Lionel Blatter

Pascale Le Gall

An Efficient VCGen-based Modular Verification of Relational Properties

Deductive verification typically relies on function contracts that specify the behavior of each function for a single function call. Relational properties link several function calls together within a single specification. They can express more advanced properties of a given function or relate calls to different functions, possibly run in parallel. However, relational properties cannot be expressed and verified directly in the traditional setting of modular deductive verification. Recent work proposed a new technique for relational property verification that relies on a verification condition generator to produce logical formulas that must be verified to ensure a given relational property. This paper presents an overview of this approach and proposes important enhancements. We integrate an optimized verification condition generator and extend the underlying theory to show how relational properties can be proved in a modular way, where one relational property can be used to prove another one, like in modular verification of function contracts. Our results have been fully formalized and proved sound in the Coq proof assistant.

Introduction

Modular deductive verification [START_REF] Hoare | An axiomatic basis for computer programming[END_REF] is used to prove that every function f of a given program respects its contract. Such a contract is, basically, an implication: if the given precondition is true before a call to f and the call terminates 6 , the given postcondition is true when f returns control to the caller. However, some kinds of properties are not easily reducible to a single function call. Indeed, it is often necessary to express a property that involves several functions, possibly executed in parallel, or relates the results of several calls to the same function for different arguments. Such properties are known as relational properties [START_REF] Benton | Simple relational correctness proofs for static analyses and program transformations[END_REF]. Examples of such relational properties include monotonicity (i.e. x ≤ y ⇒ f (x) ≤ f (y)), involving 2 calls, or transitivity (cmp(x, y) ≥ 0 ∧ cmp(y, z) ≥ 0 ⇒ cmp(x, z) ≥ 0), involving 3 calls. In secure information flow [START_REF] Barthe | Secure information flow by self-composition[END_REF], non-interference is also a relational property. Namely, given a partition of program variables between high-security variables and low-security variables, a program is said to be non-interferent if any two executions starting from states in which the lowsecurity variables have the same initial values will end up in a final state where the low-security variables have the same values. In other words, high-security variables cannot interfere with low-security ones.

Motivation. Lack of support for relational properties in verification tools was already faced by industrial users (e.g. in [8] for C programs). The usual way to deal with this limitation is to use self-composition [START_REF] Barthe | Secure information flow by self-composition[END_REF][START_REF] Scheben | Efficient self-composition for weakest precondition calculi[END_REF][START_REF] Blatter | RPP: automatic proof of relational properties by self-composition[END_REF], product programs [START_REF] Barthe | Relational verification using product programs[END_REF] or other self-composition variants [START_REF] Shemer | Property directed self composition[END_REF]. Those techniques are based on code transformations that are relatively tedious and error-prone. Moreover, they are hardly applicable in practice to real-life programs with pointers like in C. Namely, selfcomposition requires that the compared executions operate on completely separated (i.e. disjoint) memory areas, which might be extremely difficult to ensure for complex programs with pointers. Modular verification of relational properties is another important feature: the user may want to rely on some relational properties in order to verify some other ones.

Example 1 (relational property). Figure 1 shows an example of a recursive command (that is, program) c sum . We clearly distinguish the name and the body of a procedure. The procedure named y sum is assumed to have command c sum as its body, so that c sum recursively calls itself. Given three global integer variables x 1 , x 2 and x 3 , command c sum adds to x 3 (used as an accumulator) the sum

x 1 + (x 1 + 1) + • • • + (x 2 -1) if x 1 < x 2 ,
and has no effect otherwise.

Figure 1 also shows an example of a relational property R 1 (inspired by [START_REF] Barthe | Relational verification using product programs[END_REF]) stating the equivalence of two commands c 1 ω and c 2 ω (assumed to be run on separate memory states), which assign x 1 and x 3 before calling y sum . The relational property is written here in Benton's notation [START_REF] Benton | Simple relational correctness proofs for static analyses and program transformations[END_REF]: tags 1 and 2 are used to distinguish the programs linked by the property. When variables of the linked programs have the same names, such a tag after a variable name also helps to distinguish the instance of the variable used in the relational precondition and postcondition (written in curly braces, resp., on the left and on the right). Property R 1 states that if x 2 has the same value before the execution of c 1 ω and before the execution of c 2 ω , then x 3 will have the same value after their executions. Indeed, c 1 ω will compute in

x 3 the sum 1 + 2 + • • • + (x 2 -1), while c 2 ω will compute in x 3 the sum 0 + 1 + 2 + • • • + (x 2 -1).
In this paper, we show how relational property R 1 can be verified using another relational property R 3 linking two runs of c sum rather than using a full functional contract of c sum . More precisely, R 3 (that will be formally defined below in Fig. 5) generalizes the situation of R 1 and states that the resulting value of x 3 after two runs of c sum will be the same if the initial state of the second run is exactly one iteration of c sum behind that of the first run.

Approach. Our recent work [START_REF] Blatter | Certified verification of relational properties[END_REF] proposed an alternative to self-composition that is not based on code transformation or relational rules. It directly relies on a standard verification condition generator (VCGen) to produce logical formulas to be verified (typically, with an automated prover) to ensure a given relational property. This approach requires no extra code processing (such as sequential composition of programs or variable renaming). Moreover, no additional separation hypotheses are required. The locations of each program are separated by construction: each program has its own memory state. This approach has been formalized on a minimal language L, representative of the main issues relevant for relational property verification. L is a standard While language extended with annotations, procedures and pointers. Notably, the presence of dereferences and address-of operations makes it representative of various aliasing problems with (possibly, multiple) pointer dereferences of a real-life language like C. An example of a relational property for programs with pointers was given in [START_REF] Blatter | Certified verification of relational properties[END_REF]. We formalize the proposed approach and prove its soundness in the Coq proof assistant [START_REF]The Coq Development Team: The Coq Proof Assistant[END_REF]. Our Coq development7 contains about 3700 lines.

