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Abstract - The complete ecosystem of electronic device 

manufacturers, from microelectronics, software and hardware 

designers to developers, producers, and integrators, is facing 

an immense new environmental challenge: to cope with the 

data deluge and to reduce the energy consumption of digital 

technologies. The purpose of this paper is to propose scientific 

and technical directions to reach global data and power 

sobriety while preserving computational efficiency. We present 

nine opportunities to lower the power consumption of 

computing units. A growth factor of 100 to 1000 in energy 

efficiency is achievable in the next 10 years if we take full 

advantage of all the potential improvements, working 

simultaneously at all five levels of the technological ecosystem 

(process steps, circuits, architecture, software and algorithms). 

We will indeed need to exploit all the possible technological 

advances to achieve this goal, including resistive memories, 3D 

stacking and new computing paradigms such as in-memory- 

computing, neuromorphic computing and quantum computing. 

Additionally, in order to maximize efficiency and performance, 

the research and development communities must work closer 

together and embrace a real culture of co-design to optimize 

applications and algorithms, algorithms and architectures, 

architectures and technologies jointly. We also propose to 

perform data processing operations as closely as possible to the 

source, in order to curtail the energy consumption that comes 

with data transport. Finally, we believe it is essential to accept 

the constraints for sustainable electronics now, and to change 

our mindsets quite radically by carrying out product life-cycle 

assessments in the very early phases of any new research. 

 

Keywords—3D, non-volatile memory, neuromorphic, FDSOI, 

GAA FET, quantum, co-design, architecture. 

 
I. INTRODUCTION 

The Fourth industrial Revolution, as described by the 
World Economic Forum, is relying on new digital 
technologies like Artificial Intelligence (AI), the Internet of 
Things and 5G/6G networks. Three interdependent trends 
have made this revolution possible. The first trend is the 
natural consequence of the exponential increase in 
processing and storage capabilities of electronic components 
at a reasonable cost and at constant overall power 
consumption. As a result, a growing part of the population is 
gaining access to smartphones and internet access. This 
democratization has led to the second trend, an exponential 
increase in the volume of data generated by humanity, 
stemming from both personal and economic activities. 
Increasing digital computing performance and the vast 
amounts of data generated, coupled with new classes of 
algorithms (Artificial Intelligence in general, Machine 
Learning in particular) to process the data, are transforming 
the way information can be used, and enabling the third 
trend: the development of new services, products and 
capabilities. While these technological advances offer great 
advantages, there is an urgent need to take into account and 

address the increase in worldwide energy and rare material 
consumption required to produce and operate digital 
technologies, and to orient worldwide R&D activities more 
and more towards sustainable electronics. 

Confronted with this challenge, Europe has decided to 
respond with an ambitious action plan: on March 19, 2021, 
the 24 Member States plus Norway and Iceland, signed a 
declaration to accelerate the use of green digital 
technologies. The goal is to invest in and deploy green digital 
technologies to achieve climate neutrality and accelerate the 
environmental and digital transitions in priority sectors in 
Europe. Several actions will be taken at a national level 
including the development of energy efficient artificial 
intelligence solutions and low power hardware technologies, 
and the promotion of eco-designed products. Indeed, Europe 
is calling for a concerted effort to boost its capabilities in 
these key technologies, since they are enablers for other 
technological developments and provide a competitive edge 
to the European industry. 

Computing in the era of the data deluge 

According to IDC [1], humans and computers generated 

more than 64 zettabytes of data in 2020, and more than 2000 

Zetabytes will be produced in 2035 (Fig 1). This escalation 

results from the fact that data is increasingly generated by 

machines (in 2018, only 44% of the data was produced by 

humans). It is expected that by 2022, 90% of all the data will 

be generated by machines (machine-to-machine 

communications) and by hundreds of billions of connected 

objects around the world. We are also witnessing a surge in 

multimedia data, such as image, video, speech and music, as 

opposed to "classic" digital data (text and numbers), and an 

increase in the resolution of videos and pictures (Fig 1). 
 

