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ARTICLE

Reinforcing materials modelling by encoding the
structures of defects in crystalline solids into
distortion scores
Alexandra M. Goryaeva 1✉, Clovis Lapointe1, Chendi Dai1, Julien Dérès1, Jean-Bernard Maillet2 &

Mihai-Cosmin Marinica 1✉

This work revises the concept of defects in crystalline solids and proposes a universal

strategy for their characterization at the atomic scale using outlier detection based on sta-

tistical distances. The proposed strategy provides a generic measure that describes the

distortion score of local atomic environments. This score facilitates automatic defect locali-

zation and enables a stratified description of defects, which allows to distinguish the zones

with different levels of distortion within the structure. This work proposes applications for

advanced materials modelling ranging from the surrogate concept for the energy per atom to

the relevant information selection for evaluation of energy barriers from the mean force.

Moreover, this concept can serve for design of robust interatomic machine learning poten-

tials and high-throughput analysis of their databases. The proposed definition of defects

opens up many perspectives for materials design and characterization, promoting thereby the

development of novel techniques in materials science.
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A perfect crystal is a purely theoretical concept. Real-world
crystals contain imperfections, also called defects. Some
simple defects, such as vacancies, are always present in

crystals at a concentration of thermodynamic equilibrium. The
concentration and morphology of defects influence the properties
of crystalline solids. For instance, the scattering of electrons and
phonons on defects underlies the electronic and thermal con-
ductivity. Furthermore, the energy and kinetics of defects essen-
tially control the material’s plasticity, viscosity and evolution of its
microstructure. As a result, the ability of crystalline materials to
fulfil a set of design criteria is controlled by static and kinetic
properties of defects population, either in thermodynamic equi-
librium or non-equilibrium. Identification and characterization of
defects provide crucial information for interpretation of simula-
tions and experiments that bridge the gap between atomic and
micrometre scales. This work introduces a novel concept of defect
characterization at the atomic scale with the aim to reinforce the
cutting-edge methods of materials modelling, such as free energy
evaluation from the mean force, quantum mechanics/molecular
mechanics (QM/MM) simulations and the design of robust
interatomic machine learning (ML) potentials.

Present-day materials science enables simulations of defect
nucleation, recombination, migration and transition at the atomic
scale by means of ultra large scale experiments1–3. Facilitated by
the continuous increase in computational power and parallel
computing, these objectives are achieved using traditional mole-
cular dynamics (MD), quantum-classical QM/MM simulations4–6

and by a rapidly growing number of fast exploring, biased in
energy7 or mean force8,9 methods and other simulation schemes,
such as accelerated MD10 or statistical learning approaches11.
However, the application of these methods is often hindered by
the general inability to extract the relevant information about the
defects or to define a suitable set of collective variables that drive
the physical process. Moreover, an accurate interpretation of
these calculations requires processing enormous amounts of data,
to select the information related to the defects. Understanding
which particles are associated with defects, and which belong to
the bulk structure, is not trivial. The vast majority of methods for
structural identification are based on geometrical analysis of local
atomic environments (LAEs), e.g., coordination analysis, bond-
angle and common neighbour analysis12,13, Voronoi cell and
polyhedral template matching14,15, etc. In order to accurately
analyse and identify a defect structure, the geometry-based order
parameters should be complemented with some local physical
properties. Most commonly, the relevant properties, such as
energy or stress per atom3,16, are derived from a series of force
field calculations. However, these properties are not always
available, which hampers a universal strategy of structural ana-
lysis. For instance, energy and stress per atom cannot be directly
extracted from the widely used ab initio plane-wave (PW)
methods. In this case, a post treatment, such as projection on
local orbitals or Mulliken analysis, is needed. In some multiscale
simulations, e.g., in QM/MM, even the concept of total energy is
not well defined. Thus, introducing a defect detection strategy
that is (i) independent of the force field method and, (ii) at the
same time, can quantitatively describe the distortion degree of
each atomic environment, will improve the means and uni-
versality of defect characterization. Here, we propose a method
based on the so-called distortion score of atomic environments,
which can be naturally provided by the distance-based ML out-
lier/anomaly detection methods.

Detection of deviating instances is of primary importance in
many disciplines, such as economics and finances17,18, medical
diagnostics and image processing19–21, psychology and social
sciences22,23, meteorology and climatology24,25, etc. The practical
importance of outlier and novelty detection has led to the

development of multiple numerical approaches, based on robust
statistics26,27, support vector machine (SVM) methods28,29,
neural networks (NNs)30,31, Bayesian formalism32,33, etc. For the
majority of these methods, the outlier detection task is solved in a
feature space by distinguishing the normal data instances (inliers)
from other data points. The description of inliers is learned
by constructing a model with well sampled data instances. The
unseen samples are then compared to the learned data patterns
and characterized by a score or distance, which describes the
proximity of new instances to the inliers. This distance is com-
pared to a decision threshold of the trained model and the tested
data are classified as outlier if the critical threshold is exceeded. In
materials science, outlier detection methods are still rarely applied
for atomic systems and rather serve as a preliminary step, needed
to isolate the perfect structure34.

In the present study, we propose to use the distances provided
by outlier detection models, such as minimum covariance
determinant (MCD) or support vector machine (SVM) methods,
as a quantitative description of LAEs, hereafter called distortion
score. Based on these local distortion scores, we identify structural
defects as atoms-outliers deviating from the bulk structure. This
strategy is well adapted for detection of structural defects and
monitoring their trajectories, as well as for tracking the structural
changes during phase transitions or crystallization. We demon-
strate how the stratified definition of defects based on the local
distortion scores can serve for reconstruction of energy profiles in
mean force calculations. Furthermore, the defect detection is
coupled with ML techniques to establish a qualitative criterion for
transferability/reliability of kernel ML potentials for modelling a
given defect structure.

Results
Distortion score and its correlation with energy per atom. The
distortion score of LAEs describes a statistical distance from a
reference distribution in the feature space of atomic descriptors,
such as those described in refs. 35,36. The reference distribution
can be constructed from LAEs of a defect-free crystalline system
at a given temperature or from a subset of atoms of particular
interest. Figure 1a depicts the schema for computing the distor-
tion score with respect to defect-free bulk structure. The training
data set is formed by reference LAEs of the bulk structure
represented in the feature space of atomic descriptors. The
reference distribution is then learned by a ML algorithm. In this
study, we mainly use the MCD27,37. To the best of our knowledge,
MCD has never been applied for the needs of atomistic materials
science. MCD is an affine equivariant estimator, i.e., the data
might be rotated, translated or rescaled (e.g., due to a change of
the measurement units) without affecting the results27. It is worth
mentioning that MCD is tailor-made for unimodal distributions.
Consequently, a careful selection of the training data should be
performed (see Supplementary Note 2 for more details).

