
HAL Id: cea-03759800
https://cea.hal.science/cea-03759800

Submitted on 24 Aug 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Exploration and Generation of Efficient FPGA-based
Deep Neural Network Accelerators

Nermine Ali, Jean-Marc Philippe, Benoit Tain, Philippe Coussy

To cite this version:
Nermine Ali, Jean-Marc Philippe, Benoit Tain, Philippe Coussy. Exploration and Generation of
Efficient FPGA-based Deep Neural Network Accelerators. IEEE Workshop on Signal Processing
Systems (SiPS), 2021, pp.123-128. �10.1109/SiPS52927.2021.00030�. �cea-03759800�

https://cea.hal.science/cea-03759800
https://hal.archives-ouvertes.fr

Exploration and Generation of Efficient
FPGA-based Deep Neural Network Accelerators

Nermine Ali, Jean-Marc Philippe, Benoit Tain
Université Paris-Saclay, CEA, List

F-91120, Palaiseau, France
firstname.lastname@cea.fr

Philippe Coussy
University of South Brittany

Lorient, France
philippe.coussy@univ-ubs.fr

Abstract—Convolutional Neural Networks (CNNs) have
emerged as an answer to next-generation applications such as
complex image recognition and object detection. Embedding
such compute-intensive and memory-hungry algorithms on edge
systems will lead to smarter high-value applications. However,
the algorithmic innovations in the CNN field leave the hardware
accelerators one step behind. Reconfigurable hardware (e.g.
FPGAs) allows designing custom accelerators adapted to new
algorithms. Furthermore, new design approaches such as high-
level synthesis (HLS) enable to generate RTL code based on high-
level function descriptions. This paper presents a high-level CNN
accelerator generation framework for FPGAs. A first phase of
the framework characterizes CNN descriptions using hardware-
aware metrics. These metrics then drive a hardware generation
phase which builds the proper C source code implementation
for each layer of the network. Finally, an HLS tool outputs the
synthesizable RTL code of the accelerator. This approach aims
at reducing the gap between the evolving applications based on
artificial intelligence and hardware accelerators, thus reducing
time-to-market of new systems.

Index Terms—Convolutional Neural Networks, Design Space
Exploration, High Level Synthesis, Embedded Systems, FPGA

I. INTRODUCTION

Deep learning algorithms, such as Convolutional Neural
Networks (CNNs) [1], are promising tools to tackle the chal-
lenges of next-generation applications such as complex image
recognitions, classifications and object detections. These Deep
Neural Networks (DNNs) are composed of formal neurons
organized in several computational layers. The first layers
are mainly based on convolutional filters that act as feature
extractors and the last ones are based on fully connected
layers that perform a classification process thanks to the
extracted features. The parameters of the different layers (filter
coefficients, weights, etc.) are learned during a preliminary
supervised training phase on specific data.

The different layers perform mathematical operations such
as convolution filters, pooling, weighted sum and activation
functions (Fig. 1). Convolution layers extract features by
applying weighted filters on input feature maps. Non-linear
mathematical functions (such as the rectified linear unit or
ReLU), called activation functions, define the way a neuron
is activated (i.e. the input value has an action on the predic-
tion) or not. To decrease the number of parameters, pooling
operations are inserted to reduce the size of the feature map

Input

1x32x32

Conv1 Conv2Pool1 FC1

6x14x146x28x28 300 1016x7x7

FC2

Fig. 1. Typical CNN structure (from [1]).

by maintaining robust features only. The final layers, usually
based on fully connected (FC) layers, classify the input data.

These algorithms compete on popular image recognition
challenges such as the ImageNet Large Scale Visual Recogni-
tion Challenge [2]. New topologies and layers are continuously
published to either improve the top-1 and top-5 scores or
to reduce the computation and memory requirements. Opti-
mization techniques such as pruning or quantization are also
proposed to augment DNN sparsity or reduce the precision
of data and parameters to target edge systems. Hardware
accelerators are designed to support these new techniques,
with tradeoffs between efficiency and flexibility. Thus, the gap
between the algorithmic optimizations and designed hardware
architectures is still there. In [3], the idea of characterizing
the algorithm to help hardware designers with relevant target-
agnostic but hardware-aware metrics was introduced. These
metrics derive analysis and hints on mapping strategies and/or
configurations of an accelerator. Beyond the configuration of
a DNN accelerator template, one can also use these metrics
to optimize the generation of an accelerator using new design
approaches such as high-level synthesis (HLS).