Fig 1: Data generation (actual and forecasted)[1] 

 
To efficiently transform all of this raw data into useful 

information and services, computing will play an 
increasingly important role in the three stages of the data 
processing chain: 

 Data transmission to processing units: Raw data is 

transported via wired networks (copper or optical) and 

 

 

978-1-6654-3751-6/21/$31.00 ©2021 IEEE 7 

ES
SC

IR
C

 2
0

2
1

 - 
IE

EE
 4

7
th

 E
u

ro
p

ea
n

 S
o

lid
 S

ta
te

 C
ir

cu
it

s 
C

o
n

fe
re

n
ce

 (E
SS

C
IR

C
) |

 9
7

8
-1

-6
6

5
4-

3
7

5
1-

6
/2

1
/$

3
1

.0
0 

©
20

2
1

 IE
EE

 |
 D

O
I:

 1
0

.1
1

0
9/

ES
SC

IR
C

5
3

4
50

.2
0

2
1

.9
5

6
7

83
6 

mailto:jean-rene.lequepeys@cea.fr


8 
Authorized licensed use limited to: CEA. Downloaded on April 19,2024 at 16:12:00 UTC from IEEE Xplore. Restrictions apply. 

2  

4G and 5G wireless networks to remote procesing units. 

Information can also be processed locally (at the edge) to 

decrease the amount of data transferred. According to 

IBS [2], in 2020 data traffic represented ~5% of the total 

generated data, the remaining 95% being either 

processed at the edge or lost; 

 Data storage and processing: In 2025, it is expected that 

half of the data will be created and stored in enterprise 

servers or in the cloud and that more than 50% of the 

data will be real-time. This figure will probably reach 

close to 90% by 2050 (Source: IDC-Seagate data age) 

meaning that a large amount of data will be processed 

locally [3]. IDC also estimated that dark data [4] (data 

that are never used, unstructured or not indexed) would 

rise to 93% by 2020. 

 Data analysis and exploitation: Massive usage of 

artificial intelligence algorithms will be needed to reduce 

the proportion of dark data. 

Being able to trust information systems will be another 

important factor in their deployment. Systems need to be 

resistant to attacks and must protect corporate and personal 

data by complying with the new European GDPR 

regulations. Cryptography will undoubtedly be more widely 

deployed in the future and will also require additional 

computing capacity. 

 
II. THE RISE IN ENERGY CONSUMPTION DUE TO THE 

SLOW DOWN IN SCALING BENEFITS 

The power requirements of Information and 
Communication Technologies (ICTs) (Fig 2) have been 
relatively constrained so far, thanks to technological 
breakthroughs that have compensated the end of Dennard’s 
scaling. 

 

 

Fig 2: Energy forecast for ICT. (Source: IEA–4E TCP -EDNA– 

June 2019 –Total Energy Model for Connected Devices) 

 

Until 2023, the power consumption of datacenters should 

remain stable at around 200 TWh but, with the slowing 

down of scaling benefits, we could see an exponential 

growth in their energy consumption as early as 2024, unless 

new technological innovations come into play (Fig 3) [5]. 
This exponential increase in energy consumption would 

not be sustainable. Part of the population is already reacting 
to it and the result down the road could be a rejection of 
some digital technologies, as it is already happening in some 
countries (e.g., France’s situation with strong opposition to 
5G systems). Conversely, a proper and well thought out 
deployment of these technologies would bring new useful 
services to society. It is therefore necessary for the 
electronics community at large (technology and electronic 

circuit architects, and circuit, software and electronic systems 
providers) to come up with breakthrough solutions to curtail 
the rise in the power consumption of digital systems. In this 
article, we analyze new digital technology opportunities and 
propose computing solutions that will facilitate the move 
towards sustainable and responsible electronics. 

 

Fig 3: Data center electricity needs and the effects of ending 

Moore’s law [5]. 

