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Abstract—Resistive memories are affected by significant error 
rates tied to structural relaxation and wear out of the resistive 
memory devices. A way to reduce the need for strong error- 
correcting codes (ECCs) is to improve error correction based on 
the weak bits, i.e., potentially faulty bits, identified in sensed 
memory words. Here, it is formally proven that conventional 
ECC decoders reinforced with weak-bit-flipping may achieve 
similar error correction capability as theoretical generalized-
minimum-distance decoders. It is shown that weak-bit-flipping 
may reduce the uncorrectable bit error rate (UBER) by orders 
of magnitude when applied in conjunction with single-error-
correcting and double-error-detecting (SEC-DED) or double-
error-correcting and triple-error-detecting (DEC-TED) codes. 
In particular, weak-bit-information extracted from a 2T2R 
memory and used to reinforce a DEC-TED code with a conven-
tional decoder may enable an UBER that is one order of magni-
tude better than the UBER achieved with a triple-error- 
correcting (TEC) code and a conventional decoder. 

Keywords—resistive memories; error rate; error-correcting 
codes; weak bis; weak-bit-information; erasure-information 

I. INTRODUCTION 

Nowadays, different types of resistive memories compete 
with each other on parameters like: integration density, access 
latency, data retention capability, cycling endurance, power 
consumption, CMOS compatibility, price, etc. Magnetic, 
phase-change or oxide-based resistive memories are among 
the most promising ones [7][14][20]. Unfortunately, the rela-
tively low data retention capability is still a limitation that 
needs to be overcome [7][20]. This challenge can be addressed 
by promoting the detection and exploitation of weak bits, i.e., 
bits that are susceptible to be erroneously sensed, in order to 
improve the error correction capability of a conventional ECC 
decoder [1][4][10]. Fully unreliable weak bits which offer no 
hint about their original program value are known as erasures 
[2][5][8][9][13][18]. 

A way to identify weak bits in resistive and flash memo-
ries is to perform multiple sense operations with different ref-
erence values [8][11][17][19]. The resulting information can 
be considered as a rudimentary type of the soft-information 
[1][4][10] usually used to boost the error correction capability 
of powerful ECCs such as low-density parity-check (LDPC) 
codes [16][17][19]. LDPC codes necessitate slow iterative de-
coding which makes them suitable for relatively slow storage 
systems with page-level access. Here, the focus is on resistive 

memories deployed at higher levels of the memory hierarchy 
that require word-level access and low access latency. In this 
case, a more appropriate error correction approach is to rely 
on light-weight ECCs that enable the correction of few errors 
per memory word based on fast non-iterative decoders. 

This contribution concerns the error correction improve-
ment that can be achieved by leveraging the weak-bit- 
information in conjunction with an i-error-correcting and 
(i+1)-error-detecting code and a conventional errors-only de-
coder, i.e., an ECC decoder that cannot explicitly handle weak 
bits or erasures. The considered procedure is to look for weak 
bits only upon indication of an uncorrectable error in a sensed 
memory word. Once identified, the weak bits are flipped and 
error correction is resumed [8][11]. It is shown and formally 
proven that a conventional errors-only decoder reinforced 
with weak-bit-flipping becomes at least as efficient as an 
erasures-and-errors or a theoretical generalized-minimum-
distance decoder [9][10] if the goal is to correct up to i+1 er-
roneous bits per code word. As long as one cannot guarantee 
a quasi-complete (i+1)-bit error correction, it makes no sense 
to strive to correct higher rank errors as they remain rarer and, 
consequently, with a lower impact on the UBER. 

To the best of our knowledge, this is the first time when 
the impact of weak-bit-information on the error correction ca-
pability of ECC decoders is estimated based on a mathemati-
cal formalism that is independent of the weak-bit- 
identification scheme. 

1T1R and 2T2R memory configurations are briefly pre-
sented in section II. The approach to enhance the error correc-
tion capability of conventional errors-only decoders based on 
weak-bit-information is analyzed in section III. Two weak-
bit-identification schemes are briefly discussed in sections IV 
and V. The resulting impacts on the UBER are analyzed in 
section VI. Latency and logic overheads are reported in sec-
tion VII and conclusions are drawn in section VIII. 

II. 1T1R VERSUS 2T2R 

1T1R and 2T2R memory cell configurations are sketched 
in Fig. 1. 2T2R configurations enable a much lower raw bit 
error rate (RBER) based on differential encoding where a log-
ical 0/1 value may be encoded by programming a first/second 
resistor in a high resistance state (HRS) and a second/first re-
sistor in a low resistance state (LRS). In order to visualize the 
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impact on the RBER, it will be assumed that the LRS, HRS 
and, implicitly, their difference are normally distributed [14] 
[20] as shown in Fig. 2 and Fig. 3. Further, assuming that these 
distributions affect the memory cells in a random way, one can 
express the RBER with the help of the complementary error 
function (erfc) according to annex I as follows: 

𝑅𝐵𝐸𝑅ଵ்ଵோ =
ଵ

ଶ
erfc ቀ

ఓಹೃೄିఓಽೃೄ

√ଶ(ఙಹೃೄାఙಽೃೄ)
ቁ                                  (1) 

𝑅𝐵𝐸𝑅ଶ்ଶோ =
ଵ

ଶ
erfc ൬

ఓಹೃೄିఓಽೃೄ

ඥଶ(ఙಹೃೄ
మାఙಽೃೄ

మ)
൰                               (2) 

where ref in Fig 2 is considered to be ideally placed at the 
same number of ௅ோௌ and ுோௌ from 𝜇௅ோௌ and 𝜇ுோௌ, respec-
tively. In the case of 2T2R cell configurations, the distribu-
tions of the resistance differences RLRSRHRS and RHRSRLRS 
are always symmetrical with respect to zero, which acts as an 
implicit reference value. This symmetry is preserved with the 
increasing (a) age of the storage devices and (b) data storage 
time. Thus, in this case, one should not bother anymore with 
the selection and lifetime evolution of the most appropriate 
reference value [3]. (1) and (2) also hold when the LRS and 
HRS are log-normally distributed [14] if one considers the dis-
tribution of the electrical resistance logarithm. 

