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Abstract

Quantization-Aware Training (QAT) has recently
showed a lot of potential for low-bit settings in the con-
text of image classification. Approaches based on QAT
are using the Cross Entropy Loss function which is the
reference loss function in this domain. We investigate
quantization-aware training with disentangled loss func-
tions. We qualify a loss to disentangle as it encourages the
network output space to be easily discriminated with linear
functions. We introduce a new method, Disentangled Loss
Quantization Aware Training, as our tool to empirically
demonstrate that the quantization procedure benefits from
those loss functions. Results show that the proposed method
substantially reduces the loss in top-1 accuracy for low-bit
quantization on CIFAR10, CIFAR100 and ImageNet. Our
best result brings the top-1 Accuracy of a Resnet-18 from
63.1% to 64.0% with binary weights and 2-bit activations
when trained on ImageNet.

1. Introduction
Many deep learning advances rely on increasing the

number of parameters and computation power to achieve
better performance. Also, the interest of deploying deep
neural networks on edge mushroomed in the past few
years. Critical applications with real-time constraints such
as memory, latency, energy/power consumption, with spe-
cific scarce resource hardware or with privacy issues, cannot
be inferred on Cloud. In this context, low-bit quantization
is an elegant solution to allow significant memory footprint
reduction, energy savings, and faster inference once engi-
neered with hardware accelerators, while preserving per-
formance and quality of results as close as possible to the
floating-point reference.

The latest proposals present approaches to quantization
aware training, where networks trained and quantized from
scratch showed promising results for settings from 8 bits
down to 2 bits [4, 9]. Those methods rely on the Cross
Entropy Loss (CEL) function, i.e., a combination of soft-
max and negative log likelihood, as it is the reference loss

function for classification. A variation of the softmax was
proposed by Liu et al. to encourage more discriminating
features for image classification [13]. This research led to
disruptive performance gains, especially in the face recog-
nition domain [12,18], where the number of classes is an or-
der of magnitude higher than academic image classification
tasks. Also, Wan et al. used Gaussian Mixtures to formalize
the classification space and encourage more discriminating
features [17].

To date, the effect of those loss functions on
quantization-aware training (QAT) remains unexplored.
Our paper studies the quantization aware learning with
disentangled loss functions for settings down to binary
weights. We empirically show that training a model to out-
put discriminative features improves its resilience to quan-
tization. Results on CIFAR10, CIFAR100 and ImageNet
datasets show the clear advantage of our approach, with sig-
nificant performance gains, especially for very low-bit set-
tings.

This paper is organized as follows. Section 2 presents
some previous work on QAT as well as the foundation
of disentangled loss functions. Section 3 introduces our
method that takes advantage of both AMS and GML to im-
prove the QAT procedure. Section 4 presents our experi-
mental setup and the results obtained on relevant datasets.

2. Previous Work
To better understand the intuition behind our approach,

we first give a brief review of the state-of-the-art techniques
on quantization-aware training and disentangled losses.

2.1. Quantization Aware Training

Given a network f : Rn ⇒ R with its parameters p,
an input x ∈ Rn and its corresponding label y, we refer
to quantization aware training (QAT) for classification as
finding the non-differentiable quantization function q with
the loss function L as

min
p

L[f(x, q(p)), y]. (1)

Bengio et al. proposed the Straight-Through-Estimator
(STE) to enable training with backpropagation [1]. The



STE method estimates the gradients of the quantized pa-
rameters assuming that the derivative of the quantization
function q is the identity function. Such approximation
error grows bigger as the bitwidth goes smaller hence de-
creasing the performance for low-bit settings. Esser et al.
tackled this issue by scaling dynamically the gradients with
a learnable step [4]. Following their method, the gradient
landscape is shaped to encourage the full precision param-
eters towards the quantized points. Doing so, the proposed
Learned Step Size Quantization (LSQ) method implicitly
reduces the approximation error introduced by the STE and
shows substantially better results over the previous quanti-
zation techniques. Alternatively, the Scaled Adjust Train-
ing (SAT) method introduced by Jin et al. directly scales
the weights instead of the gradients to control the training
dynamics, which yields state-of-the-art results [9]. We refer
the interested readers to [9] for a detailed presentation of the
quantization method.