 
A. The limits of energy efficiency in computing systems 

Both the energy efficiency and performance of 
computing systems have increased steadily in the past 
decades. In central processing units (CPUs), computations 
per kilowatt-hour have doubled every 1.5 years or so [6]. The 
performance of supercomputers went from 2 Gflops in 1985 
(Cray2) to 415 Pflops in 2020 (Fugaku), i.e., a 108-fold 
increase in 33 years. Today we could replace the 1985 Cray2 
computer with two Nvidia Jetson Nano compact computers 
and achieve the same computing performance while 
lowering the power consumption from 200kW to 20W. 
Although this increase in energy efficiency is quite 
impressive, it only amounts to a factor of 10-4. The 
improvement in the number of computations performed per 
kWh is called “Koomey's law", and it states that "the number 
of computations per joule spent double every 18 months or 
so”[7]. In terms of energy performance, mechanical engines 
are currently only a few orders of magnitude away from a 
thermal engine’s thermodynamical efficiency limit, whereas 
computing systems are quite far from the ultimate 
computational limit. 

Figure 4 illustrates the performance evolution of 
supercomputers since the year 2000: a 10-fold improvement 
every four years in both performance (FLOPS) and energy 
consumed per operation (J/FLOP). The data suggests that 
further improvements in energy efficiency will soon be 
restrained by the physical limits of charge carriers in CMOS 
devices. In the future, significant power consumption 
reductions will rely less on improved fabrication processes 
(scaling, 3D integration and packaging) than on new 
computing architectures and paradigms, some of which are 
already being deployed (e.g., computing accelerators). ICT 
frugality will also be a key factor in reducing the world’s 
digital energy footprint, and possibly the only way to avoid a 
Jevons paradox scenario. The Jevons paradox is that 
efficiency enables growth. The more efficient the 
technology, the more it gets used. New digital technologies 
that can do more with fewer resources allow the economy as 
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First research track: develop architectures and 
demonstrators based on active silicon interposers, 
chiplets and a 3D toolbox. Co-designing semiconductor 
processes and novel 3D electronic architectures can help 
improve computing performance significantly. 

Second research track: develop new electronic 
architectures using dedicated but versatile accelerators 
that exhibit optimized power consumption in a wide 

range of applications. 

a whole to produce more, and the rate of consumption of that 
resource rises due to increased demand [8]. 

 

 

Fig 4: Evolution of the performance of supercomputers. 

 
B. Co-design as a way to improve computing efficiency 

Effective performance (and correlated energy efficiency) 
is a combination of multiple factors: technology, system 
architecture, software and the right choice of algorithms. In 
the early years of microelectronics, design and optimization 
in these three domains were not tackled simultaneously. The 
slow-down of Moore’s law [9] now calls for a new paradigm 
centered on co-designing technological processes, 
architectures and algorithms. 

After the year 2000 and the end of Dennard's scaling law 
[10], the complexification of integrated circuit structures 
limited the increase in processor frequency whereas the 
transistor density kept following Moore's law. To keep up 
with the need for higher performance, despite a much slower 
increase in frequency, multiple core architectures were 
introduced, giving birth to “multi”/”many” core architectures 
(“multi” = many identical cores, “many” = many specialized 
cores). This, in turn, required a new generation of high 
“quality” algorithms for parallelization. Today, the co-design 
of the whole semiconductor chain (process, architecture, 
algorithm and software) is the key factor to improve overall 
computing performance and efficiency. However, such 
improvements are currently limited by the fact that not all 
algorithms lend themselves well to parallelization, 
constraining overall efficiency (« Amdahl's law » [11]). 
Figure 5 below illustrates the evolution of processor 
performance over the past 30 years. 

Novel technologies and co-design approaches can open 
up new ways to improve performance and curtail energy 
consumption. Many-core/multi-chip architectures, for 
example, take advantage of 3D fabrication and assembly 
techniques. Passive or active silicon interposers act as a 
substrate on which the multiple optimized chips/cores are 
assembled in a complex but optimized architecture. This 
approach requires both Wafer-to-Wafer (W2W) and Die-to- 
Wafer (D2W) bonding having the right alignment accuracy, 
specific surface preparation, and dedicated material and 
process developments. An example of one of CEA-Leti’s 
many-core architectures is the “INTACT” demonstrator 
shown in Figure 6, which includes 96 cores and 6 chiplets 
[12][13]. 