This paper proposes a two-phase approach for generating
efficient FPGA-based DNN accelerators. The first phase char-
acterizes the DNN behavior and extracts its relevant hardware-
related features while the second phase is a hardware accelera-
tor generator module based on HLS. The idea is to reduce the
gap between software and hardware by lowering algorithmic
descriptions using hardware-aware metrics and abstracting
hardware based on high-level hardware descriptions. The paper
is organized as follows. Section II discusses related work.
Section III presents the overall hardware accelerator generation
framework including the characterization part. Section IV
presents the evaluation of the framework on a full CNN while
section V concludes the paper and introduces future works.

II. RELATED WORK

A wide range of hardware accelerators for deep learning
applications has been developed with the objective to reach
both high performance and energy efficiency. Different ap-
proaches are proposed with flexibility as a tradeoff, from
deeply optimized fixed structures for feature extraction [4]
to programmable DSP-like architectures, either homogeneous
[5] or heterogeneous [6]. Some proposals also exploit features
resulting from either the DNN algorithm itself (sparsity, etc.)
or specific hardware-aware optimization techniques to improve
the energy efficiency of the overall system. One can cite
pruning [7] or compression techniques [8].

Reconfigurable architectures such as FPGAs are also in-
teresting targets for deep learning accelerators because their
internal structure is suited to both the dataflow nature of DNN
algorithms and their intrinsic spatial parallelism. Fine-grain
reconfigurability property of FPGAs enables to change both
the design of the accelerator depending on the topology of
the DNN and to size the computing resources and memory
to the needed precision. Both FPGA vendors and academic
researchers propose different approaches and tools to perform
deep learning. [9] introduces a pipeline architecture with tiling
techniques to improve computation and [10] investigates the
use of FPGAs to design an accelerator for sparse CNNs.

To tackle the challenges related to the quickly chang-
ing landscape of deep learning algorithms, it is therefore
paramount to work on new design methodologies for DNN
accelerators, using hardware abstraction and/or design space
exploration. Some works propose direct hardware generation
frameworks based on a network description or configuration.
They generate a synthesizable high-level code using commer-
cial HLS tools such as Catapult or Vivado-HLS. For example,
the web-based framework presented in [11], targeting FPGAs,
provides an empirical estimation of the hardware resources
utilization based on a network configuration. The work in
[12] proposes a framework that generates an accelerator for
a custom CNN configuration. FP-DNN, based on a model
description, instantiates RTL-HLS hybrid templates to gen-
erate CNN accelerators using HLS-tools [13]. FINN targets
binarized NN and generates an optimized C++ description of
a streaming architecture based on a frame-per-second target
and a trained BNN model [14]. Other approaches use design
space exploration of existing architectures [15] or architectural
templates [16]. Unfortunately, these approaches do not fully
leverage the potentials of HLS in designing a tailored hardware
architecture based on high-level algorithmic descriptions.

This work offers another path between straightforward
architecture generation and time-consuming exploration by
proposing to use hardware-aware application characterization
as a first step to provide hints to the high-level code generation
phase. The goal is to provide an automatic HLS-based tool-
independent hardware generation framework that can output
an optimized high-level representation of an accelerator based
on a characterization of the input neural network. Next section
explains this approach and the proposed flow.

Characterization

Metrics computation

Augmented Specifications

Metrics Analysis

Neural Networks Topologies

Hardware Generation

HLS Tool (Vivado-HLS)

RTL Generation

network.c

layers.c

Directives.tcl

Tool -

Specific

Pragmas

High-Level Code Generation

Layers.lib

Generation

Optimized RTL

Fig. 2. Overview of the proposed exploration and accelerator generation
framework flow.

