxel size was 0.78 cm. The goal density
was 2.4 points per voxel. Noise was enabled for LiDAR simulations. Its parameters are
listed in Table 1. The diffuse coefficient of the surveyed mesh material was assigned
an arbitrary value of 0.24 in relation to the dark green aspect of the model.

Optimization search was performed in two steps:

21

Horizontal wide angle 360°

Vertical wide angle 300°
Step angles 0.0286°

Distance range [dmin, dmaz) | 0.1 - 130 m

LiDAR height h 1.85 m
Security volume h1l 0.6 m
Security volume h2 1.35 m
Security volume r 0.5 m

Table 4: LiDAR simulation parameters.

e First, a broad phase search of type COVERAGE _OVERLAP _MIN with Np,in =
8 and Nmaz = 20
o followed by a narrower phase search of type COVERAGE_OVERLAP _FIX for

a minimal number of stations, allowing almost identical coverage to the previous
Nmax .

pervolume
e L oD
SrER

Nb Stations

mmmmmmmmmmmmmmmmmmmmmmmmmmm
2R52ZRNB53IR3LE8388853F38R8
NNNNNNNNNNNNNNNN

Nb iterations

0.2 .
Overlap 00 Coverage

(a) Hypervolume. (b) Pareto front.

Figure 14: Complex model COVERAGE OVERLAP MIN.

For the first optimization step, 250 candidate solutions and 300 iterations were
used. As shown in Figure 14a, the hypervolume curve is yet to reach its asymptote.
Nevertheless, this provides us with the first useful insight. Each candidate evalua-
tion, which includes LiDAR 3D position computation from (u,v) coordinates, clash
detection around stations, LiDAR simulations, and objective value computation, re-
quires an average of 314 ms. With a total of 75 000 candidates estimated, the overall
computation time for this step was 23 421 s. The final Pareto front in 3D, with a
hypervolume of 0.362, is presented in Fig. 14b. Here, the blue dots correspond to
candidates with a small number of LiDAR positions. Although these points may have
a high overlap of approximately 1, their coverage remains small, at 0.410 for the best
eight positions candidate. By contrast, the red dots correspond to the highest coverage
(0.542 for a 16-station candidate), while their overlap struggles to be sufficient. As the
population no longer contains candidates with more than 19 stations (meaning they
are dominated solutions), and considering the two best 15-station candidates rank 3rd
and 5th with respective coverages of 0.520 and 0.501, while their overlap is 0.273 and
0.200, we decided to stick to 15 stations for the next step.

Subsequently, a second optimization search step was performed for 15 LiDAR
stations, with a population of 250 candidate solutions and 600 iterations. The final
Pareto front obtained in 2D (Figure 15b) reached a hypervolume of 0.441, which
appeared near the asymptotic value (Figure 15a). The average computation time for a
single candidate was 394 ms. Because 150 000 candidate solutions were evaluated

22

05 \
045 0.8 |-

0 \
035 S

0.6 - .

03

0,25

02 l

0.4 ‘x |
0,15
0,1

0,05 021} B

Hypervolume

Overlap

Nb iterations 0 ! ! ! !
0 0.2 0.4 0.6 0.8 1

Coverage

(a) Hypervolume.
(b) Pareto front.

Figure 15: Complex model COVERAGE OVERLAP_FIX for 15 stations.

in total, the total optimization time was 59 106 s, i.e., more than 16 h. Again,
a compromise was required. We chose to select the candidate with the sixth best
coverage of 0.575. Although its coverage was slightly lower than the best case of
0.578, it produced a higher overlap of 0.340 compared with the 0.304 in the optimal
coverage case. The 15 LiDAR positions and corresponding overlap-weighted graphs are
shown in Figure 16. In Figure 16b, only links with weight values larger than 0.05 are
displayed. The stations were closely connected, each with 1-6 significant overlapping
links. A maximum Overlap; ; value of 0.37 was reached for Stations 2 and 9. Station
12 is on the platform, Stations 1, 5, 8, and 14 are on the slope, and Station 13 is on
top of the embankment.

The global point cloud for this candidate solution with 15 stations reached 366.5
million points, the majority of which are on the ground. Amongst the 103.9 million
intersection points with the surveyed meshes, 102.6 were found in the surveyed geom-
etry voxels, which means there were very few outliers due to geometric noise. Figure
17 shows both the point cloud and its coverage cartography from different perspec-
tives. The main area of the site was scanned with a satisfactory point density. Thin
structures, such as ladders or railings, and small objects, such as bolts, can be clearly
identified in the scan.