 

 
 

Fig 5: Evolution of processor performance adapted from [14]. 
 

Fig 6: CEA-Leti’s INTACT demonstrator, from concept to 3D 

cross-section. 
 

 

C. A strong need for more specialized accelerators 

The move towards parallelization has promoted the 
emergence of dedicated accelerators. Recently, energy and 
performance constraints led to the introduction of new 
architectures dedicated to specific purposes like, for 
example, Graphics Processor Units (GPUs) for image 
processing, as illustrated in Figure 7, and Neural Network 
accelerators (NPUs) for learning and inference in machine 
learning applications. Dedicated full computing architectures 
based on specific hardware accelerators can be up to two 
orders of magnitude more efficient for the same calculation 
than general-purpose programmable solutions (Fig 7). 
Ideally, a dedicated hardware solution for a given problem 
would be the most energy efficient solution, but economic 
considerations still impose a certain degree of versatility in 
integrated circuits so that they may be used in several 
applications. A good tradeoff between cost and adaptability 
has been obtained with the emergence of solutions for a 
relevant class of problems like neuromorphic reconfigurable 
architectures, minimization of functions, etc. 
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Fourth research track: develop sustainable electronics by 
accepting and deploying the huge R&D efforts it will 
require and by promoting the new mindset that must 
accompany this change. 

 

 

Fig 7: Specialization in computing strongly increases energy 

efficiency. 

III. THE POWER OF BETTER ALGORITHMS 

Algorithms can have a very strong impact on performance: 

there can be a difference of many orders of magnitude 

between a "naive" algorithm and an optimized algorithm. A 

good illustration is Ewin Tang’s algorithm. This 18-year-old 

teenager proved that ordinary computers can solve an 

important computational problem (the "recommendations" 

problem, crucial for the success of services like Netflix) 

with performances potentially comparable to those of a 

quantum computer. In 2016, computer scientists Iordanis 

Kerenidis and Anupam Prakash published a quantum 

algorithm that solved the recommendations problem 

exponentially faster than any known classical algorithm, but 

they did not prove whether a fast classical algorithm could 

do the same [15]. Like Kerenidis and Prakash's quantum 

algorithm, Tang's classical algorithm, published in 2018 

[16], works in polylogarithmic time - meaning that the 

computation time is proportional to the logarithm of features 

such as the number of users and products in the dataset - and 

is also exponentially faster than any previously known 

classical algorithm. Thus, we can see that finding the right 

algorithm for a given application allows phenomenal speed- 

up factors that can increase exponentially with the size of 

the problem. 

 

 

 

 

 

IV. THE INCREASING DEMAND FOR ORES AND RARE 

EARTHS 

The data deluge will have a big impact on the demand for 
data storage technologies and, as a result, on the demand for 
the materials required to make them. Recent estimates made 
by researchers from the Catholic University of Leuven 
indicate that the storage of 10% of the expected 2025 global 
datasphere will require up to 8 kilotons of neodymium, 
which is close to 12 times the current yearly European 
demand for this material. The development of new 
generation memory technologies will have to take into 
account such critical raw material challenges. 

Electronic products are also having a negative ecological 
impact in other ways. For example, the exploitation of highly 
polluting mines that consume a lot of water and the recycling 

and burial of obsolete electronic products, often done in third 
world countries, are contributing to destroy ecosystems and 
lower living conditions of local populations. If we want to 
make a systematic change in the way we design and fabricate 
electronic components, we must carry out life cycle 
assessments of future products during the earliest stages of 
their design and development processes. We must also be 
ready to find alternatives to the rare, polluting and difficult to 
recycle materials that are presently used in those products. 
This huge endeavor will last for well over a decade. 