The UBER is a metric for the occurrence rate of data errors 
and represents the number of data errors per bits read [12]. 
Assuming that each stored word is (a) subject to random errors 
according to a certain RBER and (b) protected by an i-error-
correcting code, the UBER that can be achieved with a con-
ventional errors-only decoder can be estimated with the ex-
pression below [15]: 

𝑈𝐵𝐸𝑅 =
ଵ

௞
 ቂ1 − ∑ ቀ

𝑛
𝑡

ቁ 𝑅𝐵𝐸𝑅௧(1 − 𝑅𝐵𝐸𝑅)௡ି௧௜
௧ୀ଴ ቃ             (3) 

where: 

 k and n represent the number of data-bits and total number 
of bits per code word, respectively; 

 
   

 

 
Fig. 1:  1T1R and 2T2R cell configurations with connections to 

word line (WL), bit lines (BL), source lines (SL) and sense 
amplifier. In 2T2R cell configurations, a ref value is used to 
verify in 1T1R mode the separation between the LRS and 
HRS values programed during memory write operations. 

 i stands for the maximum number of erroneous bits that 
can be corrected in a code word; 

 the expression in square brackets represents the probabil-
ity of unsuccessful correction of the errors present in a 
sensed memory word initially programmed as a code 
word. 

RBER and UBER values for binary systematic block SEC, 
DEC and TEC codes [5] are plotted in Fig. 4. All RBER and 
UBER values are monotonically decreasing with the increas-
ing -distance between the LRS and HRS distributions. This 
is coherent with the expectation that the UBER is monoton-
ically increasing with the RBER. Thus, for a given ECC and 
a target UBER, one needs to figure out the maximum tolerated 
RBER which gives the minimum tolerated -distance be-
tween LRS and HRS. This minimum may be reached in worn 
out devices after a maximum data storage time in worst-case 
conditions. It can be noticed that 2T2R memories enable  
 

 
Fig. 2:  Distribution of the electrical resistances in low resistance 

states (LRS) and high resistance states (HRS) for a 1T1R 
cell configuration with 1 bit per cell.  

 

Fig. 3:  Distribution of the differences between HRS and LRS used 
to encode logical values in a 2T2R cell configuration.  

 
Fig. 4:  RBER and UBERs vs. -distance (number of ’s) between 

LRS and HRS for 32-bit 1T1R and 2T2R memories. The -
distance between LRS and HRS is defined according to 
annex I. 
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lower RBERs and UBERs which may result in a better reten-
tion capability and, potentially, a better wear out tolerance. 

The UBER of a 1T1R memory is independent of the 
HRS/LRS ratio provided that the -distance between LRS and 
HRS on the x-axis is calculated according to annex I. The 
UBERs reported in Fig. 4 for 2T2R memories correspond to a 
HRS/LRS ratio equal to 1. For ratios much larger or much 
smaller than 1, a 1T1R memory with ideally selected ref val-
ues becomes equivalent to a 2T2R memory in terms of the 
UBER as (1) and (2) become equivalent. 

For convenience and readability, in the following sections, 
the LRS and HRS will be assumed to be normally distributed 
[14][20]. Nevertheless, the proposed methods are not bound 
to this assumption. For instance, the reported figures can also 
be applied to 1T1R memories with LRS and HRS subject to 
log-normal distributions [14] if one considers the distribution 
of the electrical resistance logarithm. 

III. i-ERROR-CORRECTING AND (i+1)-ERROR-DETECTING 

CODES BOOSTED WITH WEAK-BIT-INFORMATION  

Improving the UBER by selecting a stronger ECC comes 
with significant storage overhead, i.e., at least log2(k)+1 ad-
ditional check-bits per binary code word for each increment 
of the maximum number of correctable erroneous bits, where 
k is the number of data-bits per code word. A way to avoid 
this cost in flash and resistive memories is to (a) identify those 
memory cells that are in a weak state, i.e., likely to deliver a 
weak bit during a memory sense operation, and (b) exploit this 
weak-bit-information to improve error correction. 

A noisy channel model equivalent to a binary memory 
with weak-bit-information is illustrated in Fig. 5. If the weak 
1 and 0 values become indistinguishable they can be merged 
into a single erasure symbol and a conventional binary erasure 
channel model can be used [6]. According to Fig. 5, the bits 
sensed from a resistive memory can be classified as weak and 
non-weak (reliable). Non-weak bits may still be erroneous but 
their error probability is assumed to be much smaller. 

Based on weak-bit-information, the error correction capa-
bility achievable with a binary ECC can be improved if, in-
stead of the Hamming distance, one uses a more elaborated 
definition of the distance between a sensed memory word and 
an arbitrary code word. According to the generalized distance 
defined in [10], a sensed memory word can be corrected and 
mapped to a code word if the following relation is fulfilled: 

2𝑛ா∩௪ഥ + (1 − 𝛼௪)𝑛ாത∩௪ + (1 + 𝛼௪)𝑛ா∩௪ < 𝑑ு                  (4) 

where: 

 dH is the minimum Hamming distance between the code 
words of the considered binary ECC; 

 𝑤 and 𝑤ഥ  represent events associated to sensing a weak or 
non-weak bit, respectively; 

 𝐸 and 𝐸ത represent events associated to an erroneously or 
correctly sensed bit, respectively; 

 
Fig. 5:  Equivalent channel model with transition probabilities 

between programmed and sensed values. E and w represent 
events associated to an erroneous bit or an identified weak 
bit in a sensed memory word, respectively. An overline 
indicates a complementary event. The symbol ‘’ stands 
for event intersection. 