However, some parts could not be scanned correctly for the following two reasons.

e Some areas have limited access. This is the case, for instance, for a platform or
between a tank and a main pipe (see Figures 18a and 18b, where the security
volume is represented by two transparent orange spheres). When clash detection
is performed, these areas correspond to very restricted and isolated areas in
the (u,v) parametric search space. Therefore, the optimization method has
difficulties reaching and exploring these places further.

e As the LiDAR height was kept constant, high (see Figure 18c) and low (see
Figure 18d) areas could not be seen.

6 Possible improvements

In our method, most LiDAR parameters were fixed for each candidate. Some of
these parameters could also be part of the optimization process. For example, LIDAR
height can vary between stations?, thus reaching areas that would otherwise remain
inaccessible, as discussed in Section 5.2. Another parameter that may vary between

4In real world, the tripod legs can be shortened. Likewise, in order to reach high viewpoints,
telescopic poles can be used.

23

(b) Overlap weighted graph. Only the

(a) Top view of the 15 stations and sim-))
links with Overlap;,; > 0.05 are shown.

ulated point clouds.

(c) Perspective view.

Figure 16: Best positioning compromise found for 15 stations.

candidate solutions is the LIDAR step angle. Although these angles were fixed at the
beginning of the survey, smaller step angles may provide solutions with fewer LiDAR
stations.

Furthermore, in the studies presented in Section 5, the best solution was obtained
after several iterative optimization steps. This workflow can be integrated into an
interactive optimization process [38], where the user progressively chooses to focus the
computational effort on parts of the search space.

Finally, the LiDAR model could become more complex to enable more realistic
scanning. This would enable a higher quality of noise and artifacts, such as mixed
and isolated points, due to reflection and refraction. In survey cases where these
phenomena are not negligible, this should provide an interesting improvement in the
solutions.

7 Conclusion

A novel method for optimizing the positioning of a network of terrestrial LIDAR sta-
tions on an a priori known 3D triangular mesh model was presented. This method
relies on fast, GPU-based, and realistic 3D simulations that account for noise; explores
complex search areas; and detects clashes using geometry. The use of a multiobjec-
tive approach allows for final decision-making based on rich and informative results.

24

(a) General view. (b) General view coverage.

(d) General view coverage (opposite
side).

(e) Close-up view. (f) Close-up view coverage.

Threshold voxel density ratio

o

0.33 0.66 1

Figure 17: Simulated point clouds and coverage cartography for selected best
candidate solution with 15 stations.

Experiments were presented on simple cases, and then on a complex industrial case,
demonstrating the effectiveness of the method.

In the future, we plan to further accelerate computations using multiple GPUs to
perform parallel evaluations of the candidate solutions for a given population at each
iteration.

25

(a) Limited access to platform. Trans- (b) Limited access between pipe and
parent orange spheres are the security tank.
volume.

(c) Coverage cartography - top view. (d) Coverage cartography - bottom view.

Threshold voxel density ratio

0 0.33 0.66 1

Figure 18: Difficult areas to scan.

Acknowledgements

3D models were obtained from the GrabCad website community library. We credit
Alexey Epov for the factory structure model (Section 3.2), and Enes Hodzic for the
industrial equipment model (Section 5.2).

We would like to express our sincere thanks to the anonymous reviewers, whose
comments and suggestions helped improve and clarify this manuscript.

References

[1] Jaehong Ahn and Kwangyun Wohn. Interactive scan planning for heritage record-
ing. Multimedia Tools Appl., 75(7):3655-3675, apr 2016.

[2] Afrooz Aryan, Frédéric Bosché, and Pingbo Tang. Planning for terrestrial laser
scanning in construction: A review. Automation in Construction, 125:103551,
2021.

26

(3]

[4]

[5]

[6]

[7]

(8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

Emmanuel Benazera and Nikolaus Hansen. https://github.com/cma-es/libcmaes,
2014.

Elena Cabrera Revuelta, Maria-José Chéavez, José Antonio Barrera Vera, Yago
Fernandez Rodriguez, and Manuel Caballero Sanchez. Optimization of laser scan-
ner positioning networks for architectural surveys through the design of genetic
algorithms. Measurement, 174:108898, 2021.

Meida Chen, Eyuphan Koc, Zhuoya Shi, and Lucio Soibelman. Proactive 2d
model-based scan planning for existing buildings. Automation in Construction,
93:165-177, 2018.