 

 
V. THE STABILITY OF THE SUPPLY CHAIN - GEOPOLITICAL 

CONSIDERATIONS 

The semiconductor fabrication process requires a wide 
range of materials (Fig 8). Only 15% of these materials 
comes from recycling. Figure 9 illustrates the type and 
quantity of materials used for different kinds of 
microelectronic memories. Currently, many of those 
materials are extracted in only a few countries: Australia 
produces 50% of the world’s lithium, Chile 25% of the 
world’s lithium and 25% of the world’s copper, South Africa 
70% of the world’s platinum, and China supplies 95 % of 
most of the rare earths. 

 

Fig 8: Increase in materials used for semiconductor fabrication. 

(Courtesy of Lam Research) 

 

Fig 9: Estimated material intensity factors for different memory 
technologies. Amounts are in tons per Zettabyte. (Source: Critical 

Raw Materials for Strategic Technologies and Sectors in the 
European Union - September 2020) 

 
Consequently, there is a high potential for supply chain 
disruption and an added risk associated with the world’s 
evolving political and economic strategies. Nevertheless, 
there are new and important deposits of rare earth elements 
in other parts of the world. In Greenland and Japan, for 

Third research track: investigate new algorithms and 
innovative approaches that could lead to 
implementations that are far more efficient in solving 
application problems. 
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Fifth research track: develop edge-computing solutions 
to reduce the overall energy requirements and improve 
service quality. 

example, significant deposits were recently discovered in far 
eastern territorial waters. At any rate, technologies that 
consume less rare materials are urgently needed. Ultra-thin 
film wafer bonding, 2D material growth, die to wafer 
bonding and local epitaxial growth developed at CEA-Leti 
are powerful levers to limit critical material usage in 
microelectronics. 3D technologies and advanced packaging 
can also help reduce the need for noble metals. 

 
VI. THE NEED TO PROCESS DATA CLOSER TO THE SOURCE 

We can see in Figure 10 that there is a strong tendency to 
process more and more data at the source (or edge) or very 
close to it. While only 20% of all the data generated 
worldwide was processed locally in 2015, it is projected that 
80% will be processed locally in 2030 [17]. However, the 
data deluge will impose more computing systems at both 
ends, cloud and edge. The main reason for the redistribution 
of data processing between cloud and edge is the need for 
more real-time, autonomous, local and private/secure 
applications in production processes and in services in 
general. Edge computing can provide solutions to those 
needs and, at the same time, reduce the overall energy 
required to process the data. The major benefits of 
computing at the edge are ensuring: 

 Data protection of data: Maintaining personal or 

corporate data locally is the best way to ensure their 

integrity and keep control at the owner’s level. This is 

particularly critical for healthcare applications and 

industrial proprietary data. Moreover, the protection of 

personal data is a legal obligation under the European 

GDPR, which lays out specific requirements for 

businesses and organizations established in Europe or 

serving European clients/users, and regulates how 

businesses can collect, use, and store personal data; 

 Very low latency: The transmission time between a 

sensor, or any data generating system, and a data 

processing server is limited by the speed of data 

transmission (which can be, at best, the speed of light). 

This translates into a 10ms round-trip latency for a 

server located 1500km away, not taking into account the 

time required for processing. Such latency is 

unacceptable for applications such as autonomous 

vehicles, remote robot control, and production control in 

a factory; 

 Operational reliability: Many critical applications, such 

as self-driving cars, cannot depend on the quality and 

availability of today’s communication networks or 

channels. A car’s behavior in a critical situation should 

not have to depend on the status of a 4G/5G connection 

or of a line-of-sight photonics connection; 

 Optimal use of transmission channels and storage: More 

than 90% of the data sent to the cloud is used at best 

once, but still requires energy for transmission and 

storage. By pre-processing the raw data at the source, it 

would be possible to reduce overall data bandwidth and 

storage requirements; 

 Autonomy of decision. The use of local data and local 

processing would allow a much higher degree of 

customization of the response, e.g., medical devices that 

provide continuous personalized treatment adapted to the 

history of the patient and not depending only on generic 

cloud-based applications. 
 

