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Abstract

The wide landscape of memory-hungry and compute-intensive Con-
volutional Neural Networks (CNNs) is quickly changing. CNNs are
continuously evolving by introducing new layers or optimization strate-
gies to either improve accuracy, reduce memory and computational needs
or both. Moving such algorithms to on-device enables smarter edge prod-
ucts. However, hardware designers find this constant evolution hard to
master, which keeps CNN accelerators one step behind. More approaches
are using reconfigurable hardware, such as FPGAs, to design customized
inference accelerators that are more suited to the newly-emerging CNN
algorithms. Moreover, high-level design techniques, such as High-Level
Synthesis (HLS), are adopted to address the time-consuming RTL-based
design and the design space exploration problems. HLS allows generat-
ing RTL source code from high-level descriptions. This paper presents
a hardware accelerator generation framework targeting FPGAs that
relies on two steps. The first step characterizes the input CNN and
produces hardware-aware metrics. The second step exploits the gener-
ated metrics to produce an optimized C-HLS source code for each layer
of the input CNN, then it uses an HLS tool to generate a synthesiz-
able RTL representation of the inference accelerator. The main goal of
this approach is to reduce the gap between the evolving CNNs and
the hardware accelerators, thus reducing design time of new systems.

Keywords: Convolutional Neural Networks, Design Space Exploration, High
Level Synthesis, Hardware Accelerators, FPGA
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1 Introduction

Convolutional Neural Networks (CNNs) [1] are bio-inspired algorithms, pre-
cisely, their topology is inspired by the hierarchical structure of neurons in
the visual cortex. CNNs are composed of neurons that are organized in many
computational layers. Generally, the first layers in CNNs rely on convolutional
filters that extract features from an input. Those features will be processed by
the last layers, known as fully connected layers, to classify the input. CNNs
are one of the leading technologies applied for computer vision tasks, such
as image classification, object detection and recognition. They acquire their
knowledge in a supervised manner in a learning phase by using labeled data,
and infer results in the inference phase, which is the main interest in this work.

CNN layers are based on computational operations throughout the network
to classify the input (Figure 1). Some operations are based on convolutions
in which weighted filters extract features from an input feature map. Convo-
lutions are often followed by activation functions (e.g. Rectified Linear Unit -
ReLU) that introduce non-linearity into the neural network. Other operations,
known as pooling, reduce the number of parameters (i.e. weights) as well as
the size of the activations map but maintain robust features only. The last
layers, usually fully connected, perform the classification process.

Input image conv1 pool1 conv2 fc1 fc2

1@56x56 f\ 6@2sx28/’"‘\s@14x14 & N 16@7x7 & N 300/ )10

0. il //

Fig. 1 Example of a CNN topology ([1]).

Usually, the accuracy of such algorithm is evaluated based on the top-1
and top-5 scores that a CNN can achieve on a dataset, such as the ImageNet
Large Scale Visual Recognition Challenge [2]. CNNs are continuously evolving
by exploiting various techniques to either improve accuracy or reduce memory
and computational needs or both. Such techniques include leveraging depth
and the spacial aspects, introducing new types of layers (e.g. depth-wise lay-
ers [3]). High-level optimizations are also exploited to reduce bit-precision of
weights and activations by applying quantization, or to increase sparsity by
pruning the CNN. These optimizations are applied to move these algorithms
from cloud to edge devices to enable more real-time data processing closer to
the source of the data, and avoid increased latency and performance degra-
dation. This means that CNN accelerators are needed. Therefore, myriads
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of CNN hardware accelerators are designed while trying to leverage various
optimizations techniques to achieve an efficiency/flexibility compromise. How-
ever, the algorithmic evolution is hard to follow by hardware architects, which
increases the gap between the application and the hardware accelerators. In
addition, designing hardware accelerator is time-consuming and requires an
advanced hardware expertise, especially if manually designed using RTL.

As a first step to reduce this gap, [4] proposes a characterization step
for CNNs to gain a thorough understanding of the application. The pro-
posed approach extracts target-agnostic but hardware-aware metrics to derive
analysis, configurations and/or mapping strategies that can be of use for an
accelerator implementation. A second step to reduce the gap is to automate
the hardware generation and to employ high-level design techniques, such as
High-Level Synthesis (HLS), to improve design productivity [5]. The extracted
metrics in the first step can be used to optimize the accelerator generation
that is based on HLS.

In [6], a hardware generation approach targeting FPGAs based on two
phases has been proposed. The first step allows to deeply understand the CNN
by characterizing its behavior and extracting relevant metrics. The second step,
exploits HLS to generate an RTL representation of the hardware accelerator.
The main goal of this approach is to efficiently design hardware accelerators for
the inference phase while considering the quickly changing landscape of CNNs.

This paper extends the work in [6] and makes the following contributions:

® evaluation of the ability of the approach to perform quantization-aware
hardware generation. RTL implementation results of the evaluation CNN
quantized in 4 bits and 16 bits are presented respectively;

e comparison of the 4-bit and the 16-bit implementations to the 8-bit
implementation resource-wise and performance-wise;

® cvaluation of the approach on a state-of-the-art CNN, MobileNet-V2;

® exploitation of the characterization results of MobileNet-V2 to generate an
optimized 8-bit RTL implementation.

The rest of the paper is organized as follows. Section 2 presents related
work. Section 3 introduces the proposed hardware accelerator generation
framework with details on the characterization part. Section 4 shows the results
related to the execution of the framework on a small CNN, while in Section
5, a state-of-the-art CNN is used to evaluate the proposed approach. Finally,
Section 6 concludes the paper and introduces future works.

2 Related Work

Reaching both high performance and high energy efficiency is a complex
task when dealing with deep learning applications. For this purpose, different
architectural and design approaches were proposed to obtain efficient CNN
hardware accelerators. The approaches exhibit different tradeoffs between per-
formance and flexibility. For example, fixed structures optimized for feature
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extraction operations [7] sacrifice the flexibility to maximize the performance,
while programmable architectures (either homogeneous [8] or heterogeneous
[9]) allow to execute several CNN topologies, using their DPS-like execu-
tion models. Some architectural proposals rely on specific features exploiting
the CNN algorithm itself (for example the degree of sparsity) or introduce
hardware-aware techniques (such as pruning [10] or compression [11]) to reduce
the energy consumption of the system.