 𝑛ா∩௪ is the number of erroneous bits identified as weak 
(true positives) in a sensed memory word; 

 𝑛ா∩௪ഥ  is the number of erroneous bits not identified as 
weak (false negatives) in a sensed memory word; 

 𝑛ாത∩௪ is the number of correct bits identified as weak (false 
positives) in a sensed memory word; 

 𝛼௪ is a weight that represents the level of confidence in 
the sensed value of an identified weak bit. 

Here, 𝛼௪ is defined according to the expression below: 

               𝛼௪ =  𝑃(𝐸ത/𝑤) − 𝑃(𝐸/𝑤) 

where 𝑃(𝐸ത/𝑤) and 𝑃(𝐸/𝑤) stand for the conditional proba-
bilities that an identified weak bit is correct and erroneous, re-
spectively. Ways to compute 𝑃(𝐸ത/𝑤) and 𝑃(𝐸/𝑤) are given 
in the annexes III and IV. 𝛼௪ can be approximated to (a) 1 if 
all weak bits become non-weak (reliable) so that only the first 
and last terms on the left-hand side of (4) may be kept and 
merged and (b) 0 if all weak bits are fully unreliable, i.e., eras-
ures. In the latter case, one may use a so-called erasures-and-
errors decoder [9] whose error-correction capability can be 
evaluated by merging the last to terms on the left-hand side of 
(4) as follows [2][5][8][9][13][18]: 

2𝑛ா∩௘̅ + 𝑛௘ < 𝑑ு                                                    (5) 

where a subscript 𝑒 is used to represent an erasure instead of 
a weak bit and ne is the number of erasures in a sensed 
memory word (𝑛௘ = 𝑛ா∩௘ + 𝑛ாത∩௘). 

The number of errors 𝑛ா that can be corrected in a sensed 
memory word with a generalized-minimum-distance decoder 
[10] based on (4) can be estimated as follows: 

              2𝑛ா + (1 − 𝛼௪)(𝑛ாത∩௪ − 𝑛ா∩௪) < 𝑑ு              (6) 

1

0
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1weak

0weak
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where 𝑛ா = 𝑛ா∩௪ + 𝑛ா∩௪ഥ . 

Consider now a binary ECC with a conventional errors-
only decoder. Further, assume that upon detection of an un-
correctable number of erroneous bits, one can flip all bits iden-
tified as weak and resume error correction [8][11]. The num-
ber of correctable erroneous bits with an errors-only decoder 
subsequent to weak-bit-flipping (𝑛′ா) should satisfy the fol-
lowing relation:  

      2𝑛′ா = 2(𝑛ா + 𝑛ாത∩௪ − 𝑛ா∩௪) < 𝑑ு                                 (7) 

Relations (6) and (7) can be rearranged as follows:  

    𝑛ாത∩௪ − 𝑛ா∩௪ < (𝑑ு − 2𝑛ா)/𝑣                                          (8) 

where v is equal to 1-w and 2, respectively. It is assumed that 
0 ≤ 𝛼௪ < 1 so that 0 < 1-w ≤ 1. 

The right-hand side of (8) becomes zero if one attempts to 
correct an (i+1)-bit error ( 𝑛ா = 𝑖 + 1 ) with an i-error- 
correcting and (i+1)-error-detecting code (𝑑ு = 2𝑖 + 2). In 
this case, an errors-only decoder with weak-bit-flipping be-
comes equivalent to a theoretical generalized-minimum- 
distance decoder [10] or an erasures-and-errors decoder [9]. 
Restricted use of the weak-bit-flipping, i.e., only in the pres-
ence of detectable uncorrectable errors, guarantees the correc-
tion of all errors that affect at most i bits per sensed memory 
word with a conventional errors-only decoder. This proves 
that a conventional errors-only decoder with weak-bit- 
flipping is at least as optimal as a theoretical generalized- 
minimum-distance decoder or an erasures-and-errors decoder 
as long as one is concerned with the correction of errors that 
affect at most i+1 bits per sensed memory word. As long as 
the quality of the weak-bit-information does not guarantee 
quasi-full (i+1)-bit error correction, it makes no sense to strive 
to correct higher rank errors as they remain much rarer and, 
consequently, with a much lower impact on the UBER. 

Besides weak-bit-flipping [8][11], ways to use the weak-
bit-information in conjunction with conventional errors-only 
decoders are forcing all weak bits to either 0 or 1 [21]. Such 
an approach is deemed as less efficient and is not considered 
here. 

The UBER that can be achieved with (a) an i-error- 
correcting and (i+1)-error-detecting code and (b) a conven-
tional errors-only decoder reinforced with weak-bit-flipping 
can be evaluated by extending (3) as follows: 

𝑈𝐵𝐸𝑅 =
ଵ

௞
 ቂ1 − ∑ ቀ

𝑛
𝑡

ቁ 𝑅𝐵𝐸𝑅௧(1 − 𝑅𝐵𝐸𝑅)௡ି௧௜
௧ୀ଴ ቃ −             

            − 
ଵ

௞
𝑃௪௘௔௞_௕௜௧௦/௜ାଵ ቀ

𝑛
𝑖 + 1

ቁ 𝑅𝐵𝐸𝑅௜ାଵ(1 − 𝑅𝐵𝐸𝑅)௡ି௜ିଵ    

− 
ோ೔శమ

௞
𝑃௪௘௔௞_௕௜௧௦/௜ାଶ ቀ

𝑛
𝑖 + 2

ቁ 𝑅𝐵𝐸𝑅௜ାଶ(1 − 𝑅𝐵𝐸𝑅)௡ି௜ିଶ  (9) 

where: 

 the additional two terms with respect to (3) account for de-
tectable errors affecting i+1 and i+2 bits in a sensed 
memory word initially programmed as a code word; 

 𝑃௪௘௔௞_௕௜௧௦/௜ାଵ and 𝑃௪௘௔௞_௕௜௧௦/௜ାଶ represent the conditional 
probabilities to have at most i erroneous bits after weak-
bit-flipping upon detection of i+1 or i+2 erroneous bits, 
respectively, in a sensed memory word, i.e., the resulting 
new word will contain a number of erroneous bits that can 
be corrected by a conventional errors-only decoder. 