The distortion score is computed for each atom in the analysed
system via computing the statistical distance of the LAE with
respect the learned distribution of the reference structure LAEs.
The distortion score from MCD corresponds to the robust
distance dRB (see “Methods”, Eq. (5)). Figure 1b shows the
distortion scores computed for a simulation cell with 132 atoms,
which contains four self-interstital atoms forming a three-
dimensional (3D) C15 cluster38 in bcc Fe. The detected cluster
of atoms outliers (Fig. 1b, inset A) includes the defect itself and its
nearest atomic environment. The difference in magnitude of the
distortion scores within the outlier cluster enables the stratified
description of the defect and allows to distinguish the zones with
different level of atomic distortion (as depicted with dashed grey
lines in Fig. 1b). The atoms forming the defect (Fig. 1b, inset C) are
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characterized by bigger dRB distances compared to their nearest
environment. Here we exemplified the case with single type of
reference structure, given by the bcc bulk. Each LAE can be
characterized by a multi-dimensional distortion score, subsequently
computed with respect to various reference structures, e.g., to
different structural types of bulk or even to the structures of
particular defects of interest (see the analysis of a displacement
cascade in Supplementary Note 2).

When computed with respect to the distribution of the
underlying bulk structure, the distortion score exhibits a correlation
with the local atomic energy (Fig. 2). Both concepts, local atomic
energy and distortion score, encode the local geometric information.
The link between the local atomic energy and the LAEs was
established in the early days of atomistic materials science. For
metals, the tight binding approximation39,40 has formalized the
basis of this relation.

With the appearance of semi-empirical potentials40–42, the tight
binding second moment was replaced by ad-hoc local functions that
should be fitted against the bulk properties, defect formation and
migration energies, etc. Not limited to metals, the functional form
of the local energy on the local coordination is the basis of empirical
many-body force fields. These functions have simple analytic forms,
such as the number of first and/or second neighbours, radial
functions43–45 or somewhat more complex functions accounting for
angular information46. Regardless of the analytic form, all these
functions have the same utility and provide the fingerprints of

atomic environments. Furthermore, the present-day ML poten-
tials47–49 propose a direct multivariate regression, in the descriptor
space, between the LAE and the atomic energy. Here we
demonstrate that the geometric information of LAE, encoded via
MCD robust distance dRB, is intrinsically related to the local atomic
energy (see the “Methods” section). Figure 2 reports the observed
correlation between the distortion score dRB and the local atomic
energy in bcc Fe. The comparison is performed for the atomic
arrays with three classes of structural defects: vacancies, self-
interstitials and stacking faults (SFs; also called γ-surfaces). These
configurations are included in the training database of the Gaussian
Approximation Potential (GAP) for Fe50. The atomic energies were
computed using the same potential. The kernel formalism of GAP
potential ensures the high accuracy of the atomic energy of the
training configurations50. For all three defect classes (Fig. 2), the
determination-correlation coefficient R2 between dRB and local
energy is higher than 80%. The present approach completes
the previous observation of Sharp et al.2 in grain boundaries. The
study2 monitors the likelihood of atoms to rearrange within
the grain boundaries through the so-called softness of atoms. The
softness is a continuous, signed, scalar quantity that captures
the relevant properties of the LAEs based on the binary
classification using SVM. Likewise, the potential energy of atom is
positively correlated with its softness2, although there is a large
spread for a given energy value. In this study, we observe the higher
variance of dSVM compared to the statistical distances dRB,
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Fig. 1 Defect detection and stratification based on the distortion score. a Scheme of the defect detection. The training data set consists of the defect-free
bulk structures. The structures for the training and test are represented in the same feature space RD of atomic descriptors. To perform defect detection,
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points corresponds to the colour of atoms in the inset structures. The threshold between the bulk (atoms-inliers) and defect (atoms-outliers) is indicated
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consistent with that previously reported by Sharp et al.2 (see
Supplementary Note 1).

The remarkable accuracy in the relation between the distortion
score described via statistical distances and the local energy (see
the “Methods” section) opens up many perspectives for further
developments in analysis and modelling of defects in crystalline
solids. To demonstrate the importance and perspectives of the
present concept, we present in the following sections three
promising applications of the stratified definition of the defects.

Application 1: detection and structural analysis of defects.
Based on topology, defects are generally classified as 0D or point
defects, one-dimensional (1D) or line defects, two-dimensional
(2D) or planar defects, and 3D defects. Structural analysis of
different defect classes typically requires using different strategies
of structural analysis14,15,51, which impends a universal strategy
for defect identification. Here we propose a universal scheme for
localization and analysis of defects based on the distortion score
provided by robust MCD and consider the examples of cubic
metals, fcc Al and bcc Fe (Fig. 1).

The conventional geometry-based techniques for structural
analysis are often sensitive to atomic perturbations14,52. This
shortcoming may hamper structural interpretation in systems at
high temperature and/or under large deformation. Here, to avoid
sensitivity of the defect detection model to atomic perturbations,
the defect-free training data set incorporates systems with some
noise around the perfect atomic positions (see “Methods” for
more details). In this section, the structural data are represented
in the feature space of bispectrum SO(4)36,48. This type of atomic
descriptor was previously used for the development of ML
interatomic potentials47–49.

In Al, the outlier detection strategy was tested for the typical
defects for fcc structures, namely for the mobile 1

2 h110if111g loop,
the sessile 1

3 h111if111g Frank loop and for the 1
2 h110if111g edge

dislocation. All the defect structures are correctly identified based
on the distortion score metrics (Fig. 3). In contrast to
the 1

2 h110if111g loop (Fig. 3b), the 1
3 h111if111g Frank loop

(Fig. 3a) contains a SF, which prevents it from gliding. In fcc
structures, 1

2 h110i dislocations dissociate into two dislocation
partials separated by the SF according to the reaction
1
2 h110i ! 1

6 h211i þ 1
6 h21�1i. The dissociated dislocation core

described via the distortion score (Fig. 3a) is compared with those
from the energy per atom calculations and from the common-

neighbour analysis (CNA). The three methods are consistent in
identification of the dislocation partials ξ1 and ξ2 (Fig. 3c). However,
structural analysis based on the distortion score better reproduces
the core spreading than CNA. The CNA analysis identifies a
structural type of each atomic environment without providing any
appropriate measure of distortion within a given structural class,
which hampers estimation of the core spreading with this method.