The internal spatial structure of FPGA makes them interesting targets for
the design of deep learning hardware accelerators. The resulting parallelism
offers interesting opportunities for implementing accelerator structure suited to
the dataflow nature of deep learning algorithms. Moreover, fine-grain reconfig-
uration of FPGAs allows both designing accelerators matching the topology of
the CNN, and sizing computing and memory resources with required data pre-
cision. Several tools implementing different approaches are proposed by FPGA
vendors or researchers to accelerate deep learning algorithms on FPGAS. For
example, [12] proposes tiling techniques to improve computation of a pipelined
architecture while [13] introduces a FPGA accelerator targeting sparse CNNs.

New design approaches and methodologies to design CNN accelerators
need to be investigated to reduce the gap between changing deep learning
algorithms and hardware architectures. These methodologies usually rely on
techniques to abstract the hardware or to perform automatic exploration of
the design space. Some frameworks directly generate a synthesizable high-level
code using commercial HLS tools such as Catapult or Vivado-HLS, based on
a network description. For example, the framework presented in [14] targets
FPGAs by providing empirical estimations of hardware resources used by a
hardware accelerator in a web interface. [15] focuses on setting optimized tiling
parameters to tailor convolution accelerator templates written in HLS. This
work proposes analytical models to estimate latency, and DSP and BRAM
resources.

A more recent approach [16] introduces a framework enabling the genera-
tion of a hardware accelerator based on a specific CNN description. FP-DNN
[17] is an approach based on RTL-HLS hybrid templates that generates CNN
accelerators using proper HLS tools. FINN [18] deals with binarized neural
networks. It takes as input a trained binary NN to generate a streaming com-
puting architecture in the form of an optimized C++ description. hls4ml [19]
is a modern approach that leverages quantization-aware training and pruning
techniques optimize the NN topology and parameters before the generation
of the accelerator. These techniques allow leveraging the fine-grain structure
enabled by FPGAs or ASICs. Design space exploration is also used on existing
architectures [20] or architectural templates [21]. While optimizing the hard-
ware generation, these approaches do not allow to fully leverage the potentials
of HLS tools since the considered accelerator descriptions are too tight to the
actual architectures.
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This paper proposes an intermediate approach between direct architecture
generation and time-consuming design space exploration. It introduces a pre-
liminary step in the form of an hardware-aware application characterization
module that computes hints driving the high-level code generation step. The
objective of the approach is to automatically design a CNN hardware accel-
erator by using a hardware generation framework based on a characterization
phase and HLS techniques. The framework leverages the outputs of the CNN
characterization step to help optimizing a high-level algorithmic representa-
tion of a CNN hardware accelerator. This approach is described in the next
section.

3 Overview and Implementation of the
Hardware Generation Framework

3.1 Overview of the approach

In the present work, a hardware generation methodology is proposed to
automatically design an optimized accelerator from a CNN-based application
description. This flow features a characterization phase, introduced in [4], that
helps to apprehend the behavior of the input CNN to rapidly generate an
optimized synthesizable RTL from high-level descriptions in a hardware gen-
eration phase. However, it is a challenging problem to produce an optimized
RTL representation from application specifications.

Figure 2 sketches the overall flow of the proposed approach. The flow com-
prises two main phases: the characterization phase introduced in [4] followed by
an HLS-based hardware accelerator generation phase. The flow takes as input
a CNN application specification comprising a description file, which defines
the CNN topology and the layers hyperparameters, and a database of images
used in the testing/validation step of the CNN application design. The param-
eters of the input CNN can also be included in the description file if the file
format supports it, such as tflite from the Tensorflow deep leaning framework
or onnz, the de facto standard for describing CNNs.

The foremost step in the characterization phase extracts relevant metrics
from the CNN description. Then, a specific module analyzes those metrics
and combines them to deduce hints on mapping strategies to optimize data
movement, or configurations of a target architecture, such as the number of
processing elements and memory requirements. The next phase is a hardware
generation step based on HLS, which leverages the resulted metrics to generate
an optimized C-HLS source code. The generated source code is then fed to an
HLS tool that will transform it into an optimized RTL representation. The
flow is automated and does not require any manual tuning. However, the user
might intervene in two cases: if the FPGA target needs to be changed due
to resources usage constraints (the framework makes the user aware of it),
or if the user desires to apply other optimizations that are not automatically
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Fig. 2 Overview of the proposed exploration and accelerator generation framework flow.

applied by the framework. The following subsections provide more details on
those two phases and their implementations.

3.2 Characterization and analysis phase

Figure 3 depicts the characterization phase and its different steps. A prelim-
inary step, Transformation, parses the input CNN description and pulls out
an internal representation (IR), which comprises layers types and the related
hyperparameters. The IR is a list of objects, in which each object represents a
layer with its configuration (i.e. type and kernel size) and the related metrics
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that will later be computed, such as the dimensions of the input/output fea-
ture maps, pixel reuse percentage, the number of computational operations,
etc. The Transformation step is implemented as a Python script that can
be adapted to the input file format (e.g. tflite, onnz, etc.). Suitable parsing
libraries are imported to the Python script to support the variety of the input
file formats.

Application Specifications

CNN m: a:ges
description Database

| Transformation |

| Internal Representation (IR) J
!

Characterization

| Generating Src code — Ref. Model |

Layers
Nerwork

Parameters

Metrics Computation
Memory In and Out
requwements dimensions

Analysis

u%‘l Mapping strategies

Hints for optimized Architectural
src code configurations
\/__ \/__

Fig. 3 Overview of the characterization phase.