III. OVERVIEW OF THE PROPOSED DNN EXPLORATION
AND ACCELERATOR GENERATION FRAMEWORK

Previous work [3] introduced a characterization framework
that aims at capturing the behavior of DNN algorithms to
help configuring an accelerator architecture and/or choosing
between mapping strategies. The present work proposes to use
this characterization phase to quickly generate an optimized
RTL code from high-level function descriptions by exploiting
the gathered metrics. With the hardware generation being
driven by the extracted metrics, finding a viable link between
the application specifications and the hardware implementation
is a very challenging problem.

A. Presentation of the approach

Fig. 2 presents the high-level view of the proposed ap-
proach. The flow is composed of two main modules: the
characterization framework introduced in [3] followed by a
hardware accelerator generation module based on HLS. The
input of the flow is a description file of the CNN (i.e. its
topology and the types and hyperparameters of the different
layers). This description file can also embed the parameters
of the CNN (filter coefficients, weights), depending on the
analysis to be performed. Typically, description files from
classical deep learning frameworks such as TensorflowLite or
de facto standards such as ONNX can be used.

The first step is the network characterization phase which
extracts relevant metrics from neural network descriptions.
Then, the tool analyzes these metrics and combines them
to derive assumptions on implementation strategies and con-
figuration of the targeted hardware architecture to execute
the applications (e.g. mapping algorithms to optimize data

NN Description file & Parameters

Extract layers

Configurations

Metrics Computation

Analyze

Parameters

MACs Volume

Dataflows

Pixel Reuse
Percentage

Architectural Configurations (memory &
computing needs)

Memory
Requirements

In & Out
Dimensions

Metrics Analysis

Mapping
Strategies

Hints for Optimized Synthesizable src

code

Fig. 3. Overview of the characterization phase.

movement). The second step is the generation phase. It ex-
ploits the extracted metrics and the analysis to generate an
optimized HLS-ready C code which will be transformed into
an optimized RTL code after being fed to an HLS tool. More
details on these phases are given in the following subsections.

B. Characterization and analysis phase

The characterization phase is depicted in Fig. 3. The tool
extracts the configurations of the layers and can optionally
analyze the CNN parameters. It then computes relevant metrics
that characterize the CNN on a layer-by-layer basis, such as the
memory requirements, the dimensions of the feature maps, the
percentage of pixel reuse or the volume of MAC operations.
Other metrics related to the parameters can be computed to
derive the sparsity of the DNN, the distribution of the weights,
their precision, etc. This phase also generates charts and graphs
to provide the user with synthetic data.

These measurements are then passed to an analysis module
to derive conclusions or at least hints related to interesting
options to include in the mapping strategies or techniques
to improve the architecture. For example, the analysis of the
sparsity of the DNN can lead to use compression techniques
to either reduce memory requirements or to speed up the
computations. The pixel reuse percentage helps to choose
the right dataflow to optimize energy efficiency and memory
hierarchy, and the dimensions of the input and output feature
maps allow to apply optimized tiling strategies.

In this work, the results of this phase are used to both drive
the code generation for HLS-based implementations and to
choose the right pragmas for an HLS tool. For example, the
reuse results combined with the widths and depths of the input
feature maps are used to determine which loop levels to tile
and the tiling parameters of the convolution implementation.

C. Accelerator generation phase

This phase generates an optimized C code of the network
using a library of layers. The computed metrics obtained in the
first phase drive the generation of each layer by determining
whether or not to tile certain loops, in a loop nest, and the
appropriate tiling parameters to employ. Loops order in a layer

can also be determined. In addition, these metrics also dictate
tool-specific pragmas to optimize the overall performance
of the resulting CNN accelerator and to have a tradeoff
between latency and resources utilization. Finally, an HLS tool
generates the optimized RTL representation of the CNN, ready
for synthesis, from the C source files.