 
Fig 10: Evolution of data processing at the Edge. (Source: IBS 

2020-09) 
 

 
VII. THE EVOLUTION OF AI 

Most traditional Artificial Intelligence methods are based 
on convolutional neural networks (CNN) [18], although 
other types of networks are emerging. Convolutional neural 
networks are creating an important computational burden. In 
fact, the ever-increasing storage capacity and processing 
resources required by CNN are fueling the demand for 
higher performance computing capabilities. The complexity 
of these networks results in the need for very large data sets, 
especially during the training phase, and regular access of 
stored weights during the inference phase. All these 
operations contribute to increase the required energy per 
operation. Indeed, transferring and storing one gigabyte of 
data through the internet uses between 3.1 kWh and 7 kWh, 
instead of 0.000005 kWh when done locally [19]. And, as 
mentioned earlier, latency is also affected: an operation at the 
edge lasts µs whereas cloud operations take closer to 10 
seconds. 

The edge may be viewed as a hierarchy that includes 
essentially three segments (Fig 11), each segment requiring 
four kinds of AI-specific ASICs having different power 
consumptions and different latency and response times. The 
three segments are: 

 Edge AI - which is on-premises (as opposed to cloud) 

computing and may be embedded. Typical examples are 

set-top boxes, smart speakers and autonomous vehicles. 

Edge AI operates with a power budget in the range of 

10W and a latency in the range of 10 milliseconds (ms); 

 Portable device edge (embedded) AI – which is 

applicable to medical devices, smartphones and other 

mobile devices and operates with a power budget in the 

range of 1W to 10W and a latency close to one ms; 

 Deep Edge AI (or AI for the Internet-of-Things) – used 

for intelligent sensors and the IoT. Deep Edge AI must 

respect strong cost and power constraints - in the range 

of several hundreds of mW to 1 µW- and a latency of 

less than one second. 

 
A fourth segment, the so-called Near Edge segment, also 

exists. It interfaces with the cloud and can function as a mini 

datacenter. It is composed of systems operating with an 

intermediate latency and power consumption ranging 
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anywhere from 1 to hundreds of kW, depending on the 

required performance. Examples are shopfloor servers for 

automated production and local datacenters connected to 5G 

base stations. 
 

Fig 11: Artificial Intelligence is energy intensive. 

 
In order to optimize power consumption, dedicated ASIC 

solutions have become a necessity, and the market for AI 
accelerators is expected to grow, as shown below (Fig 12). 

 

 
Fig 12: AI accelerator market perspectives. (Source: IBS 2020) 

 
We also need to limit the amount of data that moves from 

a memory unit to a computing unit, since reading data from 
memory and storing it back into the data bank represents 
~90% of the power consumed by a chip (Fig 13). To evolve 
beyond computing architectures based on the Von Neumann 
model, we are moving computation closer to the memory 
(Near Memory Processing) and even into the memory (In 
Memory Computing). These concepts can be implemented 
with SRAM memories or non-volatile memories and the 
calculations can be performed in analog or digital form, the 
gains varying from 30 to 1000, depending on the 
implementation scenario. 

 

 
Fig 13: Data movement is costly in terms of power consumption. 

(Source: Bill Dally, “To ExaScale and Beyond”, 2010) 

VIII. BIO-INSPIRED ARTIFICIAL INTELLIGENCE SOLUTIONS 

Bio-inspired neuro-computing appears to be a very 
promising approach to lower energy consumption (Fig 14). 
The human brain is well suited for many complex tasks, such 
as image recognition, which it performs with very high 
energy efficiency. However, it is not able to make relatively 
simple arithmetic operations like multiplying large numbers. 
A bee’s brain has very low computing power but it deploys 
clever survival strategies that consume very little energy. 
Several neuromorphic research chips exist today, like the 
SpiNNaker (Human Brain Project), IBM TrueNorth, 
Neurogrid (Stanford) and Intel’s Loihi family chips, and 
startups are on their way to commercializing chips based on 
Spiking Neural Networks (Brainchip, Innatera, Synsense, 
GrAIMatterLabs or WestwellLabs). 