For bcc Fe, we examine the performance of outlier detection
methods for point defects and their clusters (Fig. 4a–d), SFs
(Fig. 4e) and 1

2 h111i screw dislocation dipole (Fig. 4f). It is worth
emphasizing that the structures of Gao-triangles INP2 , also called
non-parallel clusters, and IC154 self-interstitial atom (SIA) clusters
(Fig. 4c, d) are often misinterpreted by conventional geometry-
based methods. The Gao-triangle configuration INP2 (Fig. 4c) is a
SIA cluster with three interstitial atoms in the {111} plane and
one vacancy in the in centre of triangle. This interstitial defect is
the precursors of the C15 Laves phase clusters38. The C15 cluster
IC154 (Fig. 4d) has a well-defined 3D crystallographic structure
being close to two attached Frank–Kasper polyhedra. Both INP2
and IC154 are immobile and very stable and, therefore, they
represent important instances in the energy landscape of SIAs in
bcc Fe38. Due to their structure, the INP2 and IC154 defects can be
only partially detected by the Wigner–Seitz analysis and require
the use of complementary methods, such as polyhedral
template matching (PTM)15 or energy per atom calculations.
The tested robust MCD approach exhibits an excellent perfor-
mance for these complex defect structures and, in contrast to the
conventional methods, it implies neither preliminary knowledge
of the defect structure (for effective PTM) nor energy per atom
calculations. This is especially valuable for the detection and the
characterization of previously unseen defects, which, for instance,
can form in materials under extreme conditions.

Application 2: distortion score for mean force calculations. The
proposed stratified definition of defects can be of great help for
calculations where relevant local properties from interatomic
force field are not available. For instance, in the case of widely
used PW electronic structure calculations, the definition of energy
per atom is ambiguous and requires to project delocalized elec-
tron density on local atomic orbitals.

The definition of energy profile is critical in many statistical
learning approaches, including QM/MM methods, which are
currently at the forefront of computational materials science4–6.
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In this method, the system commonly consists of the two parts:
the core, which is described using ab initio, and the outer part,
which follows classical mechanics or surrogate tight binding
Hamiltonian (the main contribution that has fast force evalua-
tion). The interaction of these parts and description of the whole
system are given solely by the forces, which are well defined local
quantities. However, the total energy of the system cannot be well
defined in this case. Moreover the wavefunction of the core part is
highly perturbed by the buffer region between the two parts of the
system, which makes the attempts to define the local energy
difficult. As a consequence, QM/MM methods cannot have access
neither to local nor to total energies.

Without direct access to the energy of the system, the migration
and transformation energy barriers can be fully recovered from the
atomic forces using the mean force concept8,9 both for the 0 K53

and finite temperature calculations10. Here we consider an example

of P images from a migration trajectory obtained using a standard
pathway method, e.g., nudged elastic band (NEB)54. In this
migration path, qi 2 R3N is the ith image along the system
trajectory. The path is indexed by a reaction coordinate ζ ∈ [0, 1] in
such a way that q(ζ= 0)= q1 and q(ζ= 1)= qP. This reaction
coordinate can be achieved by a spline interpolation of all the
intermediate NEB images along the migration pathway. The
corresponding energy profile can be then recovered from the mean
force ∂ζF(ζ)8,9, i.e., the derivative of the free energy F(ζ) with respect
the reaction coordinate:

ΔEðζÞ ¼ EðζÞ � Eð0Þ ¼
Z ζ

0
∂ζ 0Fðζ 0Þdζ 0: ð1Þ

The above equation is the exact form of the 0 K energy profile
along the migration pathway that can effectively circumvent
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direct total energy calculations along the pathway. Using the
explicit form of the mean force ∂ζF(ζ) and derivatives of the spline
interpolation of atomic coordinates10,53, the migration energy
profile becomes:

ΔEðζÞ ¼ �
X
i2box

X
α¼x;y;z

Z ζ

0

∂qiαðζ 0Þ
∂ζ 0

f iαðζ 0Þdζ 0; ð2Þ

where fiα is the force acting of the ith atom along the Cartesian
α= x, y or z direction; qiαðζ 0Þ is the interpolated coordinate of the
same atom with the ζ 0 as reaction coordinate. Figure 5a compares
the energy profile obtained directly from NEB calculations with
those from the mean force (Eq. (2)) integration. When integrating
over the forces of all atoms in the system, the agreement between
the two energy barriers is excellent (Fig. 5a).

However, in calculations like QM/MM, it is impossible to take
the forces on all atoms. As such, a confidence region with major
contribution to the mean force of the system should be defined.
As a possible solution, a geometrical cutoff around the defect can
be applied53. This simple approach is sufficient for the
calculations of particular class of compact defects, like interstitial
clusters, but it does not provide a universal solution, e.g., it is not
applicable for the defect structures that cannot be well localized,

like dislocations. Here we suggest using the distortion score to
define the confidence region based solely on geometric informa-
tion of LAEs. The atoms from the core and the outer part of the
system are treated on the same footing. Using the distortion score
as local information we are able to indicate the atoms that are
more likely to contribute to the mean force of the system. Finally,
we integrate the mean force along the complex reaction
coordinate and find the migration/transformation energy barrier
for systems where the energy cannot be directly defined. For such
a defect cluster, the expression of the energy profile becomes:

ΔEðζÞ � �
X

i2vMCD

X
α¼x;y;z

Z ζ

0

∂qiαðζ 0Þ
∂ζ 0

f iαðζ 0Þdζ 0; ð3Þ

where vMCD is the confidence region defined by the set of atoms
with dRB bigger than a critical threshold. The geometric criterion
in direct Cartesian space is replaced here by the distortion score
of LAEs. The energy barriers obtained from the mean force
integration (Eq. (3)) of atomic clusters and screw dislocations in
bcc Fe with different dRB cutoff are reported in Fig. 5. Figure 5a
depicts the minimum energy pathway of the IC152 ! INP2
transformation. For these defects, all the atoms with dRB > 3.9
are identified as structural outliers by robust MCD (Fig. 1b). The
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Comparison of the total energy NEB calculations with the mean force integration over the confidence region νMCD defined by different distortion score
cutoff. The calculations are performed using Marinica EAM potential38,45. b Evolution of the defect structure along the IC152 ! INP2 transition path provided
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2 h111i dislocation dipole glide in {110} plane in bcc Fe.
Comparison of the total energy NEB calculations with the mean force integration over the confidence region νMCD defined by different distortion score
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number of atoms in the detected defect clusters (Fig. 5b, dRB=
3.9) varies from 57 to 32 along the transition path. The mean
force integration of these clusters is in a good agreement with the
reference NEB curve. When increasing the cutoff distance dRB up
to 12 and 17 (defect stratification according to Fig. 1b, lines B and
C), the nearest environment of the defect is disregarded. This
allows to better visualize the transition mechanism (Fig. 5b).
However, at the same time, it results in underestimated energy
barriers (Fig. 5a). Thus, the contribution of mild outliers into the
system’s mean force is important and cannot be neglected.

The selection of a confidence region based on distortion score
can be especially useful for the reconstruction of the energy
profiles in situations where the relevant region is not local and
hardly can be grasped using a geometrical cutoff around defects.
Figure 5c illustrates the Peierls barrier of a 1

2 h111i screw
dislocation dipole gliding in {110} plane in bcc Fe. In the
depicted simulation cell (Fig. 5d), the dislocations are only distant
by 17.45 Å, which imposes a strong elastic interaction between
the cores. The complex interaction is deconvoluted using various
cutoff of the distortion score dRB (Fig. 5d). The extracted
information is subsequently used to reconstruct the migration
energy profile. In contrast to the above defects (Fig. 5a, b), the
local definition of the dislocation core is not sufficient to
accurately reconstruct the Peierls barrier. When considering
exclusively the atom outliers (Fig. 5d with dRB= 2.9), the barrier
is underestimated by more than 20%. Hence, it is necessary to
include distorted bulk in the confidence region for the mean force
integration. The elastic interaction of dislocations produces
relaxation patterns that are captured by the distortion score
(Fig. 5d). Including the relevant bulk atoms improves the energy
barrier (Fig. 5c). Thus, we are able to reconstruct the NEB barrier
within 4 meV deviation, i.e., with more than 95% accuracy. Such
analysis and reconstruction of the Peierls barrier also holds for
bigger simulation cells (see Supplementary Note 3) with less
important interactions between the dislocation cores.

These results open up many perspectives in computational
materials science. Beyond the selection of relevant structural
information, the detected patterns of atoms can indicate the
areas with strong interaction between defects or/and non-
homogeneous distribution of strain in the simulation cell. This
information is useful in QM/MM to qualitatively verify the
convergence of the calculations as well as to handle the frontier
between the QM and MM domains. Moreover, the automatic
selection of relevant atoms can set the basis for finding
appropriate collective variables, which is currently recognized
as a critical problem that hinders implementation of free
energy methods using automated and unsupervised simulation
schemes8,10.

Application 3: analysis of kernel ML potentials. Nowadays, ML
force field models represent a worthwhile alternative to conven-
tional interatomic potentials. The vast majority of existing ML force
fields for MD calculations are based on kernel methods11,48,55,56.
Accuracy and numerical cost of these potentials intrinsically depend
on the diversity and number of LAEs M in the training database.
The force fields built within the GAP framework48 are among of the
most commonly used ones. For the structures close to those from
the potential database, GAP can be as accurate as ab initio
methods48,50,57. However, application of these potentials for mod-
elling configurations beyond the potential database is rarely
discussed.

Uncertainty quantification of the Gaussian process regression
can provide a qualitative estimate of the potential’s accuracy for
each atom in a given system. An example of such an estimation
was recently demonstrated in ref. 57. The local error is an

appropriate measure of the potential reliability; however, its
computational cost ascends to M2, whereas the MD calculations
with GAP scale linearly with the size of the database M. Here we
propose a less costly strategy, able to provide a qualitative
estimate of the potential’s transferability for modelling targeted
defects. The method is based on the outlier analysis and performs
examination of defect clusters from the potential database and
compares them with the defect structures of interest. Figure 6
illustrates a general workflow for the proposed transferability
analysis strategy.

As a study case, we examine the performance of GAP potential
for bcc Fe50. We have tested this potential to compute various
radiation-induced defects, including those beyond the potential
database. The results are reported in detail in the Supplementary
Note 4. Overall, the GAP potential is remarkably more accurate
than any existing semi-empirical potential. However, for few
defects, the tested potential exhibits a limited transferability.
Among the examined defect structures, we identify (i) the
C15 clusters and (ii) the saddle-point configuration Vmax

3 of tri-
vacancy migration as “failed” system to test further. For the small
size IC152;3 clusters, GAP potential provides the formation energies
ca. 2.5 eV higher than those of SIA dumbbells (Supplementary
Fig. 10b). This yields an impossible formation of C15 in bcc Fe,
which is not consistent with the density functional theory (DFT)
predictions58. For the tri-vacancies V3, the computed migration
energy barrier Vmax

3 is almost 60% lower than the DFT migration
energy (Supplementary Fig. 11b). Such an error will have
an impact on predictions of defect kinetics under irradiation
and interpretation of processes during resistivity recovery
experiments59.

Besides these two defects, we also examine (iii) 1
2 h111i screw

dislocation core and (iv) its saddle point configuration on the top
of the Peierls potential. These structures were not explicitly
included into the GAP database; however, the potential performs
as accurate as ab initio methods for these defects60. The ML
algorithm that underlays the GAP potential, Gaussian Processes,
is non-parametric and can integrate all the information provided
by the projection of the database into the descriptor space RD.
Most likely, the “failed” configurations (i)–(ii) deviate from the
defects in the training database, whereas the dislocation structures
(iii)–(iv) are similar to those learned by the potential. To check
this assumption, we have examined how the defect clusters (i)–(ii)
are related to the defect structures from the potential database.
For the dislocations (iii)–(iv), we only employ the detected LAEs
of SFs as a training data for the transferability analysis. The latter
will allow to estimate if accurate modelling of dislocations can be
ensured by the presence of SFs in the potential database. The
majority of atoms in the “failed” defect clusters (i)–(ii) (Fig. 7a, b)
are identified as pronounced outliers, characterized by negative
SVM distances. Consequently, the GAP potential mainly per-
forms in extrapolation regime for these defects. The predictions
in this regime are not necessarily accurate. Hence, it is not
surprising that the energy profiles of those defects predicted by
GAP do not agree with DFT calculations. In contrast, the
dislocation cores (iii)–(iv) (Fig. 7c, d) do not contain any
anomalous instances. Thus, the structural information provided
by the SFs was sufficient to ensure good accuracy of the potential
for dislocation core structure and its migration barrier.