 𝑅௜ାଶ stands for the ratio of detectable errors affecting i+2 
bits which is usually different from zero since: 

o the deployed ECC is imperfect, i.e., not all syn-
dromes are used for the identification of errors affect-
ing up to i+1 bits; 

o a conventional errors-only decoder can easily be 
modified to take advantage of such unused syn-
dromes and enable partial (i+2)-bit error detection. 

 binary SEC-DED and DEC-TED codes investigated in the 
following sections enable the detection of R3 = 40.7% 3-
bit errors and R4 = 78.5% 4-bit errors, respectively. 

In the case of a SEC-DED code, 𝑃௪௘௔௞_௕௜௧௦/ଶ can be ex-
pressed as follows: 

  𝑃௪௘௔௞_௕௜௧௦/ଶ = [𝑃(𝑤ഥ/𝐸ത)]௡ିଶ{𝑃(𝑤/𝐸)[𝑃(𝑤/𝐸) + 2 𝑃(𝑤ഥ/𝐸)]} + 

                       + {(𝑛 − 2) 𝑃(𝑤/𝐸ത)[𝑃(𝑤ഥ/𝐸ത)]௡ିଷ}[𝑃(𝑤/𝐸)]ଶ   (10) 

where: 

 n represents the total number of bits per code word; 

 the first term stands for the conditional probability that 
among n-2 correctly sensed bits none is labeled as weak 
while at least one of the erroneously sensed bits is identi-
fied as weak; 

 the second term represents the conditional probability that 
among n-2 correctly sensed bits one is indicated as weak 
while both erroneously sensed bits are signaled as weak; 

 𝑃(𝑤/𝐸) and 𝑃(𝑤/𝐸ത) stand for the conditional probabili-
ties that an erroneously or correctly sensed bit, respec-
tively, is identified as weak; 

 𝑃(𝑤ഥ/𝐸)  and 𝑃(𝑤ഥ/𝐸ത)  are the conditional probabilities 
that an erroneously or correctly sensed bit, respectively, is 
not signaled as weak. 

Expressions similar to (10) can be derived for the condi-
tional probabilities 𝑃௪௘௔௞_௕௜௧௦/௜ାଵ  and 𝑃௪௘௔௞_௕௜௧௦/௜ାଶ  (i≥1) 
that occur in (9) based on the conditional probabilities 
𝑃(𝑤/𝐸), 𝑃(𝑤/𝐸ത), 𝑃(𝑤ഥ/𝐸) and 𝑃(𝑤ഥ/𝐸ത). The latter proba-
bilities depend on the distributions of the involved resistance 
states and the weak-bit-identification scheme. 

According to (9), 𝑃௪௘௔௞_௕௜௧௦/௜ା௝ has to be as large as pos-
sible in order to minimize the UBER. This requires a maxi-
mum probability that an erroneous (correct) bit is (not) indi-
cated as weak, i.e., maximum 𝑃(𝑤/𝐸) and (𝑃(𝑤ഥ/𝐸ത). These 
conditions can be checked on (10) by exploiting the fact 
that  𝑃(𝑤ഥ/𝐸)  and 𝑃(𝑤ഥ/𝐸ത)  are complementary to 𝑃(𝑤/𝐸) 
and 𝑃(𝑤/𝐸ത), respectively. 
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IV. WEAK-BIT-IDENTIFICATION IN 2T2R MEMORIES BASED 

ON ADDITIONAL SENSING IN 1T1R MODE  

Consider a 2T2R memory cell configuration in which a 
logical 1 is stored by programming a first resistor (R1) to LRS 
and a second resistor (R2) to HRS as illustrated on the left-
hand side of Fig. 6. During a memory write operation, the pro-
grammed resistance values may be verified in 1T1R mode 
against a reference value (ref), i.e., one verifies whether 
R1<ref and R2>ref. The program operations may be repeated 
if the verifications fail. Subsequently, with increasing storage 
time, R1 and R2 may drift in a way that makes the condition 
R1<R2 invalid and an incorrect logical 0 may be sensed in 
2T2R (differential) mode during a memory read operation. 

As shown on the right-hand side of Fig. 6, there are three 
possible scenarios according to which the condition R1<R2 be-
comes invalid. In the first scenario, R1 and R2 are still sepa-
rated by ref while in the other two scenarios both R1 and R2 
are either larger or smaller than ref. The latter two scenarios 
can be identified by sensing R1 and R2 separately in 1T1R 
mode and, potentially, using the same reference value as dur-
ing the verification of program operations. 

Having R1 and R2 on the same side of ref does not neces-
sarily mean that the encoded bit will be erroneously sensed in 
differential mode but indicates that either R1 or R2 were sub-
ject to a significant drift which could result in an erroneously 
sensed value. On the other hand, errors may remain unveiled 
despite a significant drift of both R1 and R2 according to the 
first scenario on the right-hand side of Fig. 6. 

V. WEAK-BIT-IDENTIFICATION BASED ON SENSING WITH 

ADDITIONAL REFERENCE VALUES 

Another way of identifying weak bits in resistive (flash) 
memories is to compare the electrical resistance (threshold 
voltage) of a storage device against different reference values 
[3][8][11][17][19]. Any bit that changes its value when sensed 
with the additional reference values may be considered as 
weak. Two additional reference values may be placed around 
a conventional reference as shown in Fig. 7. The conventional 
reference may correspond to (a) the ref. value shown in Fig. 2 
for a 1T1R cell configuration or (b) the implicit zero reference 
indicated in Fig. 3 for a 2T2R cell configuration. As illustrated 
in Fig. 8, the additional reference values may be implemented 
by providing an additional connection to either input of the 
sense amplifiers in Fig. 1. During a memory sense operation 
with one of the additional reference values, the connection to 
each input of the sense amplifier is selected in order to get a 
resistive bias (ref.) that corresponds to the difference be-
tween the additional and conventional reference values. 