 

Fig 14: Bio inspiration to fill the gap with natural intelligence. 

At CEA-Leti, we are developing neuromorphic solutions 
with neurons and synapses, integrating very compact and 
low cost resistive RAM (OxRAM) in the back-end of line 
(Fig 15). 

 

Fig 15: Non-volatile memory in the back-end of line. 

The first generation of this type of solution, the SPIRIT 
neuromorphic circuit (Fig 16), was designed to recognize 
hand-written characters with an energy efficiency of 3.6pJ 
per synaptic event [20]. The second version of the circuit, 
manufactured using 28nm FDSOI technology, is a real scale- 
up with 130,000 neurons and 75 million synapses using 
OxRAM non-volatile memories. Its power consumption is 
expected to be less than 1pJ per synaptic event and should 
facilitate the processing of LiDAR signals. 

Replacing SRAM, Embedded Flash and stand-alone 
memories with non-volatile resistive memories comes with 
many benefits, including an increase in memory density, 
lower power consumption, improved latency and the 
possibility of deploying in-memory-computing (IMC) 
building blocks, including neuromorphic architectures. By 
assembling resistive memories in a ‘crossbar’ arrangement, 
IMC can be naturally implemented by simply relying on 

x800 more! 

Sixth research track: implement dedicated ASIC + AI 
solutions to move less data and lower power 
consumption, and develop in-memory computing and 
near memory processing solutions with the adequate 
software and EDA toolbox. 
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Kirchhoff’s current law. Additionally, the ability of resistive 
memories to change their resistive state makes them 
promising candidates to emulate synaptic plasticity and 
enable on-chip learning. However, there is no guarantee that 
resistive memories will function in state-of-the-art neural 

Performance 
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network topologies due to the memories’ multiple non-ideal 
properties, such as device variability. Only through strong 
interaction between hardware and software developments 
can we expect to overcome this difficulty. For example, it 
has been demonstrated that non-ideal traits of resistive 
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memories can provide compact ways to implement stochastic 
synapses in Bayesian Neural Networks. Intrinsic device 
variability is exploited to implement Markov Chain Monte 
Carlo (MCMC) sampling, thus enabling low power in situ 
learning (few µJoules) [21]. 

 

 

Fig 16: SPIRIT chip with embedded OxRAM (IEDM 2019) and 
LARGO chip. 
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Fig 18: FDSOI boosters and roadmap towards a 7nm node. 

 

At the 28nm node and below, conventional embedded 
Flash memories are facing strong challenges in terms of cost, 
speed and reliability. For advanced technology nodes, Back 
End Of Line resistive memories are more appealing. They 
are currently implemented as a 1T1R structure, i.e., with one 
MOS transistor (1T) used for accessing one resistor (1R) 
[25]. The access transistor limits the memory cell footprint. 
Promising results have recently demonstrated an increase in 
the memory density by stacking multiple 1T1R thanks to 
monolithic 3D technology [26], or replacing the MOS 
transistor by a stacked nanowire transistor [27], or by a 
backend selector [28]. 

 

 
 

 

 

 
IX. MORE MOORE TECHNOLOGIES CONTINUE TO BRING 

COMPETITIVE ADVANTAGES 

Scaling linked to Moore's law continues. The 5nm 
FinFET technology has been commercialized and Gate All 
Around (GAA) nanowire and nanosheet FETs are currently 
being developed for nodes 5/3/2 (Fig 17) [22]. 

 

 

Fig 17: Stacked nanowire and nanosheet technology developed 
at CEA-Leti. 