IV. FRAMEWORK EVALUATION

This section presents the evaluation of the presented ap-
proach to obtain an optimized accelerator for a given DNN.
The generic flow from Fig. 2 was instantiated using N2D2
DNN description files and Vivado-HLS, an HLS tool tar-
geting Xilinx FPGAs. N2D2 (Neural Network Design and
Deployment) [17] is an open source framework for building
DNN-based applications, from learning to code generation
for several targets. It also includes specific features targeting
embedded systems such as precision reduction techniques.

A small CNN, presented in Fig. 4, was implemented using
the N2D2 framework for evaluation purposes. The six layers
are: 3x3 and 5x5 2D-convolution, 3x3 and 5x5 pooling and
2 fully-connected layers. This evaluation CNN was trained
with N2D2 on the Caltech-101 dataset [18] to classify four
categories of images (airplanes, car sides, faces, motorbikes).
The obtained accuracy is 95.31% on the validation database.
8 -bit integer format was used for both pixels and parameters
during the training phase. Thus, int8 data format was used in
the C-HLS source code for the hardware generation.

A. Characterization of the evaluation CNN

The characterization phase delivers a per-layer analysis of
the computational complexity and the memory requirements,
as shown in Table I. Data-related metrics are also computed:
the maximum data reuse for each convolutional layer and a
width/depth comparison of input feature maps for all layers.
Fig. 5 shows these results and illustrates the decrease in the
frequency of pixel usage along the CNN due to the reduction
of the dimensions of the feature maps in deeper layers. It also
shows the evolutions of the widths and depths of the input
feature maps throughout the CNN using the number of pixels
as a measurement unit.

TABLE I
COMPUTATIONAL COMPLEXITY AND MEMORY REQUIREMENTS FOR

DIFFERENT LAYERS OF THE EVALUATION CNN.

Layers MACs | Ops for
pool & softmax

Parameters (B) Data memory (B)

Input data 0 0 2304

conv1 3×3 41472 18 4608

pool1 3×3 4608 0 512

conv1 5×5 14400 100 288

pool1 5×5 288 0 32

fc1 2048 2048 64

fc2 256 256 4

softmax 4 0 4

Total 58176 2422 5512

Input

1x48x48

Conv1

3x3
Conv1

5x5

Pool1

3x3

Pool1

5x5

FC1

64

FC2

4

2x16x16 2x12x12 2x4x42x48x48 64 4

Fig. 4. Architecture of the evaluation CNN.

0

10

20

30

40

50

60

70

conv1_3x3 pool1_3x3 conv1_5x5 pool1_5x5 fc1 fc2

0

10

20

30

40

50

60

70

80

90

100

N
B

 P
ix

e
ls

Layers

M
a
x
 R

e
u

s
e
 (

%
)

in
 a

 f
e
a

tu
re

 m
a
p

Reuse Input Width Input Depth

Fig. 5. Widths and depths comparison of the input feature maps in each layer
of the evaluation CNN together with pixel reuse percentage.

B. Hardware accelerator generation for the evaluation CNN

The computed metrics are leveraged to drive the generation
of an optimized accelerator for the evaluation CNN. Each layer
is implemented separately to test different configurations based
on the position of the layer in the CNN. All implementations
were performed at a frequency of 100MHz using the Xilinx
Zynq7000 xc7z030 FPGA as a target.

1) Generation of convolutional layers: A commonly used
approach to implement a convolutional layer is presented in
Listing 1. Based on the generated metrics, this implementation
can be enhanced by applying two different transformations:
loop tiling and loop reordering.

i fmap [N] [(R−1)*S+K] [(C−1)*S+K] / / i n p u t maps
out fmap [M] [R] [C] / / o u t p u t maps
w e i g h t s [M] [N] [K] [K]
l 0 : f o r (r =0 ; r<R ; r ++) / / o u t p u t X

l 1 : f o r (c =0; c<C ; c ++) / / o u t p u t Y
l 2 : f o r (m=0; m<M; m++) / / nb o u t p u t s

l 3 : f o r (n =0; n<N; n ++) / / nb c h a n n e l s
l 4 : f o r (kx =0; kx<Kx ; kx ++) / / k e r n e l X

l 5 : f o r (ky =0; ky<Ky ; ky ++) / / k e r n e l Y
wx= w e i g h t s [m] [n] [kx] [ky]
i x = i fmap [n] [S* r +kx] [S* c+ky]
out fmap [m] [r] [c]+=wx* i x

Listing 1. Pseudo-code of a convolutional layer.