Contributions. We give an overview of the VCGen-based approach for relational property verification (presented in [START_REF] Blatter | Certified verification of relational properties[END_REF]) and enhance the underlying theory with several new features. The new technical contributions of this paper include:

a Coq formalization and proof of soundness of an optimized VCGen for language L, and its extension to the verification of relational properties; an extension of the framework allowing not only to prove relational properties, but also to use them as hypotheses in the following proofs; a Coq formalization of the extended theory.

We also provide an illustrative example and, as another minor extension, add the capacity to refer to old values of variables in postconditions.

Outline. Section 2 introduces the imperative language L used in this work. Functional correctness is defined in Section 3. The extension of functional correctness to relational properties is presented in Section 4. Then, we prove the soundness of an optimized VCGen in Section 5, and show how it can be soundly extended to verify relational properties in Section 6. Finally, we present related work in Section 7 and concluding remarks in Section 8.

2 Syntax and Semantics of the Considered Language L We denote by N = {0, 1, 2, . . . } the set of natural numbers, by N * = {1, 2, . . . } the set of nonzero natural numbers, and by B = {True, False} the set of Boolean values. Let X be the set of program locations and Y the set of program (procedure) names, and let x, x , x 1 , . . . and y, y , y 1 , . . . denote metavariables ranging over those respective sets. We assume that there exists a bijective function N → X, so that X = {x i | i ∈ N}. Intuitively, we can see i as the address of location x i .

Let Σ be the set of functions σ : N → N, called memory states, and let σ, σ , σ 1 , . . . denote metavariables ranging over Σ. A state σ maps a location to a value using its address: location x i has value σ(i).

We define the update operation of a memory state set(σ, i, n), also denoted by σ[i/n], as the memory state σ mapping each address to the same value as σ, except for i, bound to n. Formally, set(σ, i, n) is defined by the following rules:

∀σ ∈ Σ, x i ∈ X, n ∈ N, x j ∈ X. i = j ⇒ σ[i/n](j) = n, (1)
∀σ ∈ Σ, x i ∈ X, n ∈ N, x j ∈ X. i = j ⇒ σ[i/n](j) = σ(j). (2)
Let Ψ be the set of functions ψ : Y → C, called procedure environments, mapping program names to commands (defined below), and let ψ, ψ 1 , . . . denote metavariables ranging over Ψ . We write body ψ (y) to refer to ψ(y), the commands (or body) of procedure y in a given procedure environment ψ. An example of a procedure environment ψ sum is given in Fig. 5, where body ψsum (y sum) = c sum .

Preconditions (or assertions) are predicates of arity one, taking as parameter a memory state and returning an equational first-order logic formula. Let metavariables P, P 1 , . . . range over the set P of preconditions. For instance, using λ-notation, precondition P assessing that location x 3 is bound to 2 can be defined by P λσ.σ(3) = 2. This form will be more convenient for relational properties (than e.g. x 3 = 2) as it makes explicit the memory states on which a property is evaluated.

Postconditions are predicates of arity two, taking as parameters two memory states and returning an equational first-order logic formula. Its two arguments refer to the initial and the final state. For instance, postcondition Q assessing that location x 1 was incremented (that is, x 1 = old(x 1) + 1) can be defined in λ-notation by Q λσσ . σ (1) = σ(1) + 1. Let metavariables Q, Q 2 , . . . range over the set Q of postconditions.

Finally, we define the set Φ of contract environments φ : Y → P × Q, and metavariables φ, φ 1 , . . . to range over Φ. More precisely, φ maps a procedure name y to the associated (procedure) contract φ(y) = (pre φ (y), post φ (y)), composed of a pre-and a postcondition for procedure y. As usual, a procedure contract will allow us to specify the behavior of a single call to the corresponding procedure, that is, if we start executing y in a memory state satisfying pre φ (y), and the evaluation terminates, the pair composed of the initial and final states will satisfy post φ (y). Since we use natural values, the subtraction is bounded by 0, as in Coq: if n > n, the result of n -n is considered to be 0. Expressions also include locations, possibly with a dereference or an address operator. Figure 2 also presents the syntax of commands in L. Sequences, skip and conditions are standard. An assignment can be done to a location directly or after a dereference. Recall that a location x i contains as a value a natural number, say v, that can be seen in turn as the address of a location, namely x v , so the assignment * x i := a writes the value of expression a to the location x v , while the address operation &x i computes the address i of x i . An assertion command assert(P) indicates that an assertion P should be valid at the point where the command occurs. The loop command while b inv P do {c 1 } is always annotated with an invariant P . As usual, this invariant should hold when we reach the command and be preserved by each loop step. Command call(y) is a procedure call. All annotations (assertions, loop invariants and procedure contracts) will be ignored during the program execution and will be relevant only for program verification in Section 5. Procedures do not have explicit parameters and return values (hence we use the term procedure call rather than function call). Instead, as in assembly code [START_REF] Kip | Assembly Language for x86 Processors[END_REF], parameters and return value(s) are shared implicitly between the caller and the callee through memory locations: the caller must put/read the right values at the right locations before/after the call. Finally, to avoid ambiguity, we group sequences of commands with { }.