2.2. Disentangled Losses

We qualify a loss to disentangle as it encourages the
network output space to be easily discriminated with lin-
ear functions. Inspired by Large-Margin Softmax [13] and
Sphereface [12], Wang et al. proposed an intuitive formu-
lation of the margin softmax loss function called Additive
Margin Softmax (AMS) [18]. The authors considered the
propagation of features fi (from the i-th sample with tar-
get yi) in the linear layer without bias as scalar products for
each column j of the weight matrix W . They used the ge-
ometric definition of the scalar product of Eq. (2), coupled
with feature and weight normalization to rewrite the loss
function applying a margin m on the target logit WT

yi
fi and

a scaling factor s, following Eq. (3).

fi ·Wj = ∥Wj∥∥fi∥cos(θj) (2)

LAMS = − 1

n

n∑
i=0

log
es·(cos θyi−m)

es·(cos θyi−m) +
∑c

j=1, j ̸=yi
es·(cos θj)

(3)
The softmax output probabilities can be interpreted as a vec-
tor of dimension n, n being the number of classes. The one-
hot vectors encoding the different classes are the orthogonal
vectors that construct the canonical basis of Rn. Here, the
subtracted margin m acts as a classification boundary off-
set, forcing the network to output features that are closer to
the orthogonal vector corresponding to their label, thus re-
ducing the intra-class variance of each class cluster in the
network.

Wan et al. proposed to model the classification layer
with Gaussian mixtures [17]. The Gaussian Mixture Loss
(GML) draws the distances dk between features f and the
learned means µk to minimize the distance to the mean as-
sociated to the true label dzi . A positive margin factor α

artificially inflates the distance dzi to help regulate the con-
vergence of the network. Under the assumption that the co-
variance matrix is isotropic, the GML can be rewritten as

LGM = − 1

n

n∑
i=0

log
e−dzi

(1+α)

e−dzi
(1+α) +

∑
k=1, k ̸=zi

e−dk
(4)

with dk =
1

2
(f − µk)

2 (5)

3. Disentangled Loss Quantization Aware
Training

Considering that features can be more discriminative
than with CEL, we assume that low-bit quantization-aware
training can benefit from a disentangled loss. Indeed, a
smaller intra-class variance and a bigger inter-class differ-
ence should be more robust to the quantization noise. With
CEL, the inter-class features are optimized to be orthogo-
nal without constraint on their actual distance in the output
space. While it is also true for AMS, it still allows for an
additional margin on the orthogonality. On contrary, GML
directly minimizes the distance between the features and
their corresponding centroids, thus, minimizing the intra-
class variance. The use of learned centroids instead of or-
thogonal features ensures that the distance between inter-
class features is constrained by the distance of their respec-
tive centroids, as the features are attracted to their corre-
sponding centroids. To reformulate, while AMS loss en-
courages a smaller intra-class variance than CEL, GML en-
sures both a smaller intra-class variance and a bigger inter-
class difference than CEL. This is why our hypothesis is
that there is a possibility to investigate the combination of
several state-of-the-art methods: the presented disentangled
loss functions with the SAT procedure [9]. In order to as-
sess our hypothesis, we introduce Disentangled Loss Quan-
tization Aware Training (DL-QAT), a method applying the
intuitive formulation of AMS or GML loss function with
the quantization-aware training method SAT [9].

4. Experiments
4.1. Training setups

All experiments use a Resnet-18 [7] with the CIFAR10,
CIFAR100 [10] and ILSVRC 2012 ImageNet dataset [3].
The batch size is 768 for CIFAR and 1024 for ImageNet.
We use the same learning strategy as [9]. When training on
CIFAR, the learning rates are 0.01 for SAT using CEL &
DL-QAT using AMS loss and 0.2 for DL-QAT using GML.
When training on ImagNet, the learning rate is 0.02 for both
SAT using CEL and DL-QAT using GML. All networks
are trained over 150 epochs. Finally, we use m = 0.35
from Eq. (3) and α = 0.7 from Eq. (4) for CIFAR and α = 0
for ImageNet as they give best results.



