

DE LA RECHERCHE À L’INDUSTRIE

CEA - www.cea.fr

Enhancing MPI + OpenMP Task based Applications
for Heterogenous Architectures with GPU support
18th International Workshop on OpenMP, IWOMP 2022 Chattanooga, TN, USA, September
27–30, 2022
Manuel FERAT1 – Romain PEREIRA2,4 – Adrien ROUSSEL2,3 – Patrick CARRIBAULT2,3 – Luiz Angelo
STEFFENEL1 – Thierry GAUTIER4

 1 Laboratoire d’informatique en calcul intensif et image pour la simulation
 2 CEA, DAM, DIF, F-91297 Arpajon Cedex
 3 Laboratoire en Informatique Haute Performance pour le Calcul et la simulation, 91680 Bruyères-le-Châtel, France
 4 Project Team AVALON INRIA, LIP, ENS-Lyon, Lyon, France

https://www.cea.fr/

18 July 2022CEA Auteur 3/14

Introduction

Manuel FERAT

Task

Local dependency

Context

 Dependent Task-based programming model
- Application’ parallelism represented as directed acyclic

graph (DAG)
 Node : tasks, code to execute with its associated data
 Arcs : precedence constraints

18 July 2022CEA Auteur 3/14

Introduction

Manuel FERAT

Task

Local dependency

Context

 Dependent Task-based programming model
- Application’ parallelism represented as directed acyclic

graph (DAG)
 Node : tasks, code to execute with its associated data
 Arcs : precedence constraints

- Efficiency of the model relies on the task scheduling over
processing units (CPU, GPU)

 Automatic overlap of asynchronous operations through
task-switches

18 July 2022CEA Auteur 3/14

Introduction

Manuel FERAT

MPI Process 1

MPI Process 3MPI Process 2

MPI Process 0

Task

Local dependency

Remote dependency

Context

 Dependent Task-based programming model
- Application’ parallelism represented as directed acyclic

graph (DAG)
 Node : tasks, code to execute with its associated data
 Arcs : precedence constraints

- Efficiency of the model relies on the task scheduling over
processing units (CPU, GPU)

 Automatic overlap of asynchronous operations through
task-switches

 Distributed task-based HPC applications
- MPI+OpenMP(tasks) applications
- Distributed task dependency graph

18 July 2022CEA Auteur 3/14

Introduction

Manuel FERAT

MPI Process 1

MPI Process 3MPI Process 2

MPI Process 0

Task

Local dependency

Remote dependency

GPU Task

Context

 Dependent Task-based programming model
- Application’ parallelism represented as directed acyclic

graph (DAG)
 Node : tasks, code to execute with its associated data
 Arcs : precedence constraints

- Efficiency of the model relies on the task scheduling over
processing units (CPU, GPU)

 Automatic overlap of asynchronous operations through
task-switches

 Distributed task-based HPC applications
- MPI+OpenMP(tasks) applications
- Distributed task dependency graph

 Heterogenous programming

18 July 2022CEA Auteur 3/14

Introduction

Manuel FERAT

MPI Process 1

MPI Process 3MPI Process 2

MPI Process 0

Task

Local dependency

Remote dependency

GPU Task

Context

 Dependent Task-based programming model
- Application’ parallelism represented as directed acyclic

graph (DAG)
 Node : tasks, code to execute with its associated data
 Arcs : precedence constraints

- Efficiency of the model relies on the task scheduling over
processing units (CPU, GPU)

 Automatic overlap of asynchronous operations through
task-switches

 Distributed task-based HPC applications
- MPI+OpenMP(tasks) applications
- Distributed task dependency graph

 Heterogenous programming

How the task-based programming model is implemented by OpenMP

18 July 2022CEA Auteur 4/14

Introduction

Manuel FERAT

Context

 OpenMP task model
- Version 3.0 – 2008 introduced tasks programming

18 July 2022CEA Auteur

Introduction

Manuel FERAT

Context

 OpenMP task model
- Version 3.0 – 2008 introduced tasks programming
- Version 4.0 – 2013

 dependent tasks

4/14

18 July 2022CEA Auteur

Introduction

Manuel FERAT

Context

 OpenMP task model
- Version 3.0 – 2008 introduced tasks programming
- Version 4.0 – 2013

 dependent tasks
 GPU offloading through targets directive (not with tasks yet)

4/14

Vectors addiction OpenMP Target example

18 July 2022CEA Auteur

Introduction

Manuel FERAT

Context

 OpenMP task model
- Version 3.0 – 2008 introduced tasks programming
- Version 4.0 – 2013

 dependent tasks
 GPU offloading through targets directive (not with tasks yet)

- Version 4.5 – 2015 extended target for task programming
 depend and nowait clause

« The nowait clause specifies that the generated task may be deferred »
OpenMP-API-Specification-5.2, page 308

4/14

Vectors addiction OpenMP (Task+Target) example

18 July 2022CEA Auteur

Introduction

Manuel FERAT

Context

 OpenMP task model
- Version 3.0 – 2008 introduced tasks programming
- Version 4.0 – 2013

 dependent tasks
 GPU offloading through targets directive (not with tasks yet)