ξa n σ n ξa xi σ σ(i) ξa * xi σ σ(σ(i)) ξa &xi σ i
assert(P), σ ψ → σ ξa a σ = n xi := a, σ ψ → σ[i/n] ξa a σ = n * xi := a, σ ψ → σ[σ(i)/n] body ψ (y), σ1 ψ → σ2 call(y), σ1 ψ → σ2
       x1 2 < x2 2 ∧ x2 1 = x2 2 ∧ x1 1 = x1 2 + 1 ∧ x3 1 = x3 2 + x1 2        csum 1 ∼ csum 2 x3 1 = x3 2
Figure 5: A procedure environment ψ sum associating procedure name y sum with its body c sum (see Fig. 1), a Hoare triple R 2 for command c sum , and a relational property R 3 linking two runs of c sum .

Operational Semantics

Evaluation of arithmetic and Boolean expressions in L is defined by functions ξ a and ξ b . Selected evaluation rules for arithmetic expressions are shown in Fig. 3. Operations * x i and &x i have a semantics similar to the C language, i.e. dereferencing and address-of. Semantics of Boolean expressions is standard [START_REF] Winskel | The formal semantics of programming languages -an introduction[END_REF].

Based on these evaluation functions, we can define the operational semantics of commands in a given procedure environment ψ. Selected evaluation rules8 are shown in Fig. 4. As said above, both assertions and loop invariants can be seen as program annotations that do not influence the execution of the program itself. Hence, command assert(P) is equivalent to a skip. Likewise, loop invariant P has no influence on the semantics of while b inv P do {c}.

We write c, σ ψ → σ to denote that c, σ ψ → σ can be derived from the rules of Fig. 4. Our Coq formalization, inspired by [START_REF] Pierce | Logical Foundations. Software Foundations series[END_REF], provides a deep embedding of L, with an associated parser, in files Aexp.v, Bexp.v and Com.v.

Functional Correctness

We define functional correctness in a similar way to the original Hoare triple definition [START_REF] Hoare | An axiomatic basis for computer programming[END_REF], except that we also need a procedure environment ψ, leading to a quadruple denoted ψ : {P }c{Q}. We will however still refer by the term "Hoare triple" to the corresponding program property, formally defined as follows.

Definition 1 (Hoare triple). Let c be a command, ψ a procedure environment, and P and Q two assertions. We define a Hoare triple ψ : {P }c{Q} as follows:

ψ : {P }c{Q} ∀σ, σ ∈ Σ. P (σ) ∧ (c, σ ψ → σ) ⇒ Q(σ, σ).
Informally, our definition states that, for a given ψ, if a state σ satisfies P and the execution of c on σ terminates in a state σ , then (σ, σ) satisfies Q.

Example 2. Figure 5 gives an example of a Hoare triple denoted R 2 .

Next, we introduce notation CV (ψ, φ) to denote the fact that, for the given ψ and φ every procedure satisfies its contract.

Definition 2 (Contract Validity). Let ψ be a procedure environment and φ a contract environment. We define contract validity CV (ψ, φ) as follows:

CV (ψ, φ) ∀y ∈ Y. ψ : {pre φ (y)}call(y){post φ (y)}).
The notion of contract validity is at the heart of modular verification, since it allows assuming that the contracts of the callees are satisfied during the verification of a Hoare triple. More precisely, to state the validity of procedure contracts without assuming anything about their bodies in our formalization, we will consider an arbitrary choice of implementations ψ of procedures that satisfy the contracts, like in the first assumption of Theorem 1 below. This theorem, taken from [1, Th. 4.2] and reformulated for L in [START_REF] Blatter | Certified verification of relational properties[END_REF], states that ψ : {P }c{Q} holds if we can prove the contract of (the bodies in ψ of) all procedures in an arbitrary environment ψ respecting the contracts, and if the validity of contracts of φ for ψ implies the Hoare triple itself. This theorem is the basis for modular verification of Hoare Triples, as done for instance in Hoare Logic [START_REF] Hoare | An axiomatic basis for computer programming[END_REF][START_REF] Winskel | The formal semantics of programming languages -an introduction[END_REF] or verification condition generation.

Theorem 1 (Recursion). Given a procedure environment ψ and a contract environment φ such that the following two assumptions hold:

∀ψ ∈ Ψ. CV (ψ , φ) ⇒ ∀y ∈ Y, ψ : {pre φ (y)}body ψ (y){post φ (y)}, CV (ψ, φ) ⇒ ψ : {P }c{Q},
we have ψ : {P }c{Q}.

We refer the reader to the Coq development, more precisely the results recursive_proc and recursive_hoare_triple in file Hoare_Triple.v for a complete proof of Theorem 1.

Relational Functional Correctness

Relational properties can be seen as an extension of Hoare triples. But, instead of linking one program with two properties, the pre-and postconditions, relational properties link n programs to two properties, called relational precondition and relational postcondition. A relational precondition or assertion (resp., relational postcondition) for n programs is a predicate taking a sequence of n (resp., 2n) memory states and returning a first-order logic formula. Metavariables P , P , . . . (resp., Q, Q , . . .) range over the corresponding sets. As a simple example, the relational postcondition of R 1 (written in Fig. 1 in Benton's notation) can be stated in λ-notation as follows:

λσ 1 , σ 2 , σ 1 , σ 2 . σ 1 (3) = σ 2 (3).
A relational property is a property about n programs c 1 , . . . , c n , stating that if each program c i starts in a state σ i and ends in a state σ i such that P (σ 1 , . . . , σ n) holds, then Q(σ 1 , . . . , σ n , σ 1 , . . . , σ n) holds, where P is a relational precondition and Q is a relational postcondition. We formally define relational correctness similarly to functional correctness (cf. Def. 1), except that we now use sequences of commands and memory states. We abbreviate by (u k) n a sequence of elements (u k) n k=1 = (u 1 , . . . , u n), where k ranges from 1 to n. If n ≤ 0, (u k) n is the empty sequence denoted []. If n = 1, (u) 1 is the singleton sequence (u).