SAT [9] DL-QAT (ours) SAT [9] DL-QAT (ours)
Dataset W [bits] A [bits] AccCEL AccAMS AccGML ∆PCEL ∆PAMS ∆PGML

CIFAR10
32 32 89.4 91.7 93.0 – – –
2 2 76.5 89.1 91.3 12.9 2.6 1.7
binary 2 72.4 88.3 91.2 17.0 3.4 1.8

CIFAR100

32 32 66.2 68.7 73.6 – – –
8 8 65.8 68.5 73.1 0.4 0.2 0.5
4 4 65.4 68.4 72.6 0.8 0.3 1.0
3 3 65.1 68.2 73.3 1.1 0.5 0.3
2 2 61.1 66.1 71.9 5.1 2.6 1.7
binary 8 63.9 67.9 72.5 2.3 0.8 1.1
binary 4 63.2 67.1 72.5 3.0 1.6 1.1
binary 3 62.4 67.0 72.0 3.8 1.7 1.6
binary 2 59.0 65.5 71.3 7.2 3.2 2.3

Table 1. Top-1 Accuracy on vanilla Resnet-18

As it is common practice in the previous quantization
approaches [4, 9], the precision of filters from the first con-
volution, the weights of the last layer and the activation
preceding the last layer are fixed to 8 bits. Also, all batch
normalization layers and the bias in the linear layer are not
quantized.

4.2. Results and analysis

To better visualize the contribution of the AMS loss and
the GML during quantization, we performed dimension re-
duction with the t-sne algorithm [16] over the input features
of the linear classifier. The features fed to the t-sne algo-
rithm are extracted from the converged Resnet-18 inferring
with the same sets of 50 test images for each class. The
2D visualisations from full precision and 2-bit Resnet-18
for CEL, AMS loss and GML are plotted in Fig. 1. As ex-
pected, the full precision Resnet-18 clusters with AMS loss
(c) and GML (e) are more compact than with CEL (a). It is
then manifest that separating the clusters thanks to straight
lines modelled by the linear classifier will be made easier.
Comparing full precision in Fig. 1.(a-c-e) to 2-bit quantiza-
tion in Fig. 1.(b-d-f), the clusters with the quantized version
are less compact, and we can interpret this as the effect of
the quantization. Comparing Fig. 1.(b) to (d) and (f), the
plots show that the ambiguities caused by the quantization
are reduced thanks to the disentangled losses.

4.2.1 CIFAR10 & CIFAR100

The top-1 test accuracies on CIFAR10 and CIFAR100 of the
proposed DL-QAT method (AccAMS) and (AccGML) com-
pared to the SAT method (AccCEL) are reported in Tab. 1.
The lines with 32 here corresponds to single-precision
floating-point, which is considered as the full precision
baseline. Tab. 1 also reports the ∆Ploss quality metric to
compare the QAT methods defined as

∆Ploss = Accfloat32loss −Accquantloss . (6)

(a) full-precision CEL (b) 2-bit W&A CEL

(c) full-precision AMS loss (d) 2-bit W&A AMS loss

(e) full-precision GML (f) 2-bit W&A GML

Figure 1. Dimension reduction with t-sne algorithm representing
the input features of the linear classifier from CIFAR10 test data.
The corresponding top-1 test accuracies are reported in Tab. 1. t-
sne performed over 1000 iterations and a perplexity of 30.

∆Ploss measures the drop in top-1 accuracy between the
full precision version and a quantized version of a network
trained with the same loss function. Given ∆PGML and
∆PCEL, we can better compare the quantization resilience
between disentangled losses and CEL. One noticeable result
is that Resnet-18 with binary weights and 2-bit activations
trained with GML (71.3%) outperforms the full precision
Resnet-18 trained with CEL (66.2%). We also want to em-
phasize that ∆PCEL > ∆PAMS and ∆PCEL > ∆PGML

for all settings. As the precision is reduced, the drop in top-



Method LSQ
[4]

HAWQ-
V3 [20]

SAT
[9]

DL-QAT
GML (ours)

ABC-
Net [11]

INQ
[22]

SAT
[9]

DL-QAT
GML (ours)

LSQ
[4]

SAT
[9]

DL-QAT
GML (ours)

W [bits] 4 4 4 4 2 2 2 2 2 2 2
A [bits] 4/32* 4 4 4 32 32 8 8 2/32* 2 2
Top-1 Acc 71.1 68.5 70.0 70.1 63.7 66.0 67.4 67.9 67.6 63.1 64.0
* For LSQ, the residual connections remain in the accumulation dynamic.

SAT and DL-QAT results are obtained from our experiments, all the other results are reported from the original papers.
DL-QAT, SAT → original Resnet-18. LSQ → full pre-activation Resnet-18.