The proposed strategy for transferability analysis (Figs. 6 and
7) provides a qualitative estimate of the potential performance.
The outlier-based analysis can indicate if the information
necessary for modelling certain defects is missing in the potential
database. To improve the performance of the tested ML potential
for the systems with pronounced outliers (Fig. 7a, b), their
structures should be added to the potential database. At the stage
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of the potential development, the proposed defect detection
protocol coupled with ML outlier detection methods (Fig. 6) can
be used to optimize the content of the database, to improve the
potential accuracy for modelling targeted defects and their
properties.

Discussion
This work suggests a definition of defects in crystalline solids
using the distortion score of atomic environments provided by
the means of distance-based ML outlier detection, notably by
robust MCD. Each atom in the analysed system is described by a
distortion score, which corresponds to the statistical distance of
its LAE in the descriptor space from the distribution of LAEs in
the reference structure. The reference structures to learn is a user
choice, driven by the objectives to achieve. In this work, we have
mainly employed as reference the defect-free bulk structures with
some noise around perfect atomic positions.

We have numerically demonstrated that the atomic distortion
score, which is based solely on geometrical information, is cor-
related with the local atomic energies. This finding opens up
many perspectives in the field of computational materials science,
with several promising applications, ranging from the qualitative
substitution of the concept of energy per atom to the selection of
the relevant structural information in materials design.

The present study proposes significant improvement of
methods relevant for different fields of materials science and
demonstrates the possibilities to overcome some blocking points
in (i) structural analysis; (ii) design of new ML potentials and
transferability analysis of existing ones; and (iii) advanced
numerical modelling and characterization of energy landscapes.

The defect detection strategy using the distortion score is
universal, i.e., in contrast to conventional geometry-based
methods, it performs well for defects of a different origin. The
same ML technique can be applied for the detection and analysis

of dislocations, interstitial atoms, vacancies and other defects. The
proposed definition of defects through the distortion score can be
used to analyse the output of various numerical methods such as
massive atomistic MD (see Supplementary Note 2), Monte Carlo,
metadynamics, hyperdynamics and free energy simulations.
Moreover, the distortion score can be used to control the degree
of precision for the relevant information to be extracted and
stored. This metric can serve as a fingerprint for filtering data-
bases with atomic structures to select and/or classify defects.

The proposed definition of defects serves to reinforce not only
the performance of traditional approaches, but also of modern
ML methods in materials science. Here we have demonstrate how
the new concept of defects can be effectively applied for the
analysis of kernel ML potentials and their databases. This
approach allows optimizing the database content in order to
improve the potential accuracy for modelling targeted defects and
their properties. This type of potentials is able to approach DFT
accuracy and can cope with large systems where the computa-
tional cost beyond the scope of ab initio methods. Improvement
of these potentials can enable accurate calculations of such
important physical properties, as formation and migration energy
of large defects, e.g., straight dislocations and kink pairs, loops,
large 3D clusters, etc. In the perspective, similar approaches can
be applied to large biological/chemical molecules.

The distortion score can be applied for characterization of
energy landscapes. Here, using the stratified definition of defects
via distortion score, we identified the atoms with the most
important contribution to the mean force of the system. Using
this strategy allowed to accurately reconstruct the migration
barriers from the mean force calculations of complex interstitial
clusters and screw dislocations. Such an approach is of particular
interest for defect localization in the simulations such as QM/
MM, where the definition of total energy is ambiguous. Fur-
thermore, the link between the distortion score and local energy
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Fig. 6 Workflow for transferability analysis of kernel ML potentials using outlier detection. The structural data are represented in the feature space of
atomic descriptor similar to that originally used to design the potential50. The first step of the analysis (upper panel) implies detection of defects both in the
potential database and in the atomic systems to examine using MCD, one-class support vector machine (OCSVM) or any other relevant method. The second
step (lower panel) is aimed at transferability analysis of the potential. The detected defect clusters from the potential database form a new training data set with
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opens up many perspectives for advanced MD techniques. By
now, the utility of popular methods for accelerated MD, such as
metadynamics7 or mean force8,9, statistical learning approaches11

and temperature-accelerated dynamics/hyperdynamics61, is
often hindered by the general inability to extract the relevant
information about the defects or by the definition of collective
variables that are needed to compute free energy landscapes.
The suggested strategy for the identification of the high-energy
atoms can serve to find an appropriate reaction coordinate. This
promising application has a very broad interest for the materials
science community and can be further developed for the

communities of chemistry or biology, e.g., it can be applied for
automated simulation schemes combined with ab initio sampling
strategies.

In perspective, the notion of the distortion score based on
statistical distances can be extended beyond the structural
properties of defects and numerical methods of materials
characterization. The present concept can be useful for the
organization and the classification of multivariate data provided
by experimental techniques, where the atomic coordinates are
provided, such as atom probe or transmission electron micro-
scopy tomography.
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Fig. 7 Qualitative estimation of a kernel potential performance for given defects. Histogram of the number of atoms vs. the dSVM distance is plotted for
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Methods
Representation of structural data and training data sets. In this work, the
training and test structural data are represented in the feature space of atomic
descriptors. All atomic descriptors are calculated using the MiLaDy package49.
Below we provide the details about atomic descriptors and the training data sets for
each application presented in this study.

For the Application 1, the structural data are represented using spectral atomic
descriptor, bispectrum SO(4)36, with the angular moment jmax ¼ 3:5 and only the
diagonal bi-spectral components, which results in D= 26 descriptor components,
as was previously described in ref. 49. Using this representation, each atomic system
with a structural defect becomes a N × 26 matrix, with N being the number of
atoms in the simulation cell. For bcc Fe and fcc Al, we employ the cutoff distance of
the descriptor function Rc= 4.0 Å and Rc= 5.0 Å, respectively, which is sufficient
to take into account the nearest distorted zone around the defects. Figure 8
illustrates a 127-atom bcc Fe system with mono-vacancy represented in such a
descriptor space.