2) Loop tiling and ordering: Loop tiling promotes data
locality and improves performance by reducing unnecessary
data accesses and transfers if the tile size is correctly set. Loop
tiling introduces new loops as shown in Listing 2 with different
tiling parameters T . However, determining which loop level to
tile and its tiling parameter is challenging since it is based on
different input and output dimensions. One can use the results

of the characterization process to generate an optimized source
code that best fits each layer. The related metrics are the reuse
percentage and the width/depth evolution comparison. When
combined, they can highlight the loop levels to be tiled. In
addition, they set thresholds for the tiling parameters in order
to limit the design space as in (1). The minimum threshold
values for the height C and the width R are set to the kernel
height Ky and width Kx respectively.

Kx ≤ Tr ≤ R

Ky ≤ Tc ≤ C

tn ≤ Tn ≤ N

tm ≤ Tm ≤ M

(1)

For example, the first layer, conv1 3×3 , of the CNN
in Fig. 4 has the biggest input and output feature maps.
According to Fig. 5 it also has the highest reuse percentage
(92%), the highest width (48) and the lowest number of
channels (1). Analyzing these metrics, two actions could be
taken: choosing the loop level to tile and determining the tiling
parameter. Here, loops l0 and l1 are good candidates to tile
to improve data locality and reuse of the input feature map
by allowing a portion of the image to be stored on-chip. The
resulting code is presented in Listing 2.

i fmap [N] [(R−1)*S+K] [(C−1)*S+K] / / i n p u t maps
out fmap [M] [R] [C] / / o u t p u t maps
w e i g h t s [M] [N] [K] [K]
l 0 : f o r (r =0 ; r<R ; r +=Tr) / / o u t p u t X

l 1 : f o r (c =0; c<C ; c+=Tc) / / o u t p u t Y
l 2 : f o r (m=0; m<M; m++) / / nb o u t p u t s

l 3 : f o r (n =0; n<N; n ++) / / nb c h a n n e l s
l 0 . 1 : f o r (t r = r ; r<min (R , r +Tr) ; t r ++)

l 1 . 1 f o r (t c =c ; c<min (C , c+Tc) ; t c ++)
l 4 : f o r (kx =0; kx<Kx ; kx ++) / / k e r n e l X

l 5 : f o r (ky =0; ky<Ky ; ky ++) / / k e r n e l Y
wx= w e i g h t s [m] [n] [kx] [ky]
i x = i fmap [n] [S* t r +kx] [S* t c +ky]
out fmap [m] [t r] [t c]+=wx* i x

Listing 2. Pseudo-code of a tiled convolutional layer.

The same approach is applied to layers pool1 3×3 and
conv1 5×5 . Loop levels l0 and l1 are the ones to be tiled
since the width is bigger than the depth is these layers.
Different tiling parameters were tested to show the impact
on performance and area. Each of these layers is implemented
separately (place and route), omitting infrastructure like mem-
ory controllers and crossbars. Fig. 6 proves that raising the
tiling factor improves the latency while having low impact on
resource usage. Loop levels l2 and l3 are not tiled since the
depth is very small. The reuse percentage in layer conv1 5×5

117

118

119

120

121

122

123

124

125

0

0,05

0,1

0,15

0,2

0,25

0,3

L
a

te
n

c
y

 (
c

y
c

le
s

)

x
1

0
0

0

R
e

s
o

u
rc

e
 U

s
a

g
e

 (
%

)

BRAM_18K DSP48E FF LUT Latency (cycles)

Fig. 6. Results of conv1 3×3 implemented using different tiling values.

is 25% and 0% in the remaining layers. This explains the low
impact of tiling in these layers as it can be seen in Table II
for conv1 5×5 and Table III for pool1 5×5 .