The IR is used, first, for C code generation, second, to compute the metrics
that characterize the behaviour of the CNN. For the first feature, a Python
script generates a functional reference C code of the entire CNN to dynamically
characterize the CNN and analyze the sparsity of the input feature maps using
a test or validation dataset. This C-based implementation includes the C code
of each layer composing the input CNN, such as convolutional (Conv.) layers,
pooling (Pool.) layers and fully connected (FC) layers.

After generating the C source code, the metrics computation step takes
place. In this latter, the C code is executed to analyze weights and feature



Springer Nature 2021 BTEX template

8 Article Title

maps (using the database of images) on a per layer basis to obtain sparsity
information, weights distribution as well as bit-precision. Another set of met-
rics is also computed (without the need to execute the generated C source
code) for each layer composing the CNN by using a specific Python script in
the characterization step, as detailed in here. This script uses the IR to com-
pute target-agnostic/hardware-aware metrics for each layer. It computes the
input and output dimensions of the feature maps throughout the CNN (if not
available in the description file) by using the size of the input image and the
layers configurations (i.e. kernels dimensions). The computation of the number
of MAC (multiplication/accumulation) operations depends on the input/out-
put feature maps dimensions, kernels dimensions, as well as on the type of the
layer (i.e. standard/depthwise convolution, FC, etc.). The number of MAC of
a standard convolution is calculated using Equation 1.

Nbstd convpac = B X C X Ky x Ky x M x N (1)

Memory requirements include both weights and input activations, where
each one is computed based on different dimensions. The required weights
memory for each layer is computed by multiplying the dimensions of the con-
volutional kernels. The memory needs for activations are computed (for each
layer) as the product of the input feature maps dimensions. The pixel reuse
percentage is obtained based on the fact that a convolution is a sliding window
over a feature map. Furthermore, a connection graph is generated by using
networkr Python package, which allows to create and manipulate complex
networks. It groups layers of the same type into one node. In addition, visual
data is generated and provided to the user, such as charts and graphs.

The computed metrics are stored in a .csv file and are used to update the
IR. The related script also checks if the input CNN is quantized by verifying
the parameters bit-widths, which allows to set the right bit-precision-related
optimizations in the Hardware Generation step.

Once the metrics are generated, they are then fed to an analysis pro-
cess, which aims to use each metric or to combine a few of them to derive
implementations strategies and provide hardware-based hints for an efficient
implementation. For example, the sparsity analysis gives the number of zero-
valued weights, which is a key information to help identify layers where
memory requirements can be reduced by applying compression techniques. The
pixel reuse percentage is an interesting metric that enables deriving several
dataflows, which help in optimizing the energy efficiency and memory accesses
of dataflow-based architectures. The input and output feature maps dimen-
sions allow deriving tiling strategies. Furthermore, the pixel reuse percentage
and the dimensions metrics can be combined and then employed to determine
the achievable degree of parallelism and what type of reuse to prioritize, i.e.
pixel reuse or weight reuse. On a higher level, algorithmic implementations can
also be derived, such as loop tiling and reordering, which have a significant
impact on the needed on-chip memory and volume of data transfer. Addi-
tionally, a connection graph is useful to reduce resource usage by assigning
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identical layers or even similar ones, in terms of memory requirements and
kernel dimensions, to the same hardware resources.

The analysis process is implemented as a Python script that verifies if the
extracted metrics meet certain conditions (or rules), which are specific to the
metrics being analyzed. For instance, if the average weights sparsity is more
than 70%, a flag would be set to reduce computational needs by skipping zero-
valued computations. In this work, no zero-skipping module is implemented.
However, it is a perspective of this work. In addition, the analysis script com-
bines certain metrics based on their types and potential impacts. For instance,
the width/depth comparison and the pixel reuse metrics are analyzed together
via a Python method presented in Listing 1, called MetricCombine, which illus-
trates only one use case. This method analyzes these two metrics for every layer
in the CNN by taking four input parameters: loopsOrder, width, depth and pix-
elReuse. The loopsOrder parameter comprises the original loops order of the
given layer. If the width exceeds the depth and the percentage of pixel reuse is
greater than 50%, then the loops in a loop nest (e.g. in convolutional layers)
should be reordered to encourage data reuse. Therefore, the loops correspond-
ing to the width and height dimensions are moved closer to the computational
part (kernel loops). Detailed examples can be found in sections 4 and 5.

# initial loops order [0, 1, 2, 3, 4, 5]
MetricCombine (loopsOrder , pixelReuse, width, depth):
if width > depth and pixelReuse > 0.5: # pixel reuse in %
# set new order
newOrder = [2, 3, 0, 1, 4, 5]
# change the loops order
loopsOrder = [loopsOrder[i] for i in newOrder]

return loopsOrder

Listing 1 Pseudo-code of the combination of the width/depth comparison and the pixel
reuse metrics.

Herein, the analysis of the characterization results drives the C-HLS
code generation for an HLS-based implementation, and sets the right tiling
parameters as well as the right pragmas.

3.3 HLS-based accelerator generation phase

This phase relies on two main steps. The first step generates an optimized C-
HLS code of the entire CNN by means of a library of layers of different types.
It exploits the obtained metrics in the previous step (see section 3.2) to guide
the C-HLS code generation of each layer by determining the loops order in
a loop nest, the loop levels to tile as well as the suitable tiling parameters.
Moreover, the analysis of those metrics allow setting HLS tool-specific pragmas
to optimize the overall CNN accelerator performance-wise and/or resource-
wise, and to obtain a hardware implementation with a right tradeoff between
resource usage and latency. This tradeoff is currently obtained by optimizing
each layer performance-wise and the whole CNN resource-wise. The optimized
C-HLS code generation is performed by a specific Python script that takes into
account the results of the characterization phase. For instance, the loops that
require re-ordering are directly generated in the right order. Three separate files
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are generated: layers.c comprising all the layers (written as C functions), and
network.c including a network() function that calls all the layers, in addition
to a directives.tcl file that includes the pragmas. The source code also includes
loops and functions labels that will be used in the directives file (directives.tcl).
This file includes the pragmas (unrolling, pipeling and allocation) that are
applied to specific loops and functions in the C-HLS code.

