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IMPLEMENTATION IN SOLEDGE AND APPLICATION TO TCV EXPERIMENT

Radial prof les at the outer midplane for the shot WEST-55049. SolEdge2D-Eirene (black curve closed circles), probe data (blue e and open triangles). The experimental data measured with the reciprocating Langmuir probes (RLP) located at the top of the h vertical plunge are mapped at the midplane. The radial extent is restricted to the region where the experimental data is reliable, OL R -R sep 0.05 m, the density is small and the interpretation of the probe characteristics is diff cult, when approaching the R -R sep 0.01 m the probe head interacting with a hot plasma starts behaving as a secondary limiter. Left-hand side: electron ergy. Right-hand side: density. the scaling law for L-mode [87] leads to λ q which is about 2.8 times smaller than the observed value. Furthermore, the considerable uncertainty governed the error bars on the expo-nents leads to a range of values from 0.3 (mm) to 18 (mm). One f nds that the SolEdge2D-Eirene simulation with the κ -ε transport model has better predictive capability than the scal-ing law built for L-mode data. The latter appears to exhibit a too strong dependence on the safety factor. The uncertainty on the exponents and that for the safety factor is also an issue.

not well known because of the lack of appropriate data in the databases that have been used. As discussed in section 3.3, a complete picture of cross-f eld dependence on aspect ratio and safety factor is still missing. This issue is partly made more complicated because of the dependence of the safety factor on the aspect ratio A, q cyl A = B T / B pol , where q cyl is the cylindri-cal approximation of the safety factor. The open issue appears to be therefore the balance between magnetic f eld properties B T / B pol and geometry A = R/ a. 
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 15 Figure 15. Radial prof les at the outer midplane for the shot WEST-55049. SolEdge2D-Eirene (black curve closed circles), probe data (blue dashed line and open triangles). The experimental data measured with the reciprocating Langmuir probes (RLP) located at the top of the device with vertical plunge are mapped at the midplane. The radial extent is restricted to the region where the experimental data is reliable, in the far SOL R -R sep 0.05 m, the density is small and the interpretation of the probe characteristics is diff cult, when approaching the separatrix R -R sep 0.01 m the probe head interacting with a hot plasma starts behaving as a secondary limiter. Left-hand side: electron thermal energy. Right-hand side: density.
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 16 Figure 16. Experimental and simulation divertor prof les remapped at the outer midplane for the shot WEST-55049. Experimental data from Langmuir probes, labeled WEST, embedded in the divertor f oor, closed blue circles, SolEdge2D-Eirene plain black line, labeled SE2D. Left and right logarithmic scales have the same ratio between max and min, but are shifted to ensure overlap of the peak values. Left-hand side: ion saturation current. Right-hand side: parallel heat f ux.

  Ion saturation current and parallel heat flux at the outer strike point Baschetti et al. NF 2021
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• Results from SOLEDGE simulations in L-mode plasma coupling transport equations with κ-ε model for radial transport: good match with the experimental profiles, both at the divertor and at the midplane is found for TCV and WEST experiments

• We address the issue of modelling radial transport in edge plasma transport codes