Loop ordering is another data-related optimization tech-
nique which allows a certain amount of data to remain
available on-chip for a period of time. Determining how to
reorder the loops to improve latency follows the same rule
as identifying which loop level to tile. The same tiled loops
could be swapped with another loops (on a higher or a lower
level) to improve performance. Choosing the order of loops
relies on the input and output dimensions of the layer as well
as the pixel-reuse. As an illustration, swapping (l0 , l1) with
l2 in layer conv1 3×3 has the same impact as using (48, 48)
as tiling parameters which are the maximum possible values
to apply. Performance and resources usage are the same. This
is also valid for the other convolutional and pooling layers.

TABLE II
RESOURCE USAGE PERCENTAGE AND LATENCY FOR conv1 5×5 WITH

DIFFERENT TILING PARAMETERS.

Tiling (Tr, Tc) BRAM DSP FF LUT Latency (cycles)
(0, 0) 0 0.25 0.114 0.181 36602

(3, 3) 0 0.25 0.132 0.239 36586

(4, 4) 0 0.25 0.119 0.242 36494

(6, 6) 0 0.25 0.127 0.256 36414

(6, 12) 0 0.25 0.118 0.223 36350

(12, 12) 0 0.25 0.109 0.191 36341

TABLE III
RESOURCE USAGE PERCENTAGE AND LATENCY FOR pool1 3×3 WITH

DIFFERENT TILING PARAMETERS.

Tiling (Tr, Tc) BRAM DSP FF LUT Latency (cycles)
(0, 0) 0 0 0.065 0.104 13858

(4, 4) 0 0 0.063 0.127 13674

(8, 8) 0 0 0.061 0.117 13470

(8, 16) 0 0 0.0.058 0.104 13390

(16, 16) 0 0 0.057 0.104 13381

0

3

6

9

12

15

18

21

24

27

30

33

36

39

42

0

0,5

1

1,5

2

2,5

3

3,5

4

4,5

5

5,5

6

6,5

L
a

te
n

c
y

 (
c

y
c

le
s

)

x
1
0
0
0

R
e

s
o

u
rc

e
 U

s
a

g
e

 (
%

)

Layers & solutions

BRAM_18K DSP48E FF LUT Latency (cycles)

Fig. 7. Results of each optimized layer of the evaluation CNN.

3) Applying pragmas: In HLS, tool-specific pragmas are
generally used to apply transformations for RTL generation.
The main performance-related optimizations to look at are
loop unrolling and pipelining. Loop unrolling creates N copies
of the target loop (where N is the unrolling factor) and thus
allows a parallel execution of N iterations of the loop. Loop
pipelining allows simultaneous execution of operations inside
a loop or a function, hence reducing the initiation interval.

Boosting the performance of each layer consists in optimiz-
ing the loop nest. Since the loop swapping discussed earlier
led to better performance than loop tiling, the pragmas will be
applied on the layers having (l0 , l1) loops swapped with l2
loop to push the performance forward. For short, let us name
this optimization LSP , for Loop Swapping and Pragmas.
Applying pragmas to drive the generation phase takes into
consideration the topology of the CNN. For example, the
framework unrolls loop levels having a very small number
of iterations, typically layers having few channels and consid-
erably small kernel sizes. For this reason, kernel loops (l4 , l5)
are completely unrolled in the first four layers of the network
as well as output loops (l0). This is not applicable in fully-
connected layers where the number of outputs in fc1 (input
of fc2) is very high (equal to 64). This would results in a
significantly large area due to the massive use of DSPs. In
this case, the innermost-loops are pipelined to maintain an
acceptable performance and area. The same pragmas were
applied on the same loop levels in the non-optimized (i.e. no
loop transformation) layers, for short NLSP , where there is
no loop swapping and only pragmas are applied. The results of
the implementations (i.e. Vivado-HLS solutions) are presented
in Fig. 7. Loop swapping/tiling showed no benefits in layers
fc1 and fc2 , for this reason only pragmas were applied.