The second step takes as input the generated optimized source code of the
whole CNN as well as the directives file. This step leverages an HLS tool to
transform the C-HLS code to an optimized synthesizable RTL implementation.

4 Evaluation of the Framework

The proposed methodology is validated using a sample evaluation CNN to
produce an optimized accelerator. The framework presented in Figure 2 is
instantiated using CNN description files from N2D2 (Neural Network Design
and Deployment), an open source deep learning framework [22] that allows
designing and deploying Deep Neural Network applications. N2D2 also includes
quantization and pruning features to target embedded systems. Regarding the
hardware generation phase, Vivado-HLS is used as an HLS tool that targets
Xilinx FPGAs. The employed version is 2020.1.

The sample evaluation CNN, described in Figure 4, comprises six layers,
which are: 3x3 and 5x5 2D-convolution, 3x3 and 5x5 pooling and 2 fully-
connected layers. It was trained with N2D2 on the Caltech-101 dataset [23]
to classify four classes of images (airplanes, car sides, faces, motorbikes). The
accuracy on the validation database is 95.35%. This evaluation CNN was then
quantized after training to 8-bit integer format using a post-quantization tech-
nique provided in N2D2. The accuracy after quantization is 94.02%. Therefore,
int8 data format was employed for data and weights when generating the
C-HLS source code.

Pool1 Conv1 Pool1 FC1 FC2
3x3 5x5 5x5 64 4
S N ' R A
! E
Input 2x48x48 2x16x16 2x12x12 2x4x4 64 4

1x48x48
Fig. 4 Details of the layers of the evaluation CNN.

4.1 Applying the characterization step on the evaluation
CNN

The evaluation CNN is first characterized layer by layer memory-wise and
computational-wise. Table 1 shows the number of computing operations for
each layer (MAC for convolutional and fully connected layers, Ops for pooling
and softmax layers) as well as the memory needs. As it can be seen, the first
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Fig. 5 Widths and depths comparison of the input feature maps in each layer of the eval-
uation CNN together with pixel reuse percentage.

layer is the most computationally intensive one and has the most data memory
needs due to the size of the input image, which requires more processing than
the remaining layers.

Additional metrics are also computed, such as the maximum pixel reuse
and the width/depth comparison of input activations maps across the CNN.
Those metrics are presented in Figure 5. One can see that the width shrinks
throughout the CNN, since the size input feature maps decrease due to the
applied convolutional and pooling operations. On the other hand, the depth
increases, especially in fully connected layers, due the the significant number of
filters. As for the pixel reuse percentage, it is high in the first layer, convi _3x 3,
having a value of 90% due to the large input size. This reuse percentage drops
below 30% in convl_5x 5, since the input feature map decrease across the
CNN.

4.2 Generation of the hardware accelerator for the
evaluation CNN

The metrics obtained from the Characterization step are used to drive the gen-
eration step of the hardware accelerator optimized for the evaluation CNN. The

Table 1 Computational complexity and memory requirements for different layers of the
evaluation CNN.

Layers | MACs | Ops for pool & softmax Parameters (B) Data memory (B)
Input data 0 0 2304

convl _3x3 41472 18 4608

pooll _3x 3 4608 0 512
convl_5%5 14400 100 288

pooll _5x5 288 0 32

fel 2048 2048 64

fec2 256 256 4

softmaz 4 0 4

Total 58176 2422 5512
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different layers are separately implemented to evaluate different configurations
depending on the position of the layer in the overall structure of the CNN.
The different implementations use a frequency of 100MHz while targeting the
Xilinx Zynq7000 xc7z030 FPGA.

4.2.1 Generation of the different convolutional layers

Listing 2 presents a common approach for the implementation of a con-
volutional layer. This standard implementation can be improved using the
computed metrics. Depending on the metrics, two loop transformations (loop
tiling and loop reordering) can be applied at relevant loop levels.

ifmap [N][(R—1)*SHK][(C—1)*S4+K] //input maps
outfmap [M] [R][C] //output maps
weights [M] [N] [K] [K]
10: for (r=0; r<R; r++) //output X
11:for(c=0; ¢<C; c++) //output Y
12: for (m=0; mx<M; mt+) //nb outputs
13:for (n=0; n<N; n++) //nb channels
14 : for (kx=0; kx<Kx; kx++) // kernel X
15: for (ky=0; ky<Ky; ky++) // kernmel Y

wx=weights [m] [n][kx][ky]
ix=ifmap [n][S*r+kx][Sxc+ky]
outfmap [m] [ r ][ c]4+=wxxix

Listing 2 Common approach to implement a convolutional layer given in the form of a
pseudo-code.

4.2.2 Loop transformations

Loop transformations in loop nests are essential to optimize data movement
and memory accesses, which improves the overall performance if the trans-
formations are correctly applied. Such transformations include loops tiling,
re-ordering, unrolling and pipelining.

Loop tiling is a commonly used loop transformation, especially in HLS
approaches for CNNs [24] [15] [25]. It limits expensive memory accesses and
transfers by encouraging data locality. Additionally, it improves performance
if the tiling parameters are correctly set. When tiling loops, new loop levels
are incorporated to the source code as presented in Listing 3 with various
tiling parameters 7. The number of added loops depends on the number of
tiled loops in the loop nest. However, deciding the loop levels to tile as well as
their tiling parameters is a challenging task. Therefore, characterization results
come into play to help determining which loop level to tile as well as the tiling
parameters. The metrics to consider are the pixel reuse percentage and the
width/depth comparison. Combining these two metrics allows to identify the
loops to be tiled. Furthermore, it allows to set threshold values for the tiling
parameters to restrain the design space. Equation (2) shows the minimum
and maximum threshold values for tiling parameters (7r, Tc) of the outputs
width and height (R,C), and (Tn, Tm) of the channels N and outputs M
respectively. For instance, the minimum threshold value for the height R is set
to Kx, which is the kernel width.
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Kx<Tr <R
Ky<Tc<C(C
th <Tn <N
tm<Tm< M

(2)