The conditional probabilities involved in (10) that corre-
spond to the weak-bit-identification schemes discussed in sec-
tions IV and V can be calculated as described in annexes II 
and III. 

 
 

 
Fig. 6:  Retention error mechanisms in a 2T2R cell configuration. 

 
Fig. 7:  Weak-bit-identification based on sensing with additional 

reference values. The logarithm of the electrical resistance 
may be considered on the X-axis for log-normal 
distributions of the electrical resistance states. 

 
Fig. 8:  Possible implementation of sensing with additional 

reference values as illustrated in Fig. 7. 

VI. UBER IMPROVEMENT  

Fig. 9 to Fig. 12 report the impact of the weak-bit- 
information extracted according to sections IV and V on the 
UBER that can be achieved with a SEC-DED or DEC-TED 
code in conjunction with erasures-and-errors, generalized-
minimum-distance and conventional errors-only decoders. 
Weak-bit-flipping is used to reinforce the conventional errors-
only decoders and weak bits are assimilated to erasures in the 
case of erasures-and-errors decoders [9]. The conventional 
SEC-DED errors-only decoders were considered without par-
tial 3-bit error detection since this feature did not bring a sig-
nificant UBER improvement. On contrary, the conventional 
DEC-TED errors-only decoders were upgraded to provide 
78.5% 4-bit error detection as enabled by the used parity-
check matrix. SEC, DEC and TEC codes are considered as 
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references only in combination with conventional errors-only 
decoders and without weak-bit-flipping.  

The results estimated for the weak-bit-identification 
scheme discussed in section IV are shown in Fig. 10 and 
Fig. 12 under the label 2×1T1R. As compared to conventional 
SEC and DEC errors-only decoders, conventional SEC-DED 
and DEC-TED errors-only decoders reinforced with weak-bit-
flipping enabled UBER improvements of more than one dec-
ade if the LRS and HRS are separated by at least 5.5× and 
5×, respectively. The UBERs of erasures-and-errors decod-
ers were estimated according to annex IV, but not shown as 
they were below the UBERs of conventional errors-only de-
coders without any kind of weak-bit-information. 

Better UBER results can be obtained if the weak-bit- 
information is extracted as explained in section V. For each 
considered -distance between LRS and HRS, the reported 
UBER figures are the best obtained by varying the values of 
the additional references illustrated in Fig. 7. As compared to 
a conventional SEC errors-only decoder, in 1T1R memories, 
a SEC-DED errors-only decoder boosted with weak-bit- 
flipping may enable UBER improvements beyond one decade 
if the LRS and HRS are separated by at least 6× according 
to Fig. 9. For 2T2R memories, this is achieved at 4.5× be-
tween the LRS and HRS as shown in Fig. 10. The lower -
distance is due to a better separation of the differential re-
sistance distributions which reduces (a) the RBER and (b) the 
probability of errors induced by weak-bit-flipping. 

With a DEC-TED code, weak-bit-flipping enables a con-
ventional errors-only decoder to achieve UBER values that 
come close to or even exceed what can be attained with a TEC 
code as shown in Fig. 11 and Fig. 12. The UBER improve-
ment with respect to a TEC code is due to (a) the correction of 
quasi-all 3-bit errors together with a non-negligible fraction of 
4-bit errors and (b) a reduced number of check-bits which im-
plies shorter memory words. 

In all considered cases, erasures-and-errors decoding is 
outmatched by conventional errors-only decoding reinforced 
with weak-bit-flipping. Since both approaches have the same 
probability to correct (i+1)-bit errors according to (8), it 
comes out that erasures-and-errors decoding is unable to 
achieve full correction of lower rank errors due to the presence 
of false positives. This is related to the quality of the erasure-
information extracted from normal resistance distributions. 

 

Fig. 9:  UBER vs. -distance between LRS and HRS for a 32-bit 
1T1R memory protected by a SEC-DED code with weak 
bits identified as shown in Fig. 7. 

 

Fig. 10: UBER vs. -distance between LRS and HRS for a 32-bit 
2T2R memory protected by a SEC-DED code with weak 
bits identified as illustrated in Fig. 6 and Fig. 7. 

 

Fig. 11: UBER vs. -distance between LRS and HRS for a 32-bit 
1T1R memory protected by a DEC-TED code with weak 
bits identified as shown in Fig. 7. 

 

Fig. 12: UBER vs. -distance between LRS and HRS for a 32-bit 
2T2R memory protected by a DEC-TED code with weak 
bits identified as illustrated in Fig. 6 and Fig. 7. 

Generalized-minimum-distance decoding based on (4) has 
been evaluated according to annex IV. The resulting UBERs 
were similar to those obtained based on weak-bit-flipping and 
conventional errors-only decoders without partial (i+2)-bit er-
ror detection. This may imply the following: 

 the correction of up to i-bit errors is guaranteed by 
generalized-minimum-distance decoding as with con-
ventional errors-only decoding; 
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 identical ratios of (i+1)-bit errors can be corrected with 
both decoding approaches in agreement with (8); 

 in the case of 2T2R memories protected by a DEC-TED 
code, generalized-minimum-distance decoding was una-
ble to improve the UBER based on 4-bit error correction 
even if a better UBER could be obtained as compared to 
a TEC code with conventional errors-only decoding due 
to a reduced number of check-bits and, implicitly, 
shorter memory words. The absence of useful 4-bit error 
correction is due to the fact that: 

o quasi-full 3-bit error correction is necessary in order 
to have a noticeable impact of the 4-bit error- 
correction on the UBER; 

o based on simulation results, quasi-full 3-bit error cor-
rection requires w-weights larger than 0.95; 

o according to (4), the maximum number of erroneous 
bits correctable with a theoretical generalized- 
minimum-distance decoder is bounded by dH/(1+w) 
which becomes smaller than 4 when quasi-full 3-bit 
error correction is achieved with a DEC-TED code 
[dH/(1+w) = 6/(1+0.95) < 4]; 

(i+1)-bit errors that remain uncorrectable but still detecta-
ble after weak-bit-flipping can be detected and signaled by a 
conventional errors-only decoder. With the weak-bit- 
identification scheme in section V and a DEC-TED code, vir-
tually all uncorrectable 3-bit errors remain detectable. For 
2T2R memories protected by a SEC-DED code, all uncorrect-
able 2-bit errors remain detectable. 