Table 2. ImageNet Top-1 Accuracy for low-bit quantization settings of Resnet-18.

Method BWN
[15]

ABC-
Net [11]

BWNH
[8]

DSQ
[6]

Q-Nets
[19]

IR-Net
[14]

SYQ
[5]

PACT
[2]

LQ-
Net [21]

SAT [9] DL-QAT GML (ours)

W [bits] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
A [bits] 32 32 32 32 32 32 8 2 2 8 4 2 8 4 2
Top-1 Acc 60.8 62.8 64.3 63.7 66.5 66.5 62.9 62.9 62.6 67.5 66.9 63.1 67.5 67.2 64.0

SAT and DL-QAT results are obtained from our experiments, all the other results are reported from the original papers.
DL-QAT, SAT → original Resnet-18. PACT → full pre-activation Resnet-18. LQ-Net → Resnet-18 type-A. BWN → Resnet-18 type-B.

Table 3. ImageNet Top-1 Accuracy for binary weights settings of Resnet-18.

1 accuracy grows larger. Our approach especially well lim-
its the drop in top-1 accuracy for low-bit settings. Hence,
the discriminative features, enforced by the AMS loss or
the GML, enable more resilient quantization-aware train-
ing than the CEL, especially for low-bit settings. Overall,
a clear tendency appears where AccCEL < AccAMS <
AccGML. Indeed, GML minimizes the intra-class variance
and constraint the distances of inter-class features while the
AMS loss only minimizes the intra-class variance. Those
results confirms our hypothesis on the loss function that
both intra-class variance and inter-class difference need to
be constraint.

4.2.2 ImageNet

In this section, we evaluate the performance of our method
using the ImageNet dataset. Considering the results on CI-
FAR and our hypothesis on the losses, we chose to focus
on the GML for ImageNet experiments. We report the top-
1 test accuracy on ImageNet of our method DL-QAT us-
ing the GML and the SAT method [9] using CEL and other
state-of-the-art approaches in Tab. 2 for low-bit settings and
in Tab. 3 for binary weights settings.

As we read Tab. 2 and Tab. 3 from left to right, the quan-
tization is more and more aggressive. Considering our ex-
perimental results only (DL-QAT using GML and SAT us-
ing CEL), the gap between the disentangled loss GML and
the CEL is getting bigger as the settings reach more ex-
treme quantization. Ultimately, in the binary weights and
2-bit activation setting, our approach reaches an accuracy
of 64, 0%, improving by 0.9% the CEL score of 63.1%.

When comparing our method to the other approaches,
the version of Resnet-18 and the quantization method mat-
ter. Notably, the Resnet-18 results reported in Esser et

al. [4] use pre-activation quantization scaling and thus keep
the residual connections in the same precision as the accu-
mulation (i.e., 32 bits). While this significantly improves
the final accuracy in low precision, the actual precision of
the dataflow is not strictly the activation’s precision. For
this reason, we have chosen to keep Resnet-18 with post-
activation for our experiments, which makes it however not
fully comparable with the LSQ reported results. For 2-
bit weights, our method achieves substantial improvement
over ABC-Net [11] and INQ [22], while the setting is more
constraining on the activations. One noticeable result over
the binary weights experiments is that our method with 4-
bit activations reaches 67.2% and surpasses all other ap-
proaches with full precision or 8-bit activations. Looking
at the stricter quantization setting with binary weights and
2-bit activations, our approach achieves the highest perfor-
mance with 64% top-1 accuracy. Over all approaches, our
method demonstrates the best performance on ImageNet for
extreme quantization.

5. Conclusion
In this paper, we target very-low-bit settings and propose

to study multiple losses to further reduce the gap in accuracy
of quantization. We introduce DL-QAT, a method combin-
ing quantization-aware training and disentangled losses, as
our tool to investigate the contribution of those different
loss functions for extreme quantization. Preliminary ex-
periments on CIFAR10 and CIFAR100 are conducted to
visualise and lighten the advantage of our method. Fur-
ther results on ImageNet show that our approach improves
by nearly 1% the top-1 accuracy of Resnet-18 with binary
weights and 2-bit activations. Overall, the experiments con-
firm our hypothesis and encourage future use and research
of disentangled losses for Quantization Aware Training.
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