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 Dependent Task-based programming model
- Application’ parallelism represented as directed acyclic 

graph (DAG)
 Node : tasks, code to execute with its associated data
 Arcs : precedence constraints

- Efficiency of the model relies on the task scheduling over 
processing units (CPU, GPU)

 Automatic overlap of asynchronous operations through 
task-switches

 Distributed task-based HPC applications
- MPI+OpenMP(tasks) applications
- Distributed task dependency graph

 Heterogenous programming

How the task-based programming model is implemented by OpenMP
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 GPU offloading through targets directive (not with tasks yet)
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 OpenMP task model
- Version 3.0 – 2008 introduced tasks programming
- Version 4.0 – 2013

 dependent tasks
 GPU offloading through targets directive (not with tasks yet)

- Version 4.5 – 2015 extended target for task programming
 depend and nowait clause

« The nowait clause specifies that the generated task may be deferred »
OpenMP-API-Specification-5.2, page 308
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Context

 OpenMP task model
- Version 3.0 – 2008 introduced tasks programming
- Version 4.0 – 2013

 dependent tasks
 GPU offloading through targets directive (not with tasks yet)

- Version 4.5 – 2015 extended target for task programming
 depend and nowait clause

Problem

 How to efficiently schedule CPU and GPU tasks over processing units?
- Automatic overlap of communication and computation with the GPU

« The nowait clause specifies that the generated task may be deferred »
OpenMP-API-Specification-5.2, page 308

4/14

Vectors addiction OpenMP (Task+Target) example
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Related works

 LLVM – Hidden Helper Thread 1

- Uses a team of kernel thread for scheduling target tasks
- Limits : lack of flexibility on scheduling policy

 Fixed team size ( number of “target nowait” parallel limited)
 Implicit kernel preemption  scheduling decision made by the kernel 

1 - Tian, S., Doerfert, J., Chapman, B.: Concurrent Execution of Deferred OpenMP Target Tasks with Hidden Helper Threads. In: Chapman, B., Moreira, J. (eds.) Languages and Compilers 
for Parallel Computing. pp. 41–56. Springer International Publishing, Cham (2022)
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- TAMPI3 and MPC - added interoperability between MPI/OpenMP runtime
 In particular we are interested in MPC

- Standard implementation of OpenMP 3.0 4

- Full support for all tasks except targets
- The MPC-OpenMP runtime adds "light context (fiber)" to tasks 5 
- Managing user-space scheduling with task-switches rather than kernel preemptions
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- Limits : lack of flexibility on scheduling policy

 Fixed team size ( number of “target nowait” parallel limited)
 Implicit kernel preemption  scheduling decision made by the kernel

 Similar scheduling problem with MPI communication in tasks
- The impact of taskyield over MPI communication 2

 Characterizes the problem: in GOMP/Clang, blocking MPI call in a task retain CPU resources
 No automatic overlap communication/calculation  need for interoperability

- TAMPI3 and MPC - added interoperability between MPI/OpenMP runtime
 In particular we are interested in MPC

- Standard implementation of OpenMP 3.0 4

- Full support for all tasks except targets
- The MPC-OpenMP runtime adds "light context (fiber)" to tasks 5 
- Managing user-space scheduling with task-switches rather than kernel preemptions

Contribution
 Addition of GPU task support with the target-nowait directives in MPC-OpenMP 
 Enhance asynchronous executions through user-space task scheduling
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 Cooperative target task design
- After asynchronous calls tasks are explicitly preempt before synchronization points without the operating system 

scheduler
- Polling functions ensure asynchronous events progression

 Fibers
- Lightweight user-space execution context
- Tasks can pause itself at any time and may resume on any threads (support of untied tasks)

 Overlapping of GPU operations with CPU computation
- Fix loss of core
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 LLVM libomptarget
- The libomptartget is built as a module easy to export
- MPC already implements the LLVM Application Binary Interface (ABI) except target ABI

 Integration of OpenMP Target in MPC
- Adding entry point in MPC-OpenMP ABI

 __kmpc_get_target_offload

- Implement new utilities OpenMP functions in MPC-OpenMP API
 omp_get_default_device and omp_is_initial_device 

- Adding in the ABI target directives as tasks with dependencies
 __kmpc_omp_target_task_alloc

 Enabling Asynchronism through Cooperativity
- In practice physical core is retain by a CUDA stream
     synchronization
- Adding fibers to MPC-OpenMP target task
- Patch LLVM libomptarget CUDA RTL