The training data sets for the defect detection consist of defect-free bcc Fe and
fcc Al systems. Overall, the defect detection models are trained on ca. M= 16,200
LAEs for each structural type. Thus, the training data sets with the bulk structures
become 16,200 × 26. The training bulk structures contain some random noise
within the Gaussian distribution with the standard deviation σ= 0.08 Å of atomic
displacements, which was applied to the perfect atomic positions. Including
configurations with noise into the training data set allows to prevent sensitivity of
the model to atomic perturbations from their perfect positions.

For the Application 2, the reconstruction of the IC152 ! INP
2 SIA transition

barrier in bcc Fe (Fig. 5a, b) is performed using the descriptors and training
structures identical to those, applied for the Application 1. Reconstruction of the
Peierls barrier (Fig. 5c, d) requires an accurate description of the long-range
displacement field within the bulk structure of a material, which is not localized
around the dislocation lines. Therefore, reconstruction of the barrier requires a
very accurate description of any marginal perturbations within the bulk
structure. To ensure a proper description of the displacement field produced by
dislocations, we employ bispectrum SO(4)36 with the angular moment jmax ¼ 4:0
and Rc= 5.0 Å, and use the diagonal and non-diagonal components, i.e., D= 55
descriptor components per atom. In this case, we find that the structural
description provided by jmax ¼ 4:0 is sufficient to capture the subtle structural
details (see comparison with jmax ¼ 4:5 in the Supplementary Note 3). The
defect-free training data set is formed by MD calculations of bcc Fe at 300 K at
constant volume of 0 K using the same interatomic potential44, as was used to
compute the migration profile of dislocations. The training data set consist of M
= 25,800 atomic environments. In the case of dislocations, employing proper
MD calculations to generate the training data are preferable to application of
random noise to perfect structures, as it allows to ensure an accurate description
of the subtle changes in the bulk structure.

For analysis of the GAP potential transferability in the Application 3, we
represent the structural data using smooth overlap of atomic positions (SOAPs)
descriptor36 with nmax ¼ 12 and lmax ¼ 12 for radial and angular channels,
respectively, which results in dimensionality D= 1,014. The cutoff distance is set to

Rc= 5.0 Å. The same form of the SOAP descriptor was used to design the GAP
potential50.

The detection of defect clusters in the GAP database50 is performed on the ca.
100,000 test atomic environments. After performing the outlier detection to isolate
structural defects of the database, we consider ca. Mdef= 17,300 atomic
environments as belonging to defects. These Mdef atomic environments form the
training data set (Fig. 6) for transferability analysis of the potential.

The structural data for analysis of the correlation between statistical distances
and energy per atom from GAP potential in Fe (Fig. 2 and figures in the “Methods”
section below) is represented with bispectrum SO(4) using Rc= 5.0 Å and jmax ¼
4:5 with all bi-spectral components. The correlations in W (in the “Methods”
section below) are examined using bispectrum SO(4) with jmax ¼ 4:5, resulting in
dimensionality D= 70 and Rc= 4.7 Å, which correspond to the descriptor settings
of the linear ML (LML) potential used to compute the local energies. For Fe, the
training bulk structures contain ca. 103,000 atomic environments from MD
calculations at 300–800 K at the constant volume of 0 K using the GAP potential.
In case of W, the training was performed on 40,500 atomic environments from MD
calculations at 800 K using the corresponding LML potential.

Choosing an optimal outlier detection method. In this work, we intend to use
such an outlier detection method that not only performs well for a binary dis-
tinction between inliers and outliers but also provides a smooth decision function,
which correctly reflects the detailed structure of the training and test instances. In
general, density-based and clustering methods are not well adapted for the subject
of the paper.

The most suitable methods should: (i) provide a smooth decision function or a
similarity measure for each data point (atomic environment) with respect to the
reference data cloud (e.g., defect-free structures), which can be used as a distortion
score and a reliable measure of LAEs; (ii) be adapted for multivariate data sets with
dimensionality from few tens (typical for the atomic descriptors used in the
Applications 1 and 2) to few thousands (typical for the atomic descriptors coupled
with the tested GAP potential in the Applications 3); (iii) be fast (not slower than
atomistic calculations themselves) and possible to use for large systems (e.g., atomic
arrays with few million atoms)—we decided to avoid methods based on non-linear
kernels, as their learning process requires M3 numerical operations; and (iv) be
easy to implement and use for researchers from materials science community who
are not necessarily experienced in ML.

Computing statistical distances is fast and more straightforward than using NNs
and SVM. Moreover, there is no need to optimize hyperparameters (e.g., via grid
search combined with error minimization procedures). In addition to that, it was
previously demonstrated in the literature62–64 that in some cases with relatively
poorly sampled learning space, recognition of outliers can be better performed
using Mahalanobis distances than with SVM and NNs. For the applications
reported in our study, it is possible that the amount of available structural data for
training is limited (for instance, when the data are generated from costly ab initio
calculations), which can yield the situations similar to those described in refs. 62–64.
In addition to these arguments, we compare the ability of MCD and linear SVM to
provide the distortion score of LAEs by measuring the correlation with the local
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energy and examine their ability to provide detailed stratification of complex
defects. The results are reported in the Supplementary Note 1. For both
applications, MCD exhibits a better performance. For the reasons listed above, in
this study we have opted to define the distortion scores based on Mahalanobis
distance and robust statistical distance variants, such as robust MCD and
Hotteling’s distance T2. These distances also were used for data mining and
advanced analysis in medical and industrial applications (see the references of the
review papers26,27).

Minimum covariance determinant. The strategy of outlier detection using MCD
consists of computing a statistical distance from each observable to the centre of
the data cloud27,65. An outlier is then defined as a point with a statistical distance
larger than some critical cutoff. In order to describe the distance from the centre of
the data and take into account the shape of the cloud, one should consider the
contribution of the statistical sample covariance matrix. A classical estimator of i⋆
data point distance, among M data points, is the Mahalanobis distance based on
the sample covariance matrix ΣM 2 RD ´D :

dMAH xi?

� �
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðxi? � xh iÞTΣ�1

M ðxi? � xh iÞ
q

ð4Þ

The Mahalanobis distance dMAHðxi? Þ describes how far is the point xi? from the
centre xh i of the data cloud, taking into account the shape of the data distribution
via ΣM.