The UBERs reported here correspond to a HRS/LRS ratio 
equal to 1. For normal LRS and HRS distributions and 2T2R 
memories, the impact of HRS/LRS comes only via the influ-
ence on the raw bit error rate 𝑅𝐵𝐸𝑅ଶ்ଶோ. For the weak-bit-
identification scheme proposed in section IV, this is due to the 
fact the expressions in annex II only depend on the -distance 
between LRS and HRS while, for the weak-bit-identification 
scheme discussed in section V, this is due to the symmetry of 
the distributions in Fig. 3. In this case, the minimum UBER 
achievable for a 2T2R memory with an arbitrary HRS/LRS ra-
tio is equal to the UBER attainable for a 1T1R memory that 
has (a) a HRS/LRS ratio equal to 1 and (b) the same RBER as 
the 2T2R memory. A more involved study of the HRS/LRS 
impact on the UBER is beyond the scope of this paper. 

VII. OVERHEAD 

Weak-bit-flipping can be implemented with the help of 
glue logic placed in front of a conventional errors-only de-
coder as illustrated in Fig. 13. At the beginning of each read 
operation, the registers R and R’ should be initialized such 
that a conventionally sensed word arrives unchanged at the 
inputs of the ECC decoder. In case of an uncorrectable error 
signaled by the ECC decoder, the conventionally sensed 
word is stored in R and two additional sense operations are 
launched according to section IV or V. R’ is used to store the 
first of the two additionally sensed words. Corresponding 

bits in the additionally sensed words are compared using an 
xnor or xor gate depending on whether the weak bits are 
identified according to section IV or V, respectively. Based 
on the outcome of each comparison, an xor gate is used to 
flip the corresponding bit in the conventionally sensed word 
stored in R. Potential errors in the resulted word with flipped 
weak bits may still be corrected by the ECC decoder. 

The considered weak-bit-identification schemes do not re-
quire ECC encoder modifications and have no impact on the 
latency of memory write instructions but, as mentioned, may 
require supplementary sense operations during memory read 
instructions. In order to evaluate this overhead, it is assumed 
that two additional memory sense and ECC decode operations 
(even if only one additional ECC decode operation is actually 
needed) are performed each time an uncorrectable error is sig-
naled. As illustrated in Fig. 14.a, the resulting operation over-
head is lower for (a) 2T2R memories due to better RBERs and 
(b) stronger ECCs. There is virtually no operation overhead 
beyond 4× and 5.5× between LRS and HRS for a DEC-
TED or SEC-DED code, respectively. Relating this to the 
monotonic evolution of the UBER with the -distance be-
tween LRS and HRS, one may state that the considered weak-
bit-identification schemes have virtually no impact on the 
  

 
Fig. 13: Glue logic that may be used to implement weak-bit-flipping 

in front of a conventional errors-only decoder. 

             (a) 

 

               (b) 

 

Fig. 14: Memory sense and ECC decode overhead vs. (a) -distance 
between LRS and HRS and (b) achieved UBER.  
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memory access latency at UBERs relevant to client (UBER ≤ 
10-15) or industrial (UBER ≤ 10-16) applications [12] as shown 
in Fig. 14.b. This is due to the fact that such small UBERs are 
obtained at very small RBERs so that an uncorrectable error 
may occur very seldom. 

Besides the presence of glue logic, modifications of con-
ventional errors-only decoders may be required to implement 
partial detection of higher rank errors as in the case of the 
DEC-TED decoder with partial 4-bit error detection. Synthe-
sis results obtained with a 130nm CMOS technology from 
STMicroelectronics are reported in Table I. The latency and 
combinational area overhead is considered with respect to a 
conventional errors-only SEC decoder without weak-bit- 
flipping. It comes out that a SEC-DED or DEC-TED code 
boosted with weak-bit-flipping enable sensible reductions in 
terms of storage area, latency and combinational area as com-
pared to a DEC or TEC code, respectively. 

VIII. CONCLUSIONS 

This work proves that weak-bit-information enables im-
portant UBER improvements in resistive memoires protected 
by light-weight ECCs with conventional errors-only decoders. 
For instance, in 2T2R memories, a DEC-TED code reinforced 
with weak-bit-flipping may provide similar or even better 
UBERs than a TEC code. In this way, weak-bit-flipping can 
be used to reduce the storage, latency and logic overhead of 
error correction in resistive memories. 

Reported UBER figures may be directly applied to resis-
tive memories where the electrical resistance states can be as-
sumed to follow a normal distribution. This study can easily 
be adapted to arbitrary distribution laws of the electrical re-
sistance states as long as corresponding error functions can be 
determined. 

 
TABLE I.  STORAGE OVERHEAD, DECODER LATENCY AND 

COMBINATIONAL AREA FOR THE CONSIDERED ECCS. 

ECC 
for 

32 data-bits 

check-bits  decoder overhead w.r.t. 
a SEC code 

num-
ber 

storage 
overhead 

latency 
increase 

combinational 
area  

SEC 6 +19% - - 

SEC-DED 7 +22% 0% ×1 

SEC-DED with 
weak-bit-flipping 

7 +22% +13% ×2 

DEC 12 +38% +38% ×9 

DEC-TED 13 +41% +38% ×14 

DEC-TED with 
weak-bit-flipping 

13 +41% +63% ×16 

DEC-TED with 
partial 4-bit error 

detection and 
weak-bit-flipping 

13 +41% +75% ×17 

TEC 18 +56% +100% ×80 

A significant outcome of this study is a formal proof that, 
given an i-error-correcting and (i+1)-error-detecting code, a 
conventional errors-only decoder used in combination with 
weak-bit-flipping performs at least as good as an erasures-
and-errors or a theoretical generalized-minimum-distance de-
coder as long as the goal is to correct up to i+1 erroneous bits 
per code word. 