The LSP optimization results in 0.34% less global re-
sources usage and is about 17.34% faster than NLSP opti-
mization for conv1 3×3 . This is not the case for pool1 3×3
where LSP optimizaton is faster, but consumes 0.33% more
resources. The same behaviour is observed in conv1 5×5
where LSP is 2.76% faster and uses 38.7% more resources.
Regarding pool1 5×5 , NLSP is 12% faster and consumes
50% more resources than LSP . The higher performance ob-
tained using NLSP can be explained by the small dimensions

0

15

30

45

60

75

90

105

120

135

150

165

180

195

0

1

2

3

4

5

6

7

8

9

10

11

no loop swapping loop swapping no loop swapping
+ pragmas

loop swapping +
pragmas

L
a

te
n

c
y

 (
c
y

c
le

s
)

x
1

0
0

0

R
e

s
o

u
rc

e
 U

s
a
g

e
 (

%
)

Network Implementations

LUT FF DSP BRAM Latency

Fig. 8. Results of each implementation of the evaluation CNN.

of the input/output feature maps. Data locality cannot be
leveraged due to the low data reuse ratio in these layers.

C. Full accelerator hardware generation
Using the framework, the whole structure of the accelera-

tor is then generated using the previously optimized layers.
Different implementations were performed for evaluating the
benefits of the applied strategies. The first one does not include
any optimization, neither loop swapping nor pragmas (NLS).
The second one uses loop swapping only (LS). The third one
is implemented using pragmas only (NLSP) and the last one
with both loop swapping and pragmas (LSP). Fig. 8 shows
the results of these implementations.

In Fig. 8, LS is 3% faster than NLS and uses 0.68% less
resources. Applying tool-specific optimizations for NLS and
LS leads to 69% and 72% speed-up respectively which comes
at a cost of using 76% more resources in both optimized
implementations. Comparing the last two implementations,
NLSP and LSP , there is 13% speed-up in LSP and 1.55%
more resource usage. NLSP and LSP are 69% and 73%
faster respectively compared to a standard implementation.
Higher performance always comes with an area cost, thus the
final implementation choice depends on the design goal.

V. CONCLUSION

This paper presents an FPGA-based accelerator generation
framework for CNNs. It exploits DNN algorithm specifications
and hardware-aware metrics to drive a hardware generation
phase. Using this characterization phase, the framework is
able to apply code optimizations such as loop swapping
together with their right parameters as well as to use tool-
specific pragmas to improve accelerator generation. On a small
evaluation CNN, the framework outputs an accelerator 13%
faster than using optimized pragmas only, which is already a
time-consuming optimization if done manually. Future works
will focus on generating accelerators for state-of-the-art CNNs
having large and complex topologies. Deeper layers are meant
to offer more flexibility in loop-related optimizations due to
their relatively large dimensions. The use of the same RTL
resources for multiple layers will be explored to fit large DNNs
on the FPGA target. Efforts will also be put on exploring
the space of tool-specific pragmas to automatically choose the
right ones with respect to the design goals.

REFERENCES

[1] Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning
applied to document recognition,” in Proceedings of the IEEE, 1998, pp.
2278–2324.

[2] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma,
Z. Huang, A. Karpathy, A. Khosla, M. Bernstein, A. C. Berg, and L. Fei-
Fei, “Imagenet large scale visual recognition challenge,” International
Journal of Computer Vision (IJCV), vol. 115, no. 3, pp. 211–252, 2015.

[3] N. Ali, J.-M. Philippe, B. Tain, T. Peyret, and P. Coussy, “Deep neural
networks characterization framework for efficient implementation on
embedded systems,” in 2020 IEEE Workshop on Signal Processing
Systems (SiPS), 2020, pp. 1–6.

[4] P. N. Whatmough, C. Zhou, P. Hansen, S. K. Venkataramanaiah,
J. Seo, and M. Mattina, “Fixynn: Efficient hardware for mobile
computer vision via transfer learning,” in The 2nd Conference on
Systems and Machine Learning (SysML), 2019. [Online]. Available:
https://arxiv.org/pdf/1902.11128

[5] A. Carbon, J.-M. Philippe, O. Bichler, R. Schmit, B. Tain, D. Briand,
N. Ventroux, M. Paindavoine, and O. Brousse, “PNeuro: A scal-
able energy-efficient programmable hardware accelerator for neural
networks,” in 2018 Design, Automation Test in Europe Conference
Exhibition (DATE), March 2018, pp. 1039–1044.