Definition 3 (Relational Hoare Triple). Let ψ be a procedure environment, (c k) n a sequence of n commands (n ∈ N *), P and Q relational pre-and postcondition for n commands. The relational correctness of (c k) n with respect to P and Q, denoted ψ : { P }(c k) n { Q}, is defined as follows:

ψ : { P }(c k) n { Q} ∀(σ k) n , (σ k) n . P ((σ k) n) ∧ (n i=1 c i , σ i ψ → σ i) ⇒ Q((σ k) n , (σ k) n).
For n = 1, this notion defines a Hoare triple. It also generalizes Benton's notation [START_REF] Benton | Simple relational correctness proofs for static analyses and program transformations[END_REF] for two commands: ψ : { P }c 1 ∼ c 2 { Q}. As Benton's work mostly focused on comparing equivalent programs, using symbol ∼ was quite natural.

Example 3. Relational property R 3 introduced in Ex. 1 is formalized (in Benton's notation) in Fig. 5. Below, we will illustrate modular verification of relational properties by deducing R 1 from R 3 and partial contract R 2 of c sum .

We will now extend Theorem 1 to relational contract environments. A relational contract environment φ maps a sequence of program names (y k) n to a relational contract, composed of a relational pre-and postcondition, denoted φ((y k) n) = (pre φ ((y k) n), post φ ((y k) n)). Practical applications require only a finite number of properties, so the relational contract can be assumed trivial for all except a finite number of sequences. A relational contract environment generalizes a contract environment, since a standard procedure contract is a relational contract (for a sequence of exactly one element). Notice that φ considers only one relational property for a given sequence (y k) n : this is not a limitation since several properties can be encoded in one contract. We define the set of relational contract environments Φ, and metavariables φ, φ 0 , φ 1 , . . . will range over Φ.

We introduce notation CV r (ψ, φ) to denote the fact that all procedures defined in ψ satisfy the relational contracts in which they are involved in φ.

Definition 4 (Relational Contract Validity).

Let ψ be a procedure environment and φ a relational contract environment. We define CV r (ψ, φ) as follows:

CV r (ψ, φ) ∀(y k) n ∈ dom(φ), n > 0 ⇒ ψ : { pre φ ((y k) n)}(call(y k)) n k=1 { post φ ((y k) n)}.
Theorem 2 (Relational Recursion). Given a procedure environment ψ and a relational contract environment φ such that the following two assumptions hold:

∀ψ ∈ Ψ. CV r (ψ , φ) ⇒ ∀(y k) n ∈ dom(φ), ψ : { pre φ ((y k) n)}(body ψ (y k)) n k=1 { post φ ((y k) n)}, CV r (ψ, φ) ⇒ ψ : { P }(c k) n { Q} then we have ψ : { P }(c k) n { Q}.
The Coq proof (which is a straightforward extension of the proof of Theorem 1) is available in Rela.v, Theorem recursion relational.

Optimized Verification Condition Generator

A standard way [START_REF] Floyd | Assigning meanings to programs[END_REF] for verifying that a Hoare triple holds is to use a verification condition generator (VCGen). In this section, we formalize a VCGen for Hoare triples such that if all verification conditions that it generates are valid, then the Hoare triple is valid according to Def. 1. The VCGen described in this section is based on optimizations introduced in [START_REF] Flanagan | Avoiding exponential explosion: generating compact verification conditions[END_REF]. Such optimizations allow the VCGen to return formulas whose size is linear with respect to the size of the program itself, and are now part of any state-of-the-art deductive verification tool. The key idea is to avoid splitting verification condition generation into two separated sub-generation at each conditional. The definition is formalized in Coq in the file Vcg Opt.v, where we also prove that the verification conditions of this optimized VCGen imply those of the naive VCGen presented in [START_REF] Blatter | Certified verification of relational properties[END_REF]. This will allow us to use the optimized VCGen (or more generally any VCGen satisfying the properties stated in Theorem 3 below) for the verification of relational properties as well (see Section 6).

Verification Condition Generator

When defining the naive VCGen in [START_REF] Blatter | Certified verification of relational properties[END_REF], we proposed a modular definition. Namely, we divided it into three functions T c , T a and T f . Here, we follow the same approach for the optimized VCGen, using three new functions T c , T a , and T f :

function T c generates the main verification condition, expressing that the postcondition holds in the final state, assuming auxiliary annotations hold; function T a generates auxiliary verification conditions stemming from assertions, loop invariants, and preconditions of called procedures; finally, function T f generates verification conditions for the auxiliary procedures that are called by the main program, to ensure that their bodies respect their contracts.

Definition 5 (Function T c generating the main verification condition).

Given a command c, two memory states σ and σ , a contract environment φ, and a function f taking a formula as argument and returning a formula, function T c returns a formula defined by case analysis on c as shown in Fig. 6.

State σ represents the state before executing the command, while σ represents the state after it. Intuitively, the argument that gets passed to f is the formula that relates σ and σ according to c itself. Thus, if f is of the form λp.p ⇒ Q(σ, σ), as in Theorem 3 below, the resulting formula is a verification condition for post-condition Q to hold.