For instance, layer convl _3x 3, the first layer in the CNN (see Figure 4), has
the largest input and output feature maps. Figure 5 shows that this layer has
the highest width (48) and the lowest number of channels (1). The large width
explains the significant pixel reuse percentage of 92%, which is the highest
among all the layers. Two actions could be taken after analyzing those two
metrics: determining the loop level to tile and identifying the tiling parameters.
Herein, loops [0 and [1, which are the loops of the width and height of the
output feature map, are suitable for tiling due to their large bounds. This
allows to improve data locality and reuse by storing chunks of data on-chip and
thus optimizing memory accesses. The tiled source code of the convolutional
layer is shown in Listing 3.

ifmap [N][(R—1)*S+K][(C—1)*S+K] //input maps
outfmap [M] [R][C] //output maps
weights [M][N] [K] [K]
10: for (r=0; r<R; r+=Tr) //output X
11:for (c=0; ¢<C; c+=Tc) //output Y
12 : for (m=0; m<M; m++) //nb outputs
13:for (n=0; n<N; n++) //nb channels

10.1: for (tr=r; r<min(R,r+Tr); tr4++)

I11.1for(tc=c; c<min(C,c+Tc); tc++)

14 : for (kx=0; kx<Kx; kx++) // kermnel X
15: for (ky=0; ky<Ky; ky++) // kernel Y
wx=weights [m][n][kx][ky]
ix=ifmap [n][S*tr+kx][S*tc+ky]
outfmap [m] [ tr ][ tc]+=wxxix

Listing 3 Implementation of a tiled convolutional layer in the form of a pseudo-code.

Similarly, loops 10 and II are the ones to be tiled in layers pooll _3x 3
and convl_5x 5, since the width of the feature maps in these layers is larger
than the depth. To show the impact of tiling on resource usage and latency,
various tiling parameters are studied on the different layers. Each layer is
implemented separately (from C to place and route), while infrastructures
such as memory and crossbars are omitted. As it can be seen in Figure 6,
increasing the tiling value improves performance while having a small impact
on hardware resources. Loops [2 and [3 are kept intact since the number of
channels and the number of outputs are very small. Table 2 and Table 3 show
the latency (in cycle) as well as the resource utilization (in percentage) of layers
convl _5 x5 and pooll _5 x5 respectively. As it can be seen, the applied tiling
in those layers have a slight impact on performance and resource usage, which
can be explained by the low pixel reuse percentage (see Figure 5), where layer
convl _5x5 has a pixel reuse of 25% and the remaining layers have a pixel
reuse of 0%.
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Fig. 6 Latency and resource usage of different implementations of the convi_8x 38 layer
using different tiling values.

Allowing a certain amount of data to be stored or available on-chip could
also be achieved by correctly re-ordering the loops. The same rule applied to
identify which loop level to tile could be applied to determine the loops order
in a loop nest to optimize performance. The same loops that are tiled could be
exchanged with other loop levels to reduce latency, since this improves data
locality as well as memory accesses. The pixel reuse as well as the input and
output dimensions of a layer help to identify the loops order. For instance,

Table 2 Resource usage percentages and latencies for conv! _5x5 using different tiling
values.

Tiling (Tr, Tc) | BRAM DSP FF LUT | Latency (cycles)

(0, 0) 0 0.25 0.114 0.181 36602
(3, 3) 0 0.25 0132 0.239 36586
(4, 4) 0 0.25 0.119 0.242 36494
(6, 6) 0 0.25 0.127 0.256 36414
(6, 12) 0 0.25 0.118 0.223 36350
(12, 12) 0 0.25 0.109 0.191 36341

Table 3 Resource usage percentages and latencies for pooll _3 x 8 using different tiling
values.

Tiling (Tr, Tc) ‘ BRAM DSP FF LUT | Latency (cycles)

(0, 0) 0 0 0.065 0.104 13858
(4, 4) 0 0 0.063 0.127 13674
(8, 8) 0 0 0.061 0.117 13470
(8, 16) 0 0 0.0.058  0.104 13390
(16, 16) 0 0 0.057 0.104 13381
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swapping (10, 11) with [2, in layer conv_8x 3, results in the same performance
and resources as using (48, 48) as tiling parameters that are the maximum
possible values. This can be explained by the fact that more data is available
on-chip and close to the computational part, which consequently improves
memory accesses and performance. This is also applicable on the remaining
convolutional and pooling layers.

Unrolling and pipelining are also significant loop transformations that have
a great impact on the generated RTL performance-wise and resources-wise.
The implementation of those transformations differs from one HLS tool to
another. In Vivado-HLS they are implemented as pragmas, also known as
directives. More details are presented in the following subsection.

4.2.3 Applying transformations using pragmas

Unrolling and pipelining are loop optimizations related to performance. Apply-
ing such optimizations results in significant changes in the RTL. Loop unrolling
a loop introduces spatial parallelism to reduce latency by allowing a concurrent
execution of a number of iterations set via an unrolling factor N, which allows
a full or partial unroll. In a full unroll mode, the latency of the loop is reduced
to the latency of one iteration. Hardware-wise, unrolling creates necessary RTL
copies of the loop that corresponds to the unrolling factor N, which implies
an increased need for hardware resources. As for the piplining optimization,
it allows a simultaneous execution of operations inside a function or a loop to
improve the latency, more specifically to reduce the initiation interval. From a
hardware perspective, this optimization also requires more hardware resources
to allow this concurrent execution. Those two optimizations are applied as
pragmas in the HLS tool.