Youness Dehbi, Johannes Leonhardt, Johannes Oehrlein, and Jan-Henrik
Haunert. Optimal scan planning with enforced network connectivity for the ac-
quisition of three-dimensional indoor models. ISPRS Journal of Photogrammetry
and Remote Sensing, 180:103-116, 2021.

Alexey Dosovitskiy, German Ros, Felipe Codevilla, Antonio Lopez, and Vladlen
Koltun. Carla: An open urban driving simulator, 2017.

Michael T. Emmerich and André H. Deutz. A tutorial on multiobjective op-
timization: Fundamentals and evolutionary methods. Natural Computing: An
International Journal, 17(3):585-609, sep 2018.

M. Giorgini, S. Marini, R. Monica, and J. Aleotti. Sensor-based optimization
of terrestrial laser scanning measurement setup on gpu. IEEE Geoscience and
Remote Sensing Letters, 16(9):1452-1456, 2019.

A. A. Goodenough and S. D. Brown. Dirsigh: Next-generation remote sensing
data and image simulation framework. IEEE Journal of Selected Topics in Applied
Earth Observations and Remote Sensing, 10(11):4818-4833, 2017.

Michael Gschwandtner, Roland Kwitt, Andreas Uhl, and Wolfgang Pree. Blensor:
Blender sensor simulation toolbox. In Advances in Visual Computing, pages 199—
208. Springer Berlin Heidelberg, 2011.

Yulan Guo, Hanyun Wang, Qingyong Hu, Hao Liu, Li Liu, and Mohammed Ben-
namoun. Deep learning for 3d point clouds: A survey. IEEE Transactions on
Pattern Analysis and Machine Intelligence, 43(12):4338-4364, 2021.

N. Hansen. The CMA evolution strategy: a comparing review. In J.A. Lozano,
P. Larranaga, I. Inza, and E. Bengoetxea, editors, Towards a new evolutionary
computation. Advances on estimation of distribution algorithms, pages 75-102.
Springer, 2006.

Nikolaus Hansen, Anne Auger, Raymond Ros, Steffen Finck, and Petr Posik.
Comparing Results of 31 Algorithms from the Black-Box Optimization Bench-
marking BBOB-2009. In ACM-GECCO Genetic and Evolutionary Computation
Conference, Portland, United States, July 2010. pp. 1689-1696.

Xiaoshui Huang, Guofeng Mei, Jian Zhang, and Rana Abbas. A comprehensive
survey on point cloud registration, 2021.

Christian Igel, Verena Heidrich-Meisner, and Tobias Glasmachers. Shark. Journal
of Machine Learning Research, 9:993-996, 2008.

Christian Igel, Thorsten Suttorp, and Nikolaus Hansen. Steady-state selection
and efficient covariance matrix update in the multi-objective cma-es. In Shigeru
Obayashi, Kalyanmoy Deb, Carlo Poloni, Tomoyuki Hiroyasu, and Tadahiko Mu-
rata, editors, Evolutionary Multi-Criterion Optimization, pages 171-185, Berlin,
Heidelberg, 2007. Springer Berlin Heidelberg.

Fengman Jia and Derek D. Lichti. A comparison of simulated annealing, genetic
algorithm and particle swarm optimization in optimal first-order design of indoor
tls networks. ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial
Information Sciences, pages 7582, 2017.

27

[19]

[20]

[21]

22]

23]

24]

[25]

[26]

27]

28]

29]

[30]

31]

[32]

[33]

Fengman Jia and Derek D. Lichti. A model-based design system for terrestrial
laser scanning networks in complex sites. Remote Sensing, 11(15), 2019.
Mi-Kyeong Kim, Bin Li, Je-Sung Park, Su-Jin Lee, and Hong-Gyoo Sohn. Opti-
mal locations of terrestrial laser scanner for indoor mapping using genetic algo-
rithm. In The International Conference on Control, Automation and Information
Sciences, ICCAIS 2014, Gwangju, South Korea, December 2-5, 201/, pages 140—
143. IEEE, 2014.

Julien Kritter, Mathieu Brévilliers, Julien Lepagnot, and Lhassane Idoumghar.
On the optimal placement of cameras for surveillance and the underlying set cover
problem. Applied Soft Computing, 74:133-153, 2019.

Christian Landgraf, Bernd Meese, Michael Pabst, Georg Martius, and Marco F.
Huber. A reinforcement learning approach to view planning for automated in-
spection tasks. Sensors, 21(6), 2021.