T c skip (σ, σ , φ, f) f (σ = σ) T c xi := a (σ, σ , φ, f) f (σ = set(σ, i, ξa a σ)) T c * xi := a (σ, σ , φ, f) f (σ = set(σ, σ(i), ξa a σ)) T c assert(P) (σ, σ , φ, f) f (P (σ) ∧ σ = σ) T c c0; c1 (σ, σ , φ, f) ∀σ , T c c0 (σ, σ , φ, λp1. T c c1 (σ , σ , φ, λp2.f (p1 ∧ p2))) T c if b then {c0} else {c1} (σ, σ , φ, f) T c c0 (σ, σ , φ, λp1. T c c1 (σ, σ , φ, λp2. f ((b ≡ True ⇒ p1) ∧ (b ≡ False ⇒ p2)))) T c call(y) (σ, σ , φ, f) f (pre φ (y)(σ) ∧ post φ (y)(σ, σ)) T c while b inv inv do {c} (σ, σ , φ, f) f (inv σ ∧ inv σ ∧ ¬(ξ b b σ))
For skip, which does nothing, both states are identical. For assignments, σ is simply the update of σ. An assertion introduces a hypothesis over σ but leaves it unchanged. For a sequence, a fresh memory state σ is introduced, and we compose the VCGen. For a conditional, if the condition evaluates to True, we select the condition from the then branch, and otherwise from the else branch. Note that, contrary to the naive VCGen, we perform a single call to f , ensuring the linearity of the formula.

The rule for calls simply assumes that before the call σ satisfies pre φ (y) and after the call σ and σ satisfy post φ (y). Finally, T c assumes that, for a loop, both the initial state σ and the final one σ satisfy the loop invariant. Additionally, in σ the loop condition evaluates to False. As for an assertion, the callee's precondition and the loop invariant are just assumed to be true; function T a , defined below, generates the corresponding proof obligations.

Example 4. For c if False then {skip} else {x 1 := 2} we have: Definition 6 (Function T a generating the auxiliary verification condition). Given a command c, a memory state σ representing the state before the command, and a contract environment φ, function T a returns a formula defined by case analysis on c as shown in Fig. 7.

T c c (σ, σ , φ, λp. p ⇒ σ (1) = 2) ≡ (False ≡ True ⇒ σ = σ) ∧ (False ≡ False ⇒ σ = set(σ, 1, 2)) ⇒ σ (1) = 2.
T a c0; c1 (σ, φ) T a c0 (σ, φ) ∧ ∀σ , T c c0 (σ, σ , φ, λp. p ⇒ T a c1 (σ , φ)) T a if b then {c0} else {c1} (σ, φ) (ξ b b σ ⇒ T a c0 (σ, φ)) ∧ (¬(ξ b b σ) ⇒ T a c1 (σ, φ)) T a call(y) (σ, φ) pre φ (y)(σ) T a while b inv inv do {c} (σ, φ) inv(σ) ∧ (∀σ , inv(σ) ⇒ ξ b b σ ⇒ T a c (σ , φ)) ∧ (∀σ σ , inv(σ) ⇒ T c c (σ , σ , φ, λp. p ⇒ inv(σ)))
Basically, T a collects all assertions, preconditions of called procedures, as well as invariant establishment and preservation, and lifts the corresponding formulas to constraints on the initial state σ through the use of T c .

As for T c , the formulas generated by T a imply those generated by T a .

Lemma 2. For a given program c, a procedure contract environment φ, and a memory state σ, if we have T a c (σ, φ), then we have T a c (σ, φ).

Proof. By structural induction over c.

Finally, we define the function that generates the conditions for verifying that the body of each procedure defined in ψ respects its contract defined in φ.

Definition 7 (Function T f generating the procedure verification condition). T f takes as argument two environments ψ and φ and returns a formula:

T f (φ, ψ) ∀y, σ, σ . pre φ (y)(σ) ⇒ T a body ψ (y) (σ, φ) ∧ T c body ψ (y) (σ, σ , φ, λp.p ⇒ post φ (y)(σ, σ)).
Finally, the formulas generated by T f imply those generated by T f . Lemma 3. For a given procedure environment ψ, and a procedure contract environment φ, if we have T f (φ, ψ), then we have T f (φ, ψ).

Proof. Using Lemmas 1 and 2.

The definition of the optimized VCGen and its link to the naive version can be found in file Vcg Opt.v of the Coq development.

Hoare Triple Verification

Using the VCGen defined in Sec. 5.1, we can state the theorem establishing how a Hoare Triple can be verified. The proof can be found in file Correct.v of the Coq development.

Theorem 3 (Soundness of VCGen). Assume that we have T f (φ, ψ) and

∀σ. P (σ) ⇒ T a c (σ, φ), ∀σ, σ . P (σ) ⇒ T c c (σ, σ , φ, λp. p ⇒ Q(σ, σ)).
Then we have ψ : {P }c{Q}.

Proof. By soundness of the naive VCGen [START_REF] Blatter | Certified verification of relational properties[END_REF]Th. 3] and Lemmas 1, 2, 3.

Modular Verification of Relational Properties

In this section, we propose a modular verification method for relational properties (defined in Section 4) using the optimized VCGen defined in Section 5 (or, more generally, any VCGen respecting Theorem 3). First, we define the function T cr for the recursive call of T c on a sequence of commands and memory states.