Optimizing each layer performance-wise relies on applying transformations
to the loop nest. Loop swapping, discussed in the previous subsection (section
4.2.2), resulted in a better performance compared to loop tiling. Therefore,
layers will have loop levels (10, {1) swapped with [2. In addition, pragmas
will be applied on those layers to boost the performance further. This first
set of optimizations will be called LS P, which stands for Loop Swapping and
Pragmas. The framework takes into consideration the topology of the network
to apply the pragmas. Typically, loops having very small bounds (i.e. layers
having small dimensions), such as the channels loop (1) and/or outputs loop
(10) as well as the kernel loops ({4, 15), are completely unrolled. This is the case
in the first four layers of the evaluation CNN, where kernel loops and outputs
loop are fully unrolled. Unrolling the outputs loop (10) in fully-connected layers
would result in a significant resource usage due to the high number of outputs,
especially in fc1 where the number of outputs is 64 (input of fc2). Therefore,
only the two innermost loops are pipelined to obtain reasonable resources
utilization and latency. Unrolling and pipelining are also applied in layers
where no loop swapping is performed nor any other loop transformation. This
is called NLSP for short, where only pragmas are applied. Figure 7 presents
the results of these two implementations, where sol—0 refers to NLSP and
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sol—1 refers to LSP (i.e. Vivado-HLS solutions). Only pragmas are applied
in layers fel and fc2, since loop swapping/tiling showed no enhancement in
performance nor resource usage.
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Fig. 7 Latency and resource usage of the optimized implementations of the layers of the
evaluation CNN.

According to Figure 7, the LSP implementation of layer convi_8x38 is
17.34% faster than its NLSP implementation while requiring globally 0.34%
less resources. As for the LS P implementation of pooll _3x 3, it is faster than
the N LSP but requiring 0.33% more resources. Similarly, the LS P implemen-
tation of convl_5x5 is 2.76% faster than the NLSP and has 38.7% more
resource usage (BRAM and DSPs). The N LSP implementation of pooll -5 x5
is 12% faster and requires 50% more resource usage than LSP implementa-
tion. The improved latency in the NLSP implementation can be explained
by the fact that the input/output feature maps have small dimensions, which
means that the data reuse is low, and therefore data locality could not be well
exploited.

Some pragmas are not an application of loop transformation, they are
synthesis directives that directly impact the RTL to be generated. For instance,
the Allocation pragma could be employed inside a region of code (e.g. a loop or
a function) to control resource utilization. It allows to limit the number of RTL
instances to reduce the required resources implementing functions, operations,
etc. For example, a function called n times in a C code would have n RTL
instances. This pragma allows to limit the RTL instances to a certain number
and allows to use the same RTL instance for the same high-level functions.
The use of this pragma will be demonstrated in Section 5.

4.3 Generation of the full hardware accelerator

The resulting optimized layers are then used to generate the whole hard-
ware accelerator. The evaluation of the applied strategies was performed using
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multiple implementations. In the first implementation, no optimization (loop
swapping or pragmas (NLS)) is applied. Only loop swapping (L.S) is applied
in the second implementation, and finally, both loop swapping and pragmas
(LSP) optimizations are applied for the third implementation. The results of
these implementations are shown in Figure 8.

mm| UT smFF smDSP BRAM -o-Latency

-
=y

195
180 8
L 165 %
k150
L 135
k120
L 105
L 90
L 75
L 60
L a5
L 30
L 15

-
o
'

T

Resource Usage (%)

o =~ N W A OO N ©® ©
Latency (cycles)

no loop swapping loop swapping no loop swapping loop swapping +
+ pragmas pragmas

Network Implementations

Fig. 8 Latency and resources utilization of each implementation of the CNN used for
evaluation.

One can see in Figure 8 that the LS implementation is 3% faster than
the NLS implementation. Moreover, it uses 0.68% less FPGA resources. The
application of tool-specific pragmas optimizations to both NLS and LS imple-
mentations leads to 69% and 72% speed-up respectively, while requiring 76%
more resources. The LS P implementation is 13% faster then the N LS P imple-
mentation at the price of 1.55% additional resource utilization. The NLSP
and LSP implementations are respectively 69% and 73% faster than a stan-
dard implementation. Unfortunately, the higher performance comes at the
price of additional area cost, implying that the chosen implementation strongly
depends on the target design goal.

4.4 Hardware generation using arbitrary bitwidths

The proposed framework allows generating hardware accelerators for quantized
CNNs, as stated earlier. To evaluate the behavior of the quantization-aware
hardware generation, the evaluation CNN is quantized in 4 bits and 16 bits
respectively. The accuracy is 91.95% after quantizing to 4-bit, and 94.11%
after 16-bit quantization. Indeed, quantizing to 4-bit decreased the accuracy
of the CNN by around 4%, which is still reasonable due to the significant
advances in the quantization field. The non-optimized version of the evaluation
CNN is then synthesized (place and route) for each used precision. Table 4
summarizes the results of these implementations and compares them with the
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8-bit non-optimized implementation. As it can be seen, the resource utilization
and the latency gradually increase with the increase of the number of used
bits. The INT4 implementation is 0.11% and 24.15% faster compared to
INTS8 and INT16 respectively. Regarding resource utilization, the DSP usage
is 1.0% for all implementations. The BRAM usage is 25.16% and 40.21%
lower than both INT8 and INT16. The same goes for FF utilization in the
INT4 implementation, which is 25.45% and 33.87% lower compared to INTS8
and INT16 respectively. As for the LUT, it is 22.82% and 38.26% lower than
INTS8 and INT16 implementations. Consequently, the INT4 implementation is
the one that requires less resources due to the reduced bit-precision.

Table 4 Resource usage percentage and latency for each used bit-precision of the
evaluation CNN.

Resource Utilisation (%) | INT4 INT8 IN16

BRAM 1.13 1.51 1.89
DSP 1.0 1.0 1.0

FF 0.41 0.55 0.62
LUT 0.71 0.92 1.15
Latency (x1000 cycles) ‘ 181.9 182.1  239.8

Diving a bit further, both INT4 and INT16 implementations of the eval-
uation CNN are then optimized by applying loop swapping (LS) only, as in
Section 4.3. Figure 9 compares non-optimized (no loop swapping - NLS) and
optimized implementations of INT4. Resource usage of both implementation
is about the same. However, the latency of the INT4 LS implementation is
2.89% faster compared to the non-optimized INT4.