FDSOI is still the best-in-class solution for ultra-low 
power thanks to its dynamically controllable threshold 
voltage which can adapt static and dynamic dissipation 
depending on the instant task requirement. The technology 
can be scaled down to at least a 10 nm channel length, by 
thinning down the Tbox to improve electrostatic control 
[23][24]. Nevertheless, some boosters are required (Fig 18) 
in order to obtain, at the same time, a sufficiently big drive 
current. All the individual boosters (Fig 18) have been 
validated. They are deployable and have been included in 
industrial roadmaps. 

 
X. QUANTUM COMPUTING OFFERS NEW OPPORTUNITIES 

The promise of Quantum Computing, near instant 
computation made possible by replacing the deterministic 
and serial nature of classical computing by a probabilistic 
and simultaneous operating mode, will provide access to 
unchartered territories. This new computing power, based on 
superposition, entanglement and interference of qubits, 
should be well suited to solve complex algorithms such as 
those required in transport and logistics for traffic 
optimization and in healthcare, via molecular simulations, for 
new drug discoveries. Quantum computing will also impact 
strategic domains like energy, materials, finance and defense. 
These potentialities come with the need for broad research 
actions in all the domains we mentioned previously (devices, 
low temperature circuits [29][30], architectures, software and 
algorithms) because the quantum computing paradigm is 
intrinsically different from the digital one, and has its 
specific challenges. 

Among these challenges, there is the choice of the 
technological option for the physical system that will 
implement the qubits required for quantum computing, and it 
is too early in the process to declare a "winner". Indeed, 
different approaches might be needed for different 
applications, but there is good reason to think that the 
silicon-based approach, in which semiconductor devices are 
used to create arrays of electrostatic-potential wells to isolate 
spin elements, is a leading candidate to meet critical criteria 
[31][32]. While the quality of the qubits is still an obstacle, 
the controllability, repeatability, scalability and 
manufacturability of very large arrays by well-proven 
processes and materials coming from the semiconductor 
industry is unparalleled by any other system. 

Seventh research track: use non-volatile memories to 
facilitate the implementation of neuromorphic chips that 
can deploy on-chip learning algorithms and a smart in- 
memory computing approach. 

Eighth research track: explore silicon-based devices and 

3D structures to pursue equivalent scaling, down to the 

ultimate physical limits. 



14 
Authorized licensed use limited to: CEA. Downloaded on April 19,2024 at 16:12:00 UTC from IEEE Xplore. Restrictions apply. 

8  

Many of the basic challenges of quantum computing are 
intertwined. The need for cryogenic operating temperatures, 
for example, affects all approaches to quantum technology. 
All approaches will also require electronics for qubit control, 
read-out, and interfacing with classical computing systems. 
This highlights the broad importance of exploring and 
developing low-temperature CMOS technologies, especially 
advanced technologies such as FD-SOI, which has the 
unique property of being able to dynamically control the 
threshold voltage (Vth) of devices at different temperatures. 
Finally, the overall system design for this type of novel low- 
temperature system will require careful and clever 
partitioning of different functions and different elements 
(such as analog and digital hardware) at different 
temperature stages. For this reason, CEA-Leti’s quantum 
computing development teams include experienced analog 
and RF designers working closely with hardware architects 
and low-level-software engineers to develop a clear pathway 
to a fully operational integrated system. 

 

 

 

 

 

 
 

XI. CONCLUSION 

There are many opportunities to lower the power 
consumption of computing units. By working simultaneously 
at five levels of the technology (process steps, circuit, 
architecture, software and algorithms), we should be able to 
improve power efficiency by a factor of 100 to 1000 in the 
next 10 years. However, to achieve this goal, we must exploit 
all the technological breakthroughs such as resistive 
memories, 3D integration, new computing paradigms (in- 
memory-computing, neuromorphic and quantum), process 
data as close as possible to the data source, and adopt a co- 
design approach throughout the whole microelectronics 
community. In parallel and immediately, we must take into 
account the constraints for sustainable electronics and change 
our mindsets quite radically by carrying out product life- 
cycle assessments in the earliest stages of all new 
technological developments. 
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