Definition 8 (Function T cr). Given a sequence of commands (c k) n and a sequence of memory states (σ k) n , a contract environment φ and a function f taking as argument a formula and returning a formula, function T cr is defined by induction on n for the basis (n = 0) and inductive case (n ∈ N *) as follows:

T cr ([], [], [], φ, f) f (T rue), T cr ((c k) n , (σ k) n , (σ k) n , φ, f) T c c n (σ n , σ n , φ, λp n . T cr ((c k) n-1 , (σ k) n-1 , (σ k) n-1 , φ, λp n-1 . f (p n ∧ p n-1))).
Intuitively, like in Def. 5, the argument that gets passed to f is the formula that relates the n pre-states (σ k) n to the n post-states (σ k) n when all (c k) n are executed. Again, if f is of the form λp.p ⇒ Q((σ k) n , (σ k) n), the resulting formula is a verification condition for the relational postcondition Q to hold. More concretely, for n = 2, and f as above, we obtain:

T cr ((c 1 , c 2), (σ 1 , σ 2), (σ 1 , σ 2), φ, λp.p ⇒ Q((σ 1 , σ 2), (σ 1 , σ 2))) ≡ T c c 2 (σ 2 , σ 2 , φ, λp 2 .T c c 1 (σ 1 , σ 1 , φ, λp 1 .p 2 ∧ p 1 ⇒ Q((σ 1 , σ 2), (σ 1 , σ 2)))).
We similarly define a notation for the auxiliary verification conditions for a sequence of n commands. Basically, this is the conjunction of the auxiliary verification conditions generated by T a on each individual command. Definition 9 (Function T ar). Given a sequence of commands (c k) n and a sequence of memory states (σ k) n , we define function T ar as follows:

T ar ((c k) n , (σ k) n , φ) n i=1 T a c i (σ i , φ).
A standard contract over a single procedure y can be used directly whenever there is a call to y. For a relational contract over (y k) n , things are more complicated: there is not a single program point where we can apply the relational contract. Instead, we have to somehow track in the generated formulas all the calls that have been made, and to guard the application of the relational contract by a constraint stating that all the appropriate calls have indeed taken place. In order to achieve that, we start by defining a notation for the conjunction of a sequence of procedure calls and associated memory states:

Definition 10 (Functions P call and P pred).

P call (y, σ, σ , ψ) call(y), σ ψ → σ , P pred ((y k) n , (σ k) n , (σ k) n , ψ) n i=1 P call (y i , σ i , σ i , ψ).
Then, we can define function T pr translating relational contracts into a logical formula, using P pred to guard its application with tracked calls.

Definition 11 (Function T pr).

T pr (φ, ψ)

∀(y k) n , (σ k) n , (σ k) n , n > 0 ⇒ P pred ((y k) n , (σ k) n , (σ k) n , ψ) ⇒ pre φ ((y k) n)(σ k) n ⇒ post φ ((y k) n)(σ k) n (σ k) n .
We now define function L to lift a relational procedure contract with an associated tracked call predicate and reduce it to a standard contract.

L(φ, ψ) λy.(λσ. pre φ ((y) 1)(σ) 1 , λσσ . post φ ((y) 1)(σ) 1 (σ) 1 ∧ P call (y, σ, σ , ψ)).

Finally, using function T pr and L, we can define function T f r for generating the verification condition for verifying that the bodies of each sequence of procedures respect the relational contract defined in φ: thanks to L, each call instruction will result in a corresponding P call occurrence in the generated formula, so that it will be possible to make use of the relational contracts hypotheses in T pr when the appropriate sequences of calls occur.

Definition 12 (Function T f r).

T f r (φ, ψ) ∀(y k) n , (σ k) n , (σ k) n , ψ , pre φ ((y k) n) ⇒ T pr (φ, ψ) ⇒ T ar ((body ψ (y k)) n k=1 , (σ k) n , L(φ, ψ)) ∧ T cr ((body ψ (y k)) n k=1 , (σ k) n , (σ k) n , L(φ, ψ), λp.p ⇒ post φ ((y k) n))).
Using functions T cr , T ar and T f r , we can now give the main result of this paper, i.e. that the verification of relational properties with the VCGen is correct.

Theorem 4 (Soundness of relational VCGen). For any sequence of commands (c k) n , contract environment φ, procedure environment ψ, and relational pre-and postcondition P and Q, if the following three properties hold:

T f r (φ, ψ), (3)
∀(σ k) n , ψ , P ((σ k) n) ∧ T pr (φ, ψ) ⇒ T ar ((c k) n , (σ k) n , L(φ, ψ)), (4)
∀(σ k) n , (σ k) n , ψ , P ((σ k) n) ∧ T pr (φ, ψ) ⇒ T cr ((c k) n , (σ k) n , (σ k) n , L(φ, ψ), λp. p ⇒ Q((σ k) n , (σ k) n)), (5)
then we have ψ :

{ P }(c k) n { Q}.
In other words, a relational property is valid if all relational procedure contracts are valid, and, assuming the relational precondition holds, both the auxiliary verification conditions and the main relational verification condition hold. The corresponding Coq formalization is available in file Rela.v, and the Coq proof of Theorem 4 is in file Correct Rela.v.