ANNEX I 

In order to estimate the raw bit error rate 𝑅𝐵𝐸𝑅ଵ்ଵோ  of  
1T1R memories, it is assumed that the ref value in Fig 2 is 
ideally placed at the same -distance from the LRS and HRS 
mean values. The following relation should hold: 

          
௥௘௙ିఓಽೃೄ

ఙಽೃೄ
=

ఓಹೃೄି௥௘௙

ఙಹೃೄ
                                                               (11)       

which allows to obtain an expression for ref. When the as-
sumption of the ideal selection of ref is not true, one may pes-
simistically consider the -distance to either 𝜇௅ோௌ or 𝜇ுோௌ that 
results in the worst RBER value. 

Assuming normal LRS and HRS distributions, (1) can be 
obtained by replacing the expression of ref obtained according 
to (11) into either of the complementary error functions (erfc) 
below: 

           𝑅𝐵𝐸𝑅ଵ்ଵோ =
ଵ

ଶ
erfc ቀ

௥௘௙ିఓಽೃೄ

√ଶఙಽೃೄ
ቁ =

ଵ

ଶ
erfc ቀ

ఓಹೃೄି௥௘௙

√ଶఙಹೃೄ
ቁ                          

For 2T2R memories, (2) can be obtained out of (1) if LRS 
and HRS are replaced by ඥ𝜎ுோௌ

ଶ + 𝜎௅ோௌ
ଶ while LRS and HRS 

are replaced by LRS-HRS and HRS-LRS, respectively. 

For either 1T1R or 2T2R memories, the number of ’s (-
distance) between LRS and HRS is calculated according to the 
expression below: 

    𝜎௅ோௌுோௌ =  
௥௘௙ିఓಽೃೄ

ఙಽೃೄ
+

ఓಹೃೄି௥௘௙

ఙಹೃೄ
= 2

ఓಹೃೄିఓಽೃೄ

ఙಽೃೄାఙಹೃೄ
            (12) 

where ref is assumed to be at the same number of ௅ோௌ and 
ுோௌ from 𝜇௅ோௌ and 𝜇ுோௌ, respectively. 

For 1T1R memories, the variability of the implemented ref 
value can be taken into account by transferring it into the LRS 
and HRS distributions via the convolution products of the 
probability density functions of the ref variable and the LRS 
or HRS variable, respectively. In the end, this can be handled 
as a 2T2R configuration with asymmetric distributions. 

ANNEX II 

This annex evaluates the conditional probabilities used in 
(10) according to the weak-bit-identification scheme dis-
cussed in section IV for 2T2R memory cell configurations. 
The events involved in (10) are the following: 

 𝐸 stands for the event of erroneously sensing a bit; 

 𝑤 denotes the event of identifying a sensed bit as weak; 
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 𝐸ത  and 𝑤ഥ  are the events complementary to E and 𝑤 , re-
spectively. 

Assuming normally distributed LRS and HRS [14][20], 
the joint probability of E and 𝑤ഥ  can be expressed as follows: 

      𝑃(𝐸 ∩ 𝑤ഥ) =
∫ ௘௫௣ቈି

൫ೣషഋಽೃೄ൯
మ

మ഑ಽೃೄ
మ ቉ௗ௫ ∫ ௘௫௣ቈି

൫೤షഋಹೃೄ൯
మ

మ഑ಹೃೄ
మ ቉ௗ௬

ೝ೐೑

షಮ

ಮ

ೝ೐೑

ଶగఙಽೃೄఙಹೃೄ
   

                         =
ଵ

ସ
ቂ𝑒𝑟𝑓𝑐 ቀ

ఓಹೃೄିఓಽೃೄ

√ଶ(ఙಹೃೄାఙಽೃೄ)
ቁቃ

ଶ
=

ଵ

ସ
ቂ𝑒𝑟𝑓𝑐 ቀ

ఙಽೃೄಹೃೄ

ଶ√ଶ
ቁቃ

ଶ
  

under the assumption that ref is ideally selected at the same 
number of LRS and HRS from LRS and HRS, respectively, 
which enables (12) and provides the minimum 𝑃(𝐸 ∩ 𝑤ഥ). 

The conditional probability 𝑃(𝑤/𝐸) can be inferred as be-
low: 

       𝑃(𝑤/𝐸) =
௉(ா∩௪)

௉(ா)
=

௉(ா)ି௉(ா∩௪ഥ )

௉(ா)
  

where P(E) is equal to 𝑅𝐵𝐸𝑅ଶ்ଶோ. 

Based on Fig. 2 and (12), the probability P(w) can be ex-
pressed as follows: 

        𝑃(𝑤) =
ଶ ∫ ௘௫௣ቈି

൫ೣషഋಽೃೄ൯
మ

మ഑ಽೃೄ
మ ቉ௗ௫ ∫ ௘௫௣ቈି

൫೤షഋಹೃೄ൯
మ

మ഑ಹೃೄ
మ ቉ௗ

ೝ೐೑

షಮ

ೝ೐೑

షಮ

ଶగఙಽೃೄఙಹೃೄ
  

                    = 𝑒𝑟𝑓𝑐 ቀ
ఙಽೃೄಹೃೄ

ଶ√ଶ
ቁ ቂ1 − 𝑒𝑟𝑓𝑐 ቀ

ఙಽೃೄಹೃೄ

ଶ√ଶ
ቁ /2ቃ  

under the assumption that ref is placed at the same number of 
LRS and HRS from LRS and HRS, respectively. 