Figure 10 shows the implementation results of both NLS and LS implemen-
tations. From this figure, one can seen that the LUT, FF and the DSP usage
are about the same in both implementation. The BRAM usage is 29% larger
in the LS implementation compared to the NLS one. Regarding the latency,
LS is 2.2% faster compared to NLS, this is because these loop optimizations
improves memory accesses by moving data closer to the computing part.

5 Evaluation on a State-of-the-art CNN

Beyond the simple evaluation CNN, a more complex CNN was used to assess
the features of the proposed hardware generation approach. For this purpose,
MobileNet-V2 [26] was used as a workload. It is a modular CNN by means of
the hyperparameter «. In the context of this paper, « is set to 0.25 and the
input image has a dimension of 8 x 128 x 128. The MobileNet-V2 CNN was
trained using the Imagenet dataset [2] and was later quantized using a 8-bit
precision.
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Fig. 9 Non-optimized (NLS) and optimized (LS) implementations of the evaluation CNN
quantized into 4-bit.
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Fig. 10 Non-optimized (NLS) and optimized (LS) implementations of the evaluation CNN
quantized into 16-bit.

5.1 Characterization of MobileNet-V2

The selected CNN is characterized by the first step of the proposed framework.
Therefore, layer-wise and network-wise metrics are computed that will drive
the hardware generation step to generate an optimized accelerator.

Layer-wise, various metrics can be computed, such as the width/depth
comparison, the pixel reuse percentage and the memory requirements.

For instance, Figure 11 illustrates the evolution of the width and depth of
feature maps (in number of pixels) in each layer as well as the pixel reuse (in
percentage). One can see that both the width and depth progress in opposite
directions. The width decreases cross the CNN due to the successively applied
convolutions along the network. On the other hand, the depth grows wider
due to the large number of filters applied throughout the CNN.
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This metric helps determining the loops order in convolutional and pooling
layers, especially when combined with the pixel reuse metric. As it can be seen
in Figure 11, the pixel reuse is not consistent along the CNN, since it varies
according to the employed stride value as well as the kernel size. For instance,
layers having a 1x1 kernel dimension use all pixels equally, thus the reuse
percentage is 100%. Layers with a 8 x 8 kernel size have lower reuse percentage
compared to convl x 1 layers. For example, a convl has a stride of 2, its reuse
percentage is 23.10%. Layer conv3.2_3x 8 has a stride of 1, and thus the reuse
percentage is higher (72%) compared to convl. Another aspect is the depth
of the feature map, which helps identifying parallelism opportunities where
relevant loop optimizations could be applied. Therefore, channels parallelism
could be encouraged in deeper layers where the depth exceeds the width.

Based on this analysis, layers of the MobileNet-V2 CNN are imple-
mented using different loops order. Layers having low reuse percentage are
implemented using the R, C, M, N, Kz, Ky loop order. All convl x I are imple-
mented by changing the loops order to M, R,C, N, Kz, Ky to encourage
reuse and limit data transfers since all activations are equally used, this
also promotes channels parallelism. Early layers should be implemented using
the M, R, C, N, Kz, Ky order since the width of the input feature maps is
important, especially in layers convi to conv3.2_1x1. Applying this trans-
formation on those layers encourages reuse by moving the data closer to the
computational part (kernel loops [Kz, Ky]).

mm Pixel Reuse  -0-Input Width =o-Input Depth
100 10000

r 1000

-
o

- 100

NB Pixels

Pixel Reuse (%) in a feature map

S SIS QIS SIS ] 0lnlS SIn1S (IS 0lolS wlalS SIS 0] ololS SISIS G IyS ololS 1S

I I S P Y R R B R R B Y s

S S S S S s e S8 5858885

S8 880880888858 8mE8 8808888 88088088 8808580885880

§ F 2 F F F 2 O OE 2 E EOE F OF OF OB

8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8
Layers

Fig. 11 Width and depth comparison as well as the pixel reuse percentage of each layer of
the MobileNet-V2 CNN. Width and depth are expressed in number of pixels.

Memory requirements for both weights and input features are also com-
puted. Figure 12 presents these memory needs in MobileNet-V2. Some of these
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layers does not have any parameters like pooling and conv_sum. This latter is
only used to sum the outputs of conv_linear layer and the residual block.
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Fig. 12 Per layer memory requirements of both weights and activations in MobileNet-V2.
Activations are expressed in number of pixels.

Another interesting metric is the connection graph of the CNN. It allows
to find similarities between layers to later reduce the resource usage of the
overall network. Figure 13 illustrates the connection graph of the MobileNet-
V2 CNN. Layers are grouped into two categories of C'onv_blocks, each one
has a different stride value. Figure 14 sketches these Conv_blocks where the
first one (on the left) is a residual block with a stride of 1, and the second
one (on the right) with is stride of 2 is for downsizing. The connection graph
highlights the Conv_blocks that have the same kernel dimensions and the same
memory requirements, in terms of number of input and output pixels. It is
leveraged to reduce the hardware resources of the CNN by instantiating one C
function for multiple identical layers. Therefore, the Allocation pragma can be
used to enable sharing the same RTL resources during HLS. For instance, the
three Conv! xblocks (i.e. three connections between the two green blocks) in
the large black-box labeled 6, use the same RTL resources. The same applies
for others blocks highlighted with the same color. It is worth noting that
similar layers exist in different Convi xblocks from other black black-boxes.
These layers are not presented and are omitted for simplicity reasons. However,
memory requirements presented in Figure 12 help identifying these layers. For
example, conv/.3_1x1 and conv5.1_1x1 have the same memory requirement
in terms of weights and input activations.
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Fig. 14 Convolutional blocks in MobileNet-V2 using different stride value, where s is the
Stride. Each block consists of three convolutions: convlxl, depth-wise conv3x3 (s = 1 or
s = 2) and one convlxl_linear.

5.2 Hardware accelerator generation of MobileNet-V2

Using the proposed framework, the metrics obtained by the characterization
phase are leveraged to guide the generation process of the optimized accelerator
targeting MobileNet-V2. Various implementations are realized : per layer, and
full implementations. Since MobileNet-V2 is a large network, a larger FPGA is
required to fit the whole CNN. Therefore, all implementations (per layer and
full implementations) are synthesized using a frequency of 100MHz targeting
the Xilinx Kintex xcku035 FPGA, which is a larger FPGA than the one used
to implement the evaluation CNN.