- Version 4.5 – 2015 extended target for task programming
 depend and nowait clause

Problem

 How to efficiently schedule CPU and GPU tasks over processing units?
- Automatic overlap of communication and computation with the GPU

« The nowait clause specifies that the generated task may be deferred »
OpenMP-API-Specification-5.2, page 308

4/14

Vectors addiction OpenMP (Task+Target) example

18 July 2022CEA Auteur 5/14

Introduction

Manuel FERAT

Related works

 LLVM – Hidden Helper Thread 1

- Uses a team of kernel thread for scheduling target tasks
- Limits : lack of flexibility on scheduling policy

 Fixed team size ( number of “target nowait” parallel limited)
 Implicit kernel preemption  scheduling decision made by the kernel

1 - Tian, S., Doerfert, J., Chapman, B.: Concurrent Execution of Deferred OpenMP Target Tasks with Hidden Helper Threads. In: Chapman, B., Moreira, J. (eds.) Languages and Compilers
for Parallel Computing. pp. 41–56. Springer International Publishing, Cham (2022)

18 July 2022CEA Auteur 5/14

Introduction

Manuel FERAT

Related works

 LLVM – Hidden Helper Thread 1

- Uses a team of kernel thread for scheduling target tasks
- Limits : lack of flexibility on scheduling policy

 Fixed team size ( number of “target nowait” parallel limited)
 Implicit kernel preemption  scheduling decision made by the kernel

 Similar scheduling problem with MPI communication in tasks
- The impact of taskyield over MPI communication 2

 Characterizes the problem: in GOMP/Clang, blocking MPI call in a task retain CPU resources
 No automatic overlap communication/calculation  need for interoperability

2 - Schuchart, J., Tsugane, K., Gracia, J., Sato, M.: The Impact of Taskyield on the Design of Tasks Communicating Through MPI. In: de Supinski, B.R., Valero-Lara, P., Martorell, X., Mateo
Bellido, S., Labarta, J. (eds.) Evolving OpenMP for Evolving Architectures. pp. 3–17. Springer International Publishing, Cham (2018)

18 July 2022CEA Auteur 5/14

Introduction

Manuel FERAT

Related works

 LLVM – Hidden Helper Thread 1

- Uses a team of kernel thread for scheduling target tasks
- Limits : lack of flexibility on scheduling policy

 Fixed team size ( number of “target nowait” parallel limited)
 Implicit kernel preemption  scheduling decision made by the kernel

 Similar scheduling problem with MPI communication in tasks
- The impact of taskyield over MPI communication 2

 Characterizes the problem: in GOMP/Clang, blocking MPI call in a task retain CPU resources
 No automatic overlap communication/calculation  need for interoperability

- TAMPI3 and MPC - added interoperability between MPI/OpenMP runtime

3 - Sala, K., Teruel, X., Pérez, J., Peña, A., Beltran, V., Labarta, J.: Integrating Blocking and Non-Blocking MPI Primitives with Task-Based Programming Models. Parallel Computing 85,
153–166 (07 2019). https://doi.org/10.1016/j.parco.2018.12.008

18 July 2022CEA Auteur 5/14

Introduction

Manuel FERAT

Related works

 LLVM – Hidden Helper Thread 1

- Uses a team of kernel thread for scheduling target tasks
- Limits : lack of flexibility on scheduling policy

 Fixed team size ( number of “target nowait” parallel limited)
 Implicit kernel preemption  scheduling decision made by the kernel

 Similar scheduling problem with MPI communication in tasks
- The impact of taskyield over MPI communication 2

 Characterizes the problem: in GOMP/Clang, blocking MPI call in a task retain CPU resources
 No automatic overlap communication/calculation  need for interoperability

- TAMPI3 and MPC - added interoperability between MPI/OpenMP runtime
 In particular we are interested in MPC

- Standard implementation of OpenMP 3.0 4

- Full support for all tasks except targets
- The MPC-OpenMP runtime adds "light context (fiber)" to tasks 5
- Managing user-space scheduling with task-switches rather than kernel preemptions

4 - Clet-Ortega, J., Carribault, P., Pérache, M.: Evaluation of OpenMP task scheduling algorithms for large NUMA architectures, Proc. Eur. Conf. Parallel Process., pp. 596-607, 2014

5 - Pereira, R., Roussel, A., Carribault, P., Gautier, T.: Communication-Aware Task Scheduling Strategy in Hybrid MPI+OpenMP Applications. In: McIntosh-Smith,S., de Supinski, B.R.,
Klinkenberg, J. (eds.) OpenMP: Enabling Massive Node-Level Parallelism. pp. 197–210. Springer International Publishing, Cham (2021)

18 July 2022CEA Auteur 5/14

Introduction

Manuel FERAT

Related works

 LLVM – Hidden Helper Thread 1

- Uses a team of kernel thread for scheduling target tasks
- Limits : lack of flexibility on scheduling policy