Example 5. Consider ψ = ψ sum and φ which encodes R 2 and R 3 . The relational property R 1 of Fig. 1 can now be proven valid in a modular way, using R 2 and R 3 , by the proposed technique based on Theorem 4 (see file Examples.v of the Coq development). For instance, (5) becomes the formula of Fig. 8. There, the relational precondition is given by (6), while the simplified (instantiated for sequence (y sum , y sum)) translation of the relational contracts T pr (φ, ψ) is given by [START_REF] Beringer | Abstraction and subsumption in modular verification of C programs[END_REF]. Finally, (8) gives the main verification condition:

T cr ((c 1 ω , c 2 ω), (σ 1 , σ 2), (σ 1 , σ 2), L(φ, ψ), λp.p ⇒ σ 1 [3] = σ 2 [3]), where L(φ, ψ) = {y sum → (λσ. True, λσ, σ . σ[1] σ[2] ⇒ σ[3] = σ [3] ∧ P call (y sum , σ, σ , ψ))}.
Long for a manual proof, such formulas are well-treated by solvers.

Related Work

Relational Property Verification. Significant work has been done on relational program verification (see [START_REF] Naumann | Thirty-seven years of relational Hoare logic: Remarks on its principles and history[END_REF][START_REF] Maillard | The next 700 relational program logics[END_REF] for a detailed state of the art). We discuss below some of the efforts the most closely related to our work.

Various relational logics have been designed as extensions to Hoare Logic, such as Relational Hoare Logic [START_REF] Benton | Simple relational correctness proofs for static analyses and program transformations[END_REF] and Cartesian Hoare Logic [START_REF] Sousa | Cartesian Hoare Logic for Verifying k-safety Properties[END_REF]. As our approach, those logics consider for each command a set of associated memory states in the very rules of the system, thus avoiding additional separation assumptions. Limitations of these logics are often the absence of support for aliasing or a limited form of relational properties. For instance, Relational Hoare Logic supports only relational properties with two commands and Cartesian Hoare Logic supports only k-safety properties (relational properties on the same command). Our method has an advanced support of aliasing and supports a very general definition of relational properties, possibly between several dissimilar commands.

∀σ1, σ2, σ 1 , σ 2 , ψ. σ1(1) = σ2(1) (6)
∧ (∀σ1, σ2, σ 1 , σ 2 . Self-compositon [START_REF] Barthe | Secure information flow by self-composition[END_REF][START_REF] Scheben | Efficient self-composition for weakest precondition calculi[END_REF][START_REF] Blatter | RPP: automatic proof of relational properties by self-composition[END_REF] and its derivations [START_REF] Barthe | Relational verification using product programs[END_REF][START_REF] Shemer | Property directed self composition[END_REF][START_REF] Eilers | Modular product programs[END_REF] are well-known approaches to deal with relational properties. This is in particular due to their flexibility: self-composition methods can be applied as a preprocessing step to different verification approaches. For example, self-composition is used in combination with symbolic execution and model checking for verification of voting functions [START_REF] Beckert | Automated verification for functional and relational properties of voting rules[END_REF]. Other examples are the use of self-composition in combination with verification condition generation in the context of the Java language [START_REF] Dufay | Privacy-sensitive information flow with JML[END_REF] or the C language [START_REF] Blatter | RPP: automatic proof of relational properties by self-composition[END_REF][START_REF] Blatter | Static and dynamic verification of relational properties on self-composed C code[END_REF]. In general, the support of aliasing of C programs in these last efforts is very limited due the problems mentioned earlier. Compared to these techniques, where self-composition is applied before the generation of verification conditions (and therefore requires taking care about separation of memory states of the considered programs), our method can be seen as relating the considered programs' semantics directly at the level of the verification conditions, where separation of their memory states is already ensured, thus avoiding the need to take care of this separation explicitly.

P call (ysum, σ1, σ 1 , ψ) ∧ P call (ysum, σ2, σ 2 , ψ)∧ σ2(1) < σ2(2) ∧ σ1(2) = σ2(2)∧ σ1(1) = σ2(1) + 1 ∧ σ1(3) = σ2(3) + σ2(1) ⇒ σ 1 (3) = σ 2 (3)) (7) ⇒ ∀σ 1 , σ 1 , σ 2 , σ 2 . σ 1 = set(σ1, 1, 1) ∧ σ 1 = set(σ 1 , 3, 0)∧ ((σ 1 (1) σ 1 (2) ⇒ σ 1 (3) = σ 1 (3)) ∧ P call (ysum, σ 1 , σ 1 , ψ))∧ σ 2 = set(σ2, 1, 0) ∧ σ 2 = set(σ 2 , 3, 0)∧ ((σ 2 (1) σ 2 (2) ⇒ σ 2 (3) = σ 2 (3)) ∧ P call (ysum, σ 2 , σ 2 , ψ)) ⇒ σ 1 (3) = σ 2 (3) (8)
Finally, another advanced approach for relational verification is the translation of the relational problem into Horn clauses and their proof using constraint solving [START_REF] Kiefer | Relational program reasoning using compiler IR -combining static verification and dynamic analysis[END_REF][START_REF] Unno | Constraint-based relational verification[END_REF]. The benefit of constraint solving lies in the ability to automatically find relational invariants and complex self-composition derivations. Moreover, the translation of programs into Horn clauses, done by tools like Reve9 , results in formulas similar to those generated by our VCGen. Therefore, like our approach, relational verification with constraint solving requires no additional separation hypothesis in presence of aliasing.