5.3 Generation of convolutional layers

Some layers are implemented separately to highlight the impact of various
code transformations. Therefore, 4 different layers are selected based on their
position in the network. These layers are: convl, conv2.1_3x38, conv8.1_1x1
and conv9. For each layer, different implementations are performed: NLS
and LS are performed for all layers, and LSP for 8x 38 convolutional layers.
In the LSP instance, kernel loops are unrolled due to their small bounds
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(1 < loop bound < 3). It is worth noting that the LS implementation means
that the loop order is changed from R, C, M, N, Kz, Ky to M, R, C, N, Kz, Ky,
and is applied according to the characterization results explained in Section
5.1.

Implementations results are presented in Figure 15. The Loop swapping
(LS) in the presented layers shows a slight improvement in performance. For
instance, in the convl the LS is 1.5% faster than the NLS implementa-
tion. In addition, it uses 1.22% less LUT and 5.45% less FF compared to the
NLS implementation. The BRAM and DSP utilization is the same for both
NLS and LS. The LS implementation of the conv2.1_3x38 layer is 0.57%
faster compared to the N LS and consumes 0.57% less FF. However, the LUT
resource utilization increased by 5.32%. Regarding conv8.1_1x1 and conv9
layers, the performances in the LS implementation are respectively 0.39% and
0.19% faster compared to the NLS implementation. As for the resource uti-
lization in the LS, conv8.1_1x1 uses 12.32% less LUT and 12.87% more FF.
The same goes for conv9d which uses 1.36% less LUT and 13.2% more FF. The
performance improvement is the result of the chosen loops order that allowed
to limit unnecessary data transfers and enhanced data locality, which explains
the increase in the number of used FF.
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Fig. 15 Results of each of the selected layers of MobileNet-V2.

The LSP optimization is 75.34% faster for conv!, and in 75.31% faster for
conv2.1_3x8 compared to NLS. Regarding resource utilization, LSP con-
sumes more resources than NLS in both optimized layers implementations,
especially in terms of DSPs and LUTs. For example, LS P consumes 9x more
DSPs due to the unrolling of kernel loops in convi and conv2.1_3x3 which
requires more DSPs. In addition, LSP uses 2x more LUTs compared to
NLS in convl, and 1.5x more LUTs in conv2.1_3x 3. The global increase in
resources can be explained by the fact that unrolling loops creates an RTL
copy of the loop body for each iteration to simultaneously run the whole loop.
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5.4 Full accelerator hardware generation

Different implementations were realized to implement the entire MobileNet-V2
CNN: NLS (as a reference implementation), LS, LS with allocation (referred
as LSA), LSP and LSP with allocation (referred as LSPA). The allocation
pragma, explained in 4.2.3, allows using the same RTL resources for multiple
similar layers.

In Figure 16, LS is 0.12% faster than NLS and uses on average 0.019%
more resources. Applying the allocation pragma with LS (LSA) improves
performance by 3.9% and leads to 0.69% less resource usage compared to
LS. LSP is 74.05% faster than NLS, which comes at a cost of using, on
average, 3.26% more resources. The same applies for LSPA which improves
performance by 74.51% and consumes 2.62% more resources compared to a
standard implementation. However, LS P A uses 0.26% less resources than LS P
thanks to the allocation pragma.

mm | UT smFF smDSP =mBRAM -o-Latency

60,0 3,5E+08
50,0 3,0E+08
S 2,5E+08 _
<400 7
S 74,05% 8

o
& 2,0E+08 S
=) )
> 300 >
e 1,5E+08 &
3 2
? 20,0 3
© 1,0E+08

10,0 5,0E+07

0,0 0,0E+00

NLS LS LSA LsSP LSPA
Network Implementations

Fig. 16 Results of each implementation of MobileNet-V2.

Table 5 summarizes the results of the various implementations of
MobileNet-V2. As it can be seen from Figure 16 and Table 5, improving per-
formance comes with an area cost. On large CNNs, area cost can be reduced
by using the same RTL instance to implement similar layers.

Regarding the needed time to get the targeted solution, it depends on the
size of the input CNN, since the hardware synthesis is time-consuming. In
general, it would take about 2 to 4 hours.

6 Conclusion

This paper introduced a hardware generation framework enabling to design
efficient FPGA accelerators for CNNs. It extracts relevant knowledge about the
CNN computation behavior in the form of hardware-aware metrics to drive a
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Table 5 Resource usage (in percentage) and latency (in cycles) for different
implementations of MobileNet-V2.

Resource Usage (%) ‘ NLS LS LSA LSP LSPA
LuT 2,816 2,811 2,193 4,359 4,453
FF 1,665 1,700 1,247 2,103 1,763
DSP 3,235 3,235 2,471 10,882 9,471
BRAM 44,907 44,907 45,741 48,889 49,167
Latency (cycles) ‘ 3,11E408  3,11E4+08 2,99E408 8,07E+07  7,93E407

hardware generation phase by exploiting CNN algorithm specifications. Using
these results, the framework applies source code optimizations (e.g. loop swap-
ping) and selects their relative right parameters. Other targeted optimizations
use tool-specific pragmas to generate more efficient accelerators. Using an eval-
uation CNN, the framework automatically generates an accelerator which is
13% faster than using relevant optimized pragmas only. It is worth noting
that performing such manual optimizations is already a time-consuming task.
On a state-of-the-art network, the framework generated an accelerator 74.51%
faster than applying LS only, while using a reasonable amount of resources.

Future works will focus on generating accelerators for other state-of-the-
art CNNs having large and complex topologies. Efforts will also be put on
exploring the space of new tool-specific pragmas to automatically choose the
right ones with respect to the design goals. Moreover, targeting sparse CNNs
by establishing HLS-based compression techniques will also be pursued.
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