
HAL Id: cea-03761714
https://cea.hal.science/cea-03761714

Submitted on 26 Aug 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Light VR client for point cloud navigation with 360°
images

Clement Dluzniewski, Jérémie Le Garrec, Claude Andriot, Frédéric Noël

To cite this version:
Clement Dluzniewski, Jérémie Le Garrec, Claude Andriot, Frédéric Noël. Light VR client for point
cloud navigation with 360° images. IEEE-VR 2022 - IEEE Conference on Virtual Reality and 3D
User Interfaces, Mar 2022, Christchurch (virtual event), New Zealand. , pp.566-567, 2022, 2022
IEEE Conference on Virtual Reality and 3D User Interfaces Abstracts and Workshops (VRW).
�10.1109/VRW55335.2022.00134�. �cea-03761714�

https://cea.hal.science/cea-03761714
https://hal.archives-ouvertes.fr


© 2022 IEEE. This is the author’s version of the article that has been published in the proceedings of IEEE
Visualization conference. The final version of this record is available at: 10.1109/VRW55335.2022.00134

Light VR Client for Point Cloud Navigation with 360° Images

Clément Dluzniewski1, 2, Jérémie Le Garrec1, Claude Andriot1, and Frédéric Noël2

1Université Paris-Saclay, CEA, List, F-91120, Palaiseau, France
2G-SCOP : Univ. Grenoble Alpes, CNRS, Grenoble INP, G-SCOP, 38000, Grenoble, France

Server

Client

teleport
position

    query 
octree nodes

360° rendering

color cubemap

equirectangular depth map

...

   division
into patches

Figure 1: Our omnidirectional remote point cloud viewer. First, the server queries visible points from the camera position. Then,
points are projected on a cubemap image and a omnidirectional depth map is created. The patches of the cubemap and the depth
map are sent to the user. The user visualizes the omnidirectional image in an HMD and selects a teleportation destination. When
the teleportation command is triggered, a request is sent to the server to retrieve the rendering of the point cloud at the pointed 3D
coordinates. The camera is then moved at the desired position and the process is repeated.

ABSTRACT

Since point clouds require a large amount of data to be visually
pleasing, they tend to be voluminous. Hence, hardware with limited
computational and memory capabilities may not be able to handle
such large data structures. Here, we propose a light VR client
to explore a static point cloud, stored in a remote server, through
360° images. The client visualizes in an HMD the omnidirectional
rendering of the point cloud and moves to another position with a
teleportation metaphor. The main advantage of our proposition is
the ability to work on modest hardware without a continuous high
bandwidth.

Index Terms: Computing methodologies—Computer graphics—
Graphics systems and interfaces—Virtual reality; Computing
methodologies—Computer graphics—Shape modeling—Point-
based models;

1 INTRODUCTION

A point cloud is a simple data structure defined as an unorganized
collection of 3D coordinates augmented with attributes such as color
or normal. Unlike other representations, point clouds do not contain
connectivity information between points, which easily leads to holes
that degrade photorealism [6]. A structure with many points is then
necessary to obtain a photorealistic rendering, which induces huge
computational and memory requirements.

This paper proposes the idea of remote visualization of static
point clouds with 360° images. The whole point cloud is stored

1 firstname.lastname@cea.fr
2 firstname.lastname@grenoble-inp.fr

on a server with high processing capacity, and an omnidirectional
rendering of the point cloud [2] is created at coordinates requested
by the user. Then, modest hardware can immersively explore the
point cloud by rendering the omnidirectional image in an HMD. The
user navigates in the environment from viewpoint to viewpoint with
teleportation like in Google Street View or QuickTime VR. This
discrete navigation scheme enables exploration without the need for
continuous high bandwidth.

The low hardware requirements and the ability to work with un-
stable network make the system a good support for collaborative
tele-immersion inside dense point clouds environments. For ex-
ample, it may be used for construction project monitoring [4] to
collaboratively review progress of a LIDAR scanned worksite with
a simple web browser.

2 OVERVIEW

Our goal was to create a client with metaphors close to traditional
VR. To navigate, the user cast a laser to an area in the point cloud and
is teleported at the selected position. Internally, a request is sent to
the server and it responds by sending the omnidirectional rendering
of the point cloud at the targeted position. The user navigates through
the point cloud by successive teleportation. This mechanism was
achieved by exploiting an omnidirectional depth map of the point
cloud directly sent by the server. The whole communication scheme
between the server and the client is illustrated Fig. 1.

We expect that the target-based travel metaphor is well-suited
for this discrete communication scheme, as the server only sends
information punctually and hence uses bandwidth sparingly.

2.1 Server
On the server-side, the point cloud is handled with a nested octree [5]
to have a hierarchical level of detail that is appropriate to the viewing
scale at the requested coordinates. If the user wants to visualize

1

https://doi.org/10.1109/VRW55335.2022.00134


© 2022 IEEE. This is the author’s version of the article that has been published in the proceedings of IEEE Visualization
conference. The final version of this record is available at: 10.1109/VRW55335.2022.00134

closer a part of the point cloud, the LOD increased by going in-
depth in the nested octree for the nodes representing this particular
part.