Certified Verification Condition Generation. In a broad sense, this work continues previous efforts in formalization and mechanized proof of program language semantics, analyzers and compilers, such as [START_REF] Pierce | Logical Foundations. Software Foundations series[END_REF][START_REF] Leroy | Formal verification of a C-like memory model and its uses for verifying program transformations[END_REF][START_REF] Herms | Certification of a Tool Chain for Deductive Program Verification[END_REF][START_REF] Beringer | Abstraction and subsumption in modular verification of C programs[END_REF][START_REF] Jourdan | A formally-verified C static analyzer[END_REF][START_REF] Jung | Iris from the ground up: A modular foundation for higher-order concurrent separation logic[END_REF][START_REF] Wils | Certifying C program correctness with respect to compcert with verifast[END_REF][START_REF] Krebbers | Formal C semantics: CompCert and the C standard[END_REF][START_REF] Blazy | Verified validation of program slicing[END_REF][START_REF] Parthasarathy | Formally validating a practical verification condition generator[END_REF]. Generation of certificates (in Isabelle) for the Boogie verifier is presented in [START_REF] Parthasarathy | Formally validating a practical verification condition generator[END_REF]. The certified deductive verification tool WhyCert [START_REF] Herms | Certification of a Tool Chain for Deductive Program Verification[END_REF] comes with a similar soundness result for its verification condition generator. Its formalization follows an alternative proof approach, based on co-induction, while our proof relies on induction. WhyCert is syntactically closer to the C language and the ACSL specification language [START_REF] Baudin | ACSL: ANSI/ISO C Specification Language[END_REF], while our proof uses a simplified language, but with a richer aliasing model. Furthermore, we provide a formalization and a soundness proof for relational verification, which was not considered in WhyCert or in [START_REF] Parthasarathy | Formally validating a practical verification condition generator[END_REF].

Our previous work [START_REF] Blatter | Certified verification of relational properties[END_REF] presented a method for relational property verification based on a naive VCGen. To the best of our knowledge, the present work is the first proposal of modular relational property verification based on an optimized VCGen for a representative language with procedure calls and aliases with a full mechanized formalization and proof of soundness in Coq.

Conclusion

We have presented in this paper an overview of a method for modular verification of relational properties using an optimized verification condition generator, without relying on code transformations (such as self-composition) or making additional separation hypotheses in case of aliasing. This method has been fully formalized in Coq, and the soundness of recursive relational verification using a verification condition generator (itself formally proved correct) for a simple language with procedure calls and aliasing has been formally established.

This work opens the door for interesting future work. Currently, for relational properties, product programs [START_REF] Barthe | Relational verification using product programs[END_REF] or other self-composition optimizations [START_REF] Shemer | Property directed self composition[END_REF] are the standard approach to deal with complex loop constructions. We expect that user-provided coupling invariants and loop properties can avoid having to rely on code transformation methods. Showing this in our framework is the next step, before the investigation of termination and co-termination [START_REF] Hawblitzel | Towards modularly comparing programs using automated theorem provers[END_REF], [START_REF] Unno | Constraint-based relational verification[END_REF] for extending the modularity of relational contracts.

/ω and c 2 ω : x2 1 = x2 2 /

 12 /Command csum: if x1 < x2 then { x3 := x3 + x1; x1 := x1 + 1; call(ysum) } else { skip } Relational property R1 between commands c 1

Figure 1 :

 1 Figure 1: Recursive command c sum , associated as a body with procedure name y sum , and relational property R 1 between two commands, denoted c 1 ω and c 2 ω , involving a call to this procedure.

2. 1

 1 Locations, States, and Procedure Contracts

|Figure 2 :

 2 Figure 2: Syntax of arithmetic and Boolean expressions and commands in L.

Figure 3 :

 3 Figure 3: Evaluation of expressions in L (selected rules).

Figure 4 :

 4 Figure 4: Operational semantics of commands in L (selected rules).

 Procedure environment: ψsum {ysum → csum} Hoare triple R2: ψsum : True csum old(x1) old(x2) ⇒ old(x3) = x3 Relational property R3: ψsum :

Figure 6 :

 6 Figure 6: Definition of function T c generating the main verification condition.

Lemma 1 Lemma 1 .

 11 establishes a relation between functions T c and T c : the formulas generated by T c imply the formulas generated by T c . Given a program c, a procedure contract environment φ, a memory state σ and an assertion P , if we have ∀σ ∈ Σ, T c c (σ, σ , φ, λp. p ⇒ P (σ)), then we have T c c (σ, φ, P).Proof. By structural induction over c.

T

 a skip (σ, φ) True T a x := a (σ, φ) True T a * x := a (σ, φ) True T a assert(P) (σ, φ) P (σ)

Figure 7 :

 7 Figure 7: Definition of function T a generating auxiliary verification conditions.

Figure 8 :

 8 Figure 8: Assumption (5) of Theorem 4 illustrated for property R 1 of Fig. 1.

Figure 10 :

 10 Figure 10: Operational semantics of commands in L.

Termination can be either assumed (partial correctness) or proved separately (full correctness) in a classical way[START_REF] Floyd | Assigning meanings to programs[END_REF]; for the purpose of this paper we can assume it.

Available at https://github.com/lyonel2017/Relational-Spec/.

Full versions of Fig.3, 4 are given in Appendix A.

https://formal.kastel.kit.edu/projects/improve/reve/

We provide a complete list of rules for evaluation of arithmetic and Boolean expressions in L in Fig. 9. Evaluation of arithmetic and Boolean expressions in L is defined by functions ξ a and ξ b . As mentioned above, the subtraction is lower-bounded by 0. Operations * x i and &x i have a semantics similar to the C language, i.e. dereferencing and address-of. Semantics of Boolean expressions is standard [START_REF] Winskel | The formal semantics of programming languages -an introduction[END_REF].

A.2 Operational Semantics of Commands in L in L

We provide a complete operational semantics of commands in L in Fig. 10.