However, as was previously discussed in refs. 27,65, the estimators based solely
on Mahalanobis distance may fail to detect mild outliers. To improve the
performance of the method and annihilate the effect of outliers on the sample
covariance matrix and, consequently, on the distance estimator, the so-called
robust MCD estimator is used:

dRB xmð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xm � μ̂0
� �T

Σ̂
�1
M0

xm � μ̂0
� �Tq

ð5Þ

where μ̂0 and Σ̂M0
are the MCD estimates of the data cloud centre and of the

MCD statistical covariance, respectively26. Within the MCD formalism, the
whole sample covariance matrix ΣM is approximated by the covariance matrix
ΣM0

of a data subset with M0 <M points, for which the determinant of the
sample covariance matrix is minimal. The exact MCD calculation is laborious
and implies computing CM0

M determinants. In this work, we use FAST-MCD
algorithm37, one of the most efficient, robust and widely used version of MCD
estimator27,65. The MCD has the ability to exclude outliers from the reduced
covariance matrix, and, consequently, to increase the norm of the outliers points.
MCD is an affine equivariant estimator, i.e., the data might be rotated, translated
or rescaled (e.g., due to a change of the measurement units) without affecting the
outlier detection diagnostics27. This makes MCD particularly suitable for the
tasks of structural analysis. In this work, we employ robust MCD distance dRB
(Eq. (5)) as a measure of local atomic distortion score to detect and analyse the
defect structures. The outlier detection with MCD is performed on the structural
data sets (see Representation of the structural data section) with contamination
factor ν= 0.07.

It should be noted that MCD is designed for the data with a unimodal
distribution. Practically, it means that the model can be directly trained for
detection of defects embedded in the structure with unimodal distribution of LAEs,
e.g., in bcc anf fcc cubic metals. In order to train the model on more complex
structural data with multimodal distribution of LAEs, calculations of a
multidimensional distortion score can be enabled by modal decomposition of the
training database. For instance, a multimodal training database D can be
decomposed in various unimodal sub-databases D1 �D2 � ¼ �Dn and a
statistical distance can be computed with respect to each sub-database Di ,
providing thus an n-dimensional distortion score. Supplementary Note 2 provides
an example of the training database decomposition and demonstrates the utility of
multidimensional distortion score for the analysis of complex structural damage
produced by displacement cascades.

Statistical distances and their QM-inspired variants. From mathematical point
of view, there is a similitude between the formalism that describes the local
atomic energy of materials in quantum mechanics (QM) and the statistical
distances based on sample covariance matrix. As emphasized in Table 1, the
observables to be evaluated are the energy of the quantum state i?j i and the
statistical distance of the data point jxi? i in descriptor space. The local orbital
basis ij if g is equivalent to the learning database xmj if g of the M atomic
environments. The eigenelement of the Hamiltonian ϵm; mj if g and λm; vmj if g of
the sample covariance matrix have similar meanings, giving the total energy (Eq.
t.5) and the trace of the sample covariance matrix as the total variance (Eq. t.6).
The difference here is that the occupation of each state follows a specific sta-
tistics, i.e., in QM the electrons obey Fermi-Dirac occupation n(ϵ), whereas in
statistics the occupation is n(λ)= 1 for all sample points. The similar definition
of global quantities, energy and variance, suggests the similar definitions of local
density of states (Eqs. t.7 and t.8).

Moreover, the Eqs. t.9 and t.10 suggest that local energy and the statistical
distance measure the contribution of square amplitude of probabilities of the entire

spectrum of H/Σb, which define the Hilbert space of the problem given by the
Hamiltonian or sample covariance matrix, respectively, projected on measured
state. The sum is weighed with the ϵn(ϵ) and with the inverse of the variance (the
precision) in the case of electronic structure and of statistical distance, respectively.
The completeness of the Hamiltonian basis gives the capacity of the model to
predict new states. The similar situation concerns the statistical distance. The
reliable estimation is obtained for a complete or exhaustive collection of points
xmj if g that define the sample covariance matrix.
Based on this observation, we introduce an array of statistical distances that use

various weights, such as powers of eigenvalues of the sample covariance matrix, to
approach the corresponding values from QM. For example, the QM of classical
fermions (high temperature or β→ 0) suggests a weight similar to observable that
gives the local energy and implies using λα expðβλÞ instead of 1/λ, where α and β
are constants to determine. Here we propose the statistical distances with the
following functional form:

di? ¼
Z

dλρi? ðλÞλ
αeβλ

� �γ
¼

X
m

λαme
βλm jhi?jmij2

" #γ

ð6Þ

The standard MCD distance/Hotteling’s T2 estimator is given by the parameters
α=−1, β= 0, γ= 0.5. In case when the reference local energies are available, the
parameters α, β, γ can be set to some optimal values. The standard choice and
few sets of optimal values of these parameters for the proposed array of statistical
distances are presented in the Fig. 9 for Fe and W, using two ML formalisms:
GAP50 and LML49. It is interesting to note that the distances inspired by the QM
formalism (Fig. 9b–d, f–h) slightly outperform the standard MCD distance/
Hotteling’s T2 estimator (Fig. 9a, e) to provide a better correlation with local
energies. In this work we gave a preference to standard MCD robust distances,
which do not require any information about the energy of the system.

The perspective of using a more complex function for the weight factor can
be further generalized using statistical distances defined in the framework of
kernel formalism. For example, with the procedure proposed in ref. 66, the
authors make use of the advantages of kernel whitening and kernel PCA to
compute Mahalanobis distance in the feature space by projecting the data into
the subspace spanned by the most relevant eigenvectors of the covariance matrix.
This extension can entirely recover the kernel formalism that underlies the GAP
potential and can potentially improve the estimation of LAEs via distortion
score. In conclusion, with the above considerations we found the distortion score
based on various statistical distances as appropriate for measuring the distortion
score of the LAEs. It worth to note that this procedure does not require any
information about the energy of the system, making this conjecture particularly
useful and surprising. Furthermore, when the information about the local
energies is available, we propose a procedure to improve this conjecture
(Eq. 6, Fig. 9).