[6] G. Desoli et al., “14.1 a 2.9tops/w deep convolutional neural network
soc in fd-soi 28nm for intelligent embedded systems,” in 2017 IEEE
International Solid-State Circuits Conference (ISSCC), Feb 2017, pp.
238–239.

[7] S. Han, H. Mao, and W. J. Dally, “Deep compression: Compressing
deep neural networks with pruning, trained quantization and huffman
coding,” International Conference on Learning Representations (ICLR),
2016.

[8] Y.-H. Chen, T. Krishna, J. S. Emer, and V. Sze, “Eyeriss: An and energy-
efficient reconfigurable and accelerator for deep and convolutional,”
IEEE J. Solid-State Circuits, vol. VOL. 52, no. NO. 1, JANUARY 2017.

[9] C. Wang, L. Gong, Q. Yu, X. Li, Y. Xie, and X. Zhou, “Dlau: A scalable
deep learning accelerator unit on fpga,” IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems, vol. 36, no. 3, pp.
513–517, 2017.

[10] L. Lu, J. Xie, R. Huang, J. Zhang, W. Lin, and Y. Liang, “An
efficient hardware accelerator for sparse convolutional neural networks
on fpgas,” in 2019 IEEE 27th Annual International Symposium on Field-
Programmable Custom Computing Machines (FCCM), 2019, pp. 17–25.

[11] A. Solazzo, E. D. Sozzo, I. De Rose, M. D. Silvestri, G. C. Durelli, and
M. D. Santambrogio, “Hardware design automation of convolutional
neural networks,” in 2016 IEEE Computer Society Annual Symposium
on VLSI (ISVLSI), July 2016, pp. 224–229.

[12] M. Rivera-Acosta, S. Ortega-Cisneros, and J. Rivera, “Automatic tool
for fast generation of custom convolutional neural networks accelerators
for fpga,” Electronics, vol. 8, no. 6, 2019.

[13] Y. Guan, H. Liang, N. Xu, W. Wang, S. Shi, X. Chen, G. Sun, W. Zhang,
and J. Cong, “Fp-dnn: An automated framework for mapping deep
neural networks onto fpgas with rtl-hls hybrid templates,” in 2017 IEEE
25th Annual International Symposium on Field-Programmable Custom
Computing Machines (FCCM), 2017, pp. 152–159.

[14] Y. Umuroglu, N. J. Fraser, G. Gambardella, M. Blott, P. Leong, M. Jahre,
and K. Vissers, “Finn: A framework for fast, scalable binarized neural
network inference,” in Proceedings of the 2017 ACM/SIGDA Interna-
tional Symposium on Field-Programmable Gate Arrays, ser. FPGA ’17,
2017, p. 65–74.

[15] A. Erdem, C. Silvano, T. Boesch, A. Ornstein, S. Singh, and G. Desoli,
“Design space exploration for orlando ultra low-power convolutional
neural network soc,” in 2018 IEEE 29th International Conference on
Application-specific Systems, Architectures and Processors (ASAP), July
2018, pp. 1–7.

[16] R. Venkatesan et al., “Magnet: A modular accelerator generator for
neural networks,” in 2019 IEEE/ACM International Conference on
Computer-Aided Design (ICCAD), 2019, pp. 1–8.

[17] CEA List. (2021) N2D2 - Neural Network Design &
Deployment. Manual available on Github. [Online]. Available:
https://github.com/CEA-LIST/N2D2/

[18] L. Fei-Fei, R. Fergus, and P. Perona, “Learning generative visual models
from few training examples: An incremental bayesian approach tested
on 101 object categories,” in 2004 Conference on Computer Vision and
Pattern Recognition Workshop, 2004, pp. 178–178.