A cubemap inspired projection [1] was chosen to transmit the
omnidirectional rendering of the point cloud. The cubemap pro-
jection consists in projecting the pixels of the sphere on the faces
of a circumscribed cube and arrange these faces (called patches)
on a common image. Here, instead of combining these patches on
the same image, the patches are sent independently to the user to
progressively display the point cloud rendering instead of waiting for
the complete result. Getting this projection is similar to project the
visible points on 6 perspective cameras with different orientations,
and a point is not visible by the user if it does not belong to any of
the 6 camera frustums. To create an individual patch, the first step is
to select the points in the octree to project on the camera. Thanks
to the greater computational capability of the server, all the points
in the camera frustum with a projection size greater than 1 pixel are
selected. Then, these points are projected on a image using a splat
rendering algorithm [3] to avoid sparse rendering. The selection and
projection steps are repeated 6 times to get all the cubemap patches.
An individual patch is directly sent to the user when its rendering is
completed.

To be able to recover the real 3D points positions on the client-
side, the server also sends a omnidirectional cubemap. Instead of
progressively sending patches of depth map, the server sends it in
only one image with an equirectangular projection [1] because ma-
nipulating a partial depth map is not interesting for user interactions.

2.2 VR Client
On the user-side, the cubemap patches of the point cloud are directly
displayed in the HMD in the order they are received. After the
reception of the depth map, the user casts a laser ray toward a
destination like the traditional teleportation metaphor. With the help
of the depth map, the global coordinates in the point cloud of the
pointed pixel are computed. When the teleportation command is
triggered, a request is sent to the server to retrieve the rendering at
these global coordinates.

To help the user visualize the pointed position, an algorithm was
developed to locally add a reticle on the virtual environment floor
without server communication. The algorithm projects a 3D object
on the omnidirectional image with respect to occlusions thanks to
the depth map.

3 EVALUATION

Because our system is designed to immersively explore point clouds
without the need for continuous high bandwidth, its network usage is
compared to two others methods. The first is a point streaming like
Potree [3] consisting to directly transmit the points inside the client
frustum organized in a octree. The second is a render streaming
approach consisting to render the perspective view at client coor-
dinates on the server and then transmit the rendering to the client.
These methods have to send new information each time a rotation is
performed, while with our approach the user can perform as many
rotations as needed without additional requests. The bandwidth is
evaluated on a controlled network with low latency by teleporting
a client into 4 predefined positions and performing 2 horizontal
rotations for each position in a point cloud of 730 millions points.

The measured bandwidth is shown in Fig. 2. The bandwidth is
used continuously for both the streaming approaches. The point
streaming server needs to send points to refine the rendering after a
change in position and orientation, and the render streaming server
needs to send the current video frame with a high frequency. The
omnidirectional image server, in opposition to other methods, does
not need to send data continuously. The graph shows punctual
bandwidth usage with spikes corresponding to changes in position,
without additional data received when rotations are processed, as

0 10 20 30 40 50 60
time (second)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

ba
nd

wi
dt

h 
(m

eg
a 

by
te

s /
 se

co
nd

)

omnidirectional
render streaming
point streaming

Figure 2: Comparison of the bandwidth usage for the tested ap-
proaches. Point streaming and render streaming use the bandwidth
consistently while our omnidirectional approach uses the bandwidth
punctually after requesting a new position.

expected. When adding up all the amount of data, we find that
the point streaming server sends around 15 times more bytes than
the omnidirectional image server, and the render streaming server
sends around 2.5 times more bytes than the omnidirectional image
server. This result shows that our method also uses fewer data
for teleportation navigation, even when counting the depth map.
Also, we compared the number of frames per second (fps) of the
different approaches on the client-side. Measurements indicate that
our method is about 1.5 faster than the render streaming approach
and 2.5 faster than the point streaming approach, but all clients
appear quite fast (fps values of all clients are above 200). Thus,
these results provide evidences that our method is well-suited to
navigate in a static point cloud with a teleportation metaphor.

ACKNOWLEDGMENTS

This study takes place in Persyval Laboratory Of Excellence (French
labex) and was supported by French governement funding managed
by the National Research Agency under the Future Investments
Program under grant ANR-21-ESRE-0030 / CONTINUUM.

REFERENCES

[1] Z. Chen, Y. Li, and Y. Zhang. Recent advances in omnidirectional video
coding for virtual reality: Projection and evaluation. Signal Processing,
146:66–78, May 2018. doi: 10.1016/j.sigpro.2018.01.004

[2] M. Comino, C. Andújar, A. Chica, and P. Brunet. Error-aware construc-
tion and rendering of multi-scan panoramas from massive point clouds.
Computer Vision and Image Understanding, 157:43–54, Apr 2017. doi:
10.1016/j.cviu.2016.09.011

[3] M. Schütz. Potree: Rendering Large Point Clouds in Web Browsers.
Master’s thesis, TU Wien, Sep 2016.

[4] L. Waugh, B. Rausch, T. Engram, and F. Aziz. Inuvik Super School VR
Documentation: Mid-Project Status. In Cold Regions Engineering 2012,
p. 221–230, Aug 2012. doi: 10.1061/9780784412473.022

[5] M. Wimmer and C. Scheiblauer. Instant Points: Fast Rendering of
Unprocessed Point Clouds. In Proceedings of the 3rd Eurographics /
IEEE VGTC conference on Point-Based Graphics, SPBG’06, p. 129–137.
Eurographics Association, Jul 2006.

[6] E. Zerman, C. Ozcinar, P. Gao, and A. Smolic. Textured Mesh vs
Coloured Point Cloud: A Subjective Study for Volumetric Video Com-
pression. In 2020 Twelfth International Conference on Quality of
Multimedia Experience (QoMEX), p. 1–6, May 2020. doi: 10.1109/
QoMEX48832.2020.9123137

2

https://doi.org/10.1109/VRW55335.2022.00134

	Introduction
	Overview
	Server
	VR Client

	Evaluation