The conditional probability 𝑃(𝑤/𝐸ത) can be derived based 
on the Bayes’ theorem: 

  𝑃(𝑤/𝐸ത) =
௉(ாത/௪)௉(௪)

௉(ாത)
=

[ଵି௉(ா/௪)]௉(௪)

ଵି௉(ா)
  

where 𝑃(𝐸/𝑤) can be inferred as follows: 

          𝑃(𝐸/𝑤) =
௉(௪/ா)௉(ா)

௉(௪)
  

Conditional probabilities 𝑃(𝑤ഥ/𝐸) and 𝑃(𝑤ഥ/𝐸ത) are com-
plementary to 𝑃(𝑤/𝐸) and 𝑃(𝑤/𝐸ത), respectively.  

For other types of distributions, the same approach can be 
followed provided that appropriate probability density 
functions are considered. 

ANNEX III 

This annex evaluates the conditional probabilities used in 
(10) for the weak-bit-identification scheme discussed in 
section V. Fig. 15 illustrates the electrical resistance domains 
and their associated probabilities defined by the conventional 
and additional reference values with respect to the left-hand 
side distribution in Fig. 7. Assuming a normal distribution of 

 
Fig. 15: Graphical representation of the probabilities P1, P2, P3 for   

the left-hand side distribution in Fig. 7. 

the resistance value (or of its logarithm) [14][20], the proba-
bilities P1, P2 and P3 can be derived with the help of the com-
plementary error function (erfc) based on the -distance of the 
conventional and additional reference values from the mean 
value. Similarly, P1, P2 and P3 probabilities can be defined and 
calculated for the right-hand side distribution in Fig. 7. 

Based on P1, P2 and P3, one can compute the following 
probabilities: 

 𝑃(𝐸) ≝ 𝑅𝐵𝐸𝑅 = 𝑃ଶ + 𝑃ଷ    

 𝑃(𝑤/𝐸) =
௉మ

௉మା௉య
=

௉మ

ோ஻ாோ
  

 𝑃(𝑤ഥ/𝐸ത) =
ଵି௉భି௉మି௉య

ଵି௉మି௉య
= 1 −

௉భ

ଵିோ஻ாோ
   

 𝑃(𝐸/𝑤) =
௉మ

௉భା௉మ
  

Conditional probabilities 𝑃(𝑤ഥ/𝐸), 𝑃(𝑤/𝐸ത) and 𝑃(𝐸ത/𝑤) 
are complementary to 𝑃(𝑤/𝐸) , 𝑃(𝑤ഥ/𝐸ത)  and 𝑃(E/𝑤) , re-
spectively. 

𝑃(𝑤ഥ/𝐸ത) and 𝑃(𝑤/𝐸) need to be as large as possible for a 
maximum error-correction improvement based on weak-bit-
flipping. Consequently, for a given RBER, P1 (P2) should be 
as small (large) as possible. Decreasing (increasing) P1 (P2) 
can be achieved by pushing the additional references in Fig. 
15 to the right. Unfortunately, this will have the opposite ef-
fect on the right-hand side distribution in Fig. 7. Placing the 
additional references at different distances from the conven-
tional reference may be considered when the left-hand and 
right-hand side distributions in Fig. 7 are different or have 
different ’s. 

ANNEX IV 

Based on (4), the UBER enabled by erasures-and-errors 
or theoretical generalized-minimum-distance decoders can be 
estimated as follows: 

    𝑈𝐵𝐸𝑅 =
1

𝑘
 ቂ1 − ∑ ቀ

𝑛

𝑛𝑤
ቁ 𝑃(𝑤)𝑛𝑤(1 − 𝑃(𝑤))𝑛−𝑛𝑤 ×

𝑁𝑤

𝑛𝑤=0

                      ∑ ቀ
𝑛𝑤

𝑛𝐸/𝑤
ቁ 𝑃(𝐸/𝑤)𝑛𝐸/𝑤(1 − 𝑃(𝐸/𝑤))𝑛𝑤−𝑛𝐸/𝑤 ×

𝑁𝐸/𝑤

𝑛𝐸/𝑤=0

                     ∑ ቀ
𝑛 − 𝑛𝑤

𝑛𝐸/𝑤ഥ
ቁ 𝑃(𝐸/𝑤ഥ)𝑛𝐸/𝑤ഥ(1 − 𝑃(𝐸/𝑤ഥ))𝑛−𝑛𝑤−𝑛𝐸/𝑤ഥ

𝑁𝐸/𝑤ഥ

𝑛𝐸/𝑤ഥ=0
ቃ        

where: 

 dH is the minimum Hamming distance between the 
code words of the considered binary ECC; 
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 k and n represent the number of data-bits and total number 
of bits per code word, respectively; 

 𝑛௪ , 𝑛ா/௪  and 𝑛ா/௪ഥ  represent the numbers of weak bits, 
erroneous weak bits and erroneous non-weak bits, respec-
tively; 

 𝑁௪, 𝑁ா/௪ and 𝑁ா/௪ഥ  are the upper limits of 𝑛௪, 𝑛ா/௪ and 
𝑛ா/௪ഥ , respectively, and can be estimated based on (4) if 

one replaces n୉୵ and n୉୵ഥ  by n୉/୵ and n୉/୵ഥ , respec-

tively; 

 𝑃(𝑤) , 𝑃(𝐸/𝑤)  and 𝑃(𝐸/𝑤ഥ)  are the probability that a 
sensed bit is identified as weak and the conditional proba-
bilities that a weak or non-weak bit is erroneous, respec-
tively;  

 each term of the first addition operator represents the prob-
ability of identifying 𝑛௪ weak bits in a code word; 

 each term of the second addition operator stands for the 
conditional probability of having 𝑛ா/௪  erroneous bits 
among the identified weak bits; 

 each term of the third addition operator stands for the con-
ditional probability of having 𝑛ா/௪ഥ  erroneous bits among 
the non-weak bits; 

 if the weak bits are assimilated to erasures, the second ad-
dition operator is equal to 1 as 𝛼௪ is equal to 0 and the 
upper limit 𝑁ா/௪ becomes equal to 𝑛௪. 
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