One-class support vector machine. One-class support vector machine (OCSVM)29

is a subclass of widely used support vector machine methods67. This approach
separates inliers from outliers by finding a maximal margin hyperplane between
them29,67,68. The vectors that determine the optimal separating hyperplane are called
support vectors. OCSVM is similar to binary SVM classification, where the regular
training data with the bulk structure (inliers) belongs to the first class, and the defects
(outliers) belong to the second class. The proportion of outliers that contaminate the
database, ν, is an input parameter. The hyperplane between the two classes is the
decision boundary, which can be defined both for linearly separable data and more
complex non-linear cases.

For linearly separable data, the hyperplane can be described by the classification
rule:

f xmð Þ ¼ w; xmh i þ b; ð7Þ
where w is the normal vector and b is a bias term. Both parameters w and b are
learned from the positive class (bulk) database. For each point xm, the value f(xm) is
determined by evaluating on which side of the hyperplane it falls on (in feature
space). The function is positive for the inlier data points (bulk structures) and
negative for the outliers (structural defects). The distance dSVM from the origin to a
point x along the direction w is given by:

dSVM ¼ wTx=ðwTwÞ1=2: ð8Þ
Similarly to the MCD robust distance dRB, the distance dSVM can be used as the

metric of the distortion score for each atom.
In order to perform non-linear classification and obtain more complex decision

boundaries, the kernel trick can be applied, as was originally proposed by Vapnik67.
In this case, the data are implicitly mapped into a high-dimensional space through
a non-linear function Φ(x). The distance between the data points in the new non-
linear space is then measured using a non linear kernel
Kðxm; xm0 Þ ¼ ΦðxmÞ �Φðxm0 Þ. In this higher dimensional space the data points
become linearly separable and the above linear formalism (Eq. (7)) can be applied.
Most common non-linear kernels have a Gaussian (radial-basis function) or a
polynomial form. For the Gaussian kernel:

Kðxm; xm0 Þ ¼ expð�γ k xm � xm0 kð Þ2Þ ; ð9Þ
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where kxm � xm0k is the Euclidean distance between the two data points in the
descriptor space; γ > 0 is a free parameter that determines the width of the Gaussian
Kernel. For Polynominal kernel:

Kðxm; xm0 Þ ¼ ðγðxm � xm0 Þ þ cÞp ; ð10Þ
where p stands for the p-degree of the polynomial, c ≥ 0 is a parameter that controls
the influence of higher-order vs. lower-order terms in the polynomial and γ is a
hyper parameter.

In this work, the structural analysis of defects is performed using OCSVM with
Gaussian kernel with γ= 0.03. For the transferability analysis of the GAP potential, we
employ a polynomial kernel identical to that, which was originally used for the design of
the ML potential50, i.e., with p= 4 and c= 0 (homogeneous kernel). With this choice of
the kernel parameters, γ is a scaling factor that impacts the magnitude of the distances
between configurations. For transferability analysis of the potential, contamination
factor ν (the upper bound on the fraction of training errors and a lower bound of the
fraction of support vectors) is set to 10−3, to obtain a tight decision boundary.

Table 1 Comparison of the quantum mechanics (QM) and machine learning (ML) formalism.

QM ML

Consider an archetypal case, which does not reduce the generality, a solid
with one orbital ij i per atomic site i. In tight-binding formalism using the
hopping integrals tij, the probability of transition from the orbital ij i to
orbital jj i, the Hamiltonian reads: H ¼ P

i;jtij ij i jh j. The energy levels of the

system are the eigenvalues of Schrödinger equation: H mj i ¼ ϵm mj i. We
are interested in the estimation of the local energy ϵi? associated with the

atom i⋆.

Consider that we have learned the sample covariance matrix Σb of M data
points, xm 2 RD . The data are centred to mean zero. The mth element of
the descriptor space can be written in an initial basis as jxmi ¼

P
ximjii.

The eigenelement of Σb is fλm; jvmig. We are interested in the statistical
distance di? of the data point jxi? i.

H ¼ P
i;jtij ij i jh j (t.1) Σb ¼

P
i;j

1
M�1

PM
m ximx

j
m

� �
ij i jh j (t.2)

H ¼ P
mϵm mj i mh j (t.3) Σb ¼

P
mλm vm

		 

vm
� 		 (t.4)

E = ∑m∫dϵn(ϵ)ϵδ(ϵ − ϵm) (t.5) Tr(Σb) = ∑m∫dλλδ(λ − λm) (t.6)
ρi? ðϵÞ ¼

P
m hi?jmi
		 		2δðϵ� ϵmÞ (t.7) ρi? ðλÞ ¼

P
mjhxi? jvmij2δðλ� λmÞ (t.8)

ϵi? ¼
R
dϵρi? ðϵÞϵnðϵÞ (t.9) d2i? ¼

R
dλρi? ðλÞ 1λ (t.10)

pðϵi? Þ / expð�βϵi? Þ for β ! 0 (t.11) pðxi? Þ / expð�d2i? =2Þ (t.12)

Commonly used quantum mechanics (QM) formalism of local energies (on left) is compared with ML formalism of sample covariance matrix and statistical distances (on right). To emphasize the
similarities between the two approaches, we adopt the QM bra-ket notation for statistical distance. The data points of the descriptor space are the ket vectors xj i ¼ x 2 RD ´ 1 , whereas the bra vectors
are the transposed vectors xh j ¼ xT 2 R1´D . ρi? and ρλ are the local density of states and variance, respectively, for the state i?

		 

/ data point jxi? i. pðϵi? Þ is the probability of the state i?

		 

in the limit of

high temperature, where the Fermi-Dirac distribution becomes classical Boltzmann distribution. pðxi? Þ is the marginal likelihood of the data point jxi? i.
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Fig. 9 Correlation of the local energy with various statistical distances. Correlation with the local energy from (a–d) GAP interatomic potential for Fe and
(e–h) linear ML (LML) interatomic potential for W. The subplots (a, e) illustrate the standard MCD/Hotteling’s T2 estimator; (b–d) and (f–h) correspond to
the variations of statistical distances inspired by QM.

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-020-18282-2

12 NATURE COMMUNICATIONS |         (2020) 11:4691 | https://doi.org/10.1038/s41467-020-18282-2 | www.nature.com/naturecommunications

www.nature.com/naturecommunications


Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The training databases for Fe and Al as well as the analysed configurations are available
in public GitHub repository at https://github.com/mcmarinica/DefectsDetection.

Code availability
The descriptors for various structures were computed using MiLaDy package and the
structural analysis was performed using Unseen package. The relevant codes to
reproduce the results presented in this paper are available upon request from the
corresponding authors.
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