K. Majek and J. Bedkowski. Range sensors simulation using gpu ray tracing. In
Proceedings of the 9th International Conference on Computer Recognition Systems
CORES, 2015.

S. Manivasagam, S. Wang, K. Wong, W. Zeng, M. Sazanovich, S. Tan, B. Yang,
W. Ma, and R. Urtasun. Lidarsim: Realistic lidar simulation by leveraging the
real world. In 2020 IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), pages 11164-11173, Los Alamitos, CA, USA, jun 2020.
IEEE Computer Society.

Morteza Heidari Mozaffar and Masood Varshosaz. Optimal placement of a ter-
restrial laser scanner with an emphasis on reducing occlusions. Photogrammetric
Record, 31:374-393, 2016.

Manon Peuzin-Jubert, Arnaud Polette, Dominique Nozais, Jean-Luc Mari, and
Jean-Philippe Pernot. Survey on the View Planning Problem for Reverse
Engineering and Automated Control Applications. Computer-Aided Design,
141:103094, December 2021.

Guodong Rong, Byung Hyun Shin, Hadi Tabatabaee, Qiang Lu, Steve Lemke,
Marting Mozeiko, Eric Boise, Geehoon Uhm, Mark Gerow, Shalin Mehta, Eu-
gene Agafonov, Tae Hyung Kim, Eric Sterner, Keunhae Ushiroda, Michael Reyes,
Dmitry Zelenkovsky, and Seonman Kim. Lgsvl simulator: A high fidelity simula-
tor for autonomous driving, 2020.

Ahmet Saglam and Yiannis Papelis. Scalability of sensor simulation in ros-gazebo
platform with and without using gpu. In 2020 Spring Simulation Conference
(SpringSim), pages 1-11, 2020.

Jari Saramidki, Mikko Kiveld, Jukka-Pekka Onnela, Kimmo Kaski, and Janos
Kertész. Generalizations of the clustering coefficient to weighted complex net-
works. Phys. Rev. E, 75:027105, Feb 2007.

Michael Schwarz and Hans-Peter Seidel. Fast parallel surface and solid voxeliza-
tion on GPUs. ACM Transactions on Graphics, 29(6 (Proceedings of SIGGRAPH
Asia 2010)):179:1-179:9, December 2010.

Ming-Zhang Song, Zhenglai Shen, and Pingbo Tang. Data quality-oriented 3d
laser scan planning. In Construction Research Congress, 2014.

S. Soudarissanane and R. Lindenbergh. Optimizing Terrestrial Laser Scanning
Measurement Set-Up. ISPRS - International Archives of the Photogrammetry,
Remote Sensing and Spatial Information Sciences, 3812:127-132, September 2011.

Sylvie Soudarissanane, Roderik C. Lindenbergh, Massimo Menenti, and Peter
J. G. Teunissen. Incidence angle influence on the quality of terrestrial laser scan-
ning points. In Proceedings ISPRS Workshop Laserscanning 2009, 1-2 Sept 2009,
Paris, France, 2009.

28

[34]

[35]

[36]

37]

[38]

[39]

Thomas Vofs, Nikolaus Hansen, and Christian Igel. Improved Step Size Adapta-
tion for the MO-CMA-ES. In Genetic And Evolutionary Computation Conference,
pages 487-494, Portland, United States, July 2010. ACM.

X. Wang, H. Zhang, and H. Gu. Solving optimal camera placement problems in
iot using lh-rpso. IEEE Access, 8:40881-40891, 2020.

Yu Wang, Eshwar Ghumare, Rik Vandenberghe, and Patrick Dupont. Comparison
of different generalizations of clustering coefficient and local efficiency for weighted
undirected graphs. Neural Comput., 29(2):313-331, feb 2017.

Lukas Winiwarter, Alberto Manuel Esmoris Pena, Hannah Weiser, Katharina
Anders, Jorge Martinez Sanchez, Mark Searle, and Bernhard Hoéfle. Virtual laser
scanning with helios++: A novel take on ray tracing-based simulation of topo-
graphic 3d laser scanning, 2021.

Bin Xin, Lu Chen, Jie Chen, Hisao Ishibuchi, Kaoru Hirota, and Bo Liu. Interac-
tive multiobjective optimization: A review of the state-of-the-art. IEEE Access,
6:41256-41279, 2018.

Cheng Zhang, Vamsi Sai Kalasapudi, and Pingbo Tang. Rapid data quality
oriented laser scan planning for dynamic construction environments. Advanced
Engineering Informatics, 30(2):218-232, 2016.

29