 Call a polling into MPC relying on cudaStreamQuery

Contribution

Manuel FERAT
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 2 x AMD EPYC 7H12 64-core processors (4 NUMA nodes) @2.6GHz
 4 x NVIDIA A100 GPUs 40GB

- The process run on a NUMA domain with 16 cores, 32GB of memory and one GPU

 Software environment
- LLVM 14.x

 number of threads = number HHT

- NVIDIA/PGI 22.2
- MPC-OpenMP with target support

 Patched LLVM 14.x libomptarget
 Open MPI 4.0.5

- Optimization enable

Evaluation

Manuel FERAT
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- data upload, daxpy, data download

 Results
- Median of 5 runs
- Comparison to LLVM default (8 HHT)
- Similar target operation and execution time  difference 

came from task scheduling
- LLVM 14.x

 Default setting (8 HHT) reasonable average performance 

- NVIDIA/PGI 22.2
 Low performance
 Number of threads does not impact performances

- MPC-OpenMP with target support
 Improve performances on fine-grain offloading
 Small performance variation with the number of threads

Evaluation

Manuel FERAT
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Manuel 
FERAT

LLVM Nvidia/PGI MPC

N N N



 

 

18 July 2022CEA Auteur 11/14

LULESH
- Simulation of hydrodynamic problems, describes the motion of materials subjected to forces

Evaluation

Manuel FERAT



 

 

18 July 2022CEA Auteur 11/14

LULESH
- Simulation of hydrodynamic problems, describes the motion of materials subjected to forces

 Original Parallel for application to MPI+OpenMP tasks
- Loops were transformed to tasks generating loops with dependencies
- Single-producer/multi-consumer scheme
- MPI communications finely nested within OpenMP tasks

Evaluation

Manuel FERAT



 

 

18 July 2022CEA Auteur 11/14

LULESH
- Simulation of hydrodynamic problems, describes the motion of materials subjected to forces

 Original Parallel for application to MPI+OpenMP tasks
- Loops were transformed to tasks generating loops with dependencies
- Single-producer/multi-consumer scheme
- MPI communications finely nested within OpenMP tasks

 Porting MPI + OpenMP Task version to MPI + OpenMP (Task + Target) 
- GPU tasks “super tasks” are composed of several CPU tasks
- Offload parts

 First loop of IntegrateStressForElems and CalcKinematicsForElems
 Overlap with CalcAccelerationForNodes

- Use of cudaMallocHost to allocate memory
 Pinned memory for asynchronous execution

Evaluation

Manuel FERAT



 

 

18 July 2022CEA Auteur 11/14

LULESH
- Simulation of hydrodynamic problems, describes the motion of materials subjected to forces

 Original Parallel for application to MPI+OpenMP tasks
- Loops were transformed to tasks generating loops with dependencies
- Single-producer/multi-consumer scheme
- MPI communications finely nested within OpenMP tasks

 Porting MPI + OpenMP Task version to MPI + OpenMP (Task + Target) 
- GPU tasks “super tasks” are composed of several CPU tasks
- Offload parts

 First loop of IntegrateStressForElems and CalcKinematicsForElems
 Overlap with CalcAccelerationForNodes

- Use of cudaMallocHost to allocate memory
 Pinned memory for asynchronous execution

 Problem size
- 264³ elements

 80% of the NUMA domain memory capacity
 20% of the GPU memory capacity

- 128 iterations

Evaluation
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 Fully functional Hybrid and Heterogenous task-based version
- Automatic overlapping MPI communication and GPU operation

 Weak scaling
- Median runtime of 10 runs
- Each version scale very well
- OpenMP tasks version significatively improve performances due to 

cache reuse
- Slight performance gain with GPU offloading 

Evaluation

Manuel FERAT 12/14
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 Unification of the CPU/GPU task-based programming model on a distributed machine

 Asynchronism of OpenMP Target Task is not guaranteed by the standard

 User-space cooperative target task design
- Overlapping of GPU operations with CPU computation

 Add heterogeneity support into the MPC framework
- Integration of the LLVM libomptarget in MPC
- Only NVIDIA GPUs are supported

 Future works
- Increase the computing load on GPU

 Offload more loops

- Develop more applications MPI+OpenMP (Task+Target) 
- Support GPUs from other vendors

Conclusion

Manuel FERAT
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