 Fixed team size ( number of “target nowait” parallel limited)
 Implicit kernel preemption  scheduling decision made by the kernel

 Similar scheduling problem with MPI communication in tasks
- The impact of taskyield over MPI communication 2

 Characterizes the problem: in GOMP/Clang, blocking MPI call in a task retain CPU resources
 No automatic overlap communication/calculation  need for interoperability

- TAMPI3 and MPC - added interoperability between MPI/OpenMP runtime
 In particular we are interested in MPC

- Standard implementation of OpenMP 3.0 4

- Full support for all tasks except targets
- The MPC-OpenMP runtime adds "light context (fiber)" to tasks 5
- Managing user-space scheduling with task-switches rather than kernel preemptions

Contribution
 Addition of GPU task support with the target-nowait directives in MPC-OpenMP
 Enhance asynchronous executions through user-space task scheduling

18 July 2022CEA Auteur 6/14

Contents

Manuel FERAT

 Introduction
- Context
- Problem
- Related works
- Motivation

 Contribution
- Cooperative target tasks design
- Heterogeneity support in MPC

 Evaluation
- State of art comparison
- LULESH MPI+OpenMP(tasks+target)

 Conclusion

18 July 2022CEA Auteur 7/14

Target with asynchronous tasks

 Cooperative target task design
- After asynchronous calls tasks are explicitly preempt before synchronization points without the operating system

scheduler
- Polling functions ensure asynchronous events progression

Contribution

Manuel FERAT

18 July 2022CEA Auteur 7/14

Contribution

Manuel FERAT

Target with asynchronous tasks

 Cooperative target task design
- After asynchronous calls tasks are explicitly preempt before synchronization points without the operating system

scheduler
- Polling functions ensure asynchronous events progression

 Fibers
- Lightweight user-space execution context
- Tasks can pause itself at any time and may resume on any threads (support of untied tasks)

18 July 2022CEA Auteur 7/14

Contribution

Manuel FERAT

Target with asynchronous tasks

 Cooperative target task design
- After asynchronous calls tasks are explicitly preempt before synchronization points without the operating system

scheduler
- Polling functions ensure asynchronous events progression

 Fibers
- Lightweight user-space execution context
- Tasks can pause itself at any time and may resume on any threads (support of untied tasks)

 Overlapping of GPU operations with CPU computation
- Fix loss of core

18 July 2022CEA Auteur 8/14

Heterogeneity support in MPC

 LLVM libomptarget
- The libomptartget is built as a module easy to export
- MPC already implements the LLVM Application Binary Interface (ABI) except target ABI

Contribution

Manuel FERAT

18 July 2022CEA Auteur 8/14

Heterogeneity support in MPC

 LLVM libomptarget
- The libomptartget is built as a module easy to export
- MPC already implements the LLVM Application Binary Interface (ABI) except target ABI

 Integration of OpenMP Target in MPC
- Adding entry point in MPC-OpenMP ABI

 __kmpc_get_target_offload

- Implement new utilities OpenMP functions in MPC-OpenMP API
 omp_get_default_device and omp_is_initial_device

- Adding in the ABI target directives as tasks with dependencies
 __kmpc_omp_target_task_alloc

Contribution

Manuel FERAT

18 July 2022CEA Auteur 8/14

Contribution

Manuel FERAT

Heterogeneity support in MPC

 LLVM libomptarget
- The libomptartget is built as a module easy to export
- MPC already implements the LLVM Application Binary Interface (ABI) except target ABI

 Integration of OpenMP Target in MPC
- Adding entry point in MPC-OpenMP ABI

 __kmpc_get_target_offload

- Implement new utilities OpenMP functions in MPC-OpenMP API
 omp_get_default_device and omp_is_initial_device

- Adding in the ABI target directives as tasks with dependencies
 __kmpc_omp_target_task_alloc

 Enabling Asynchronism through Cooperativity
- In practice physical core is retain by a CUDA stream
 synchronization

18 July 2022CEA Auteur 8/14

Heterogeneity support in MPC

 LLVM libomptarget
- The libomptartget is built as a module easy to export
- MPC already implements the LLVM Application Binary Interface (ABI) except target ABI

 Integration of OpenMP Target in MPC
- Adding entry point in MPC-OpenMP ABI

 __kmpc_get_target_offload

- Implement new utilities OpenMP functions in MPC-OpenMP API
 omp_get_default_device and omp_is_initial_device

- Adding in the ABI target directives as tasks with dependencies
 __kmpc_omp_target_task_alloc

 Enabling Asynchronism through Cooperativity
- In practice physical core is retain by a CUDA stream
 synchronization
- Adding fibers to MPC-OpenMP target task
- Patch LLVM libomptarget CUDA RTL

 Call a polling into MPC relying on cudaStreamQuery

Contribution

Manuel FERAT

18 July 2022CEA Auteur 9/14

Execution environment

 Runtime environment
- Inti compute node hosted at CEA

 2 x AMD EPYC 7H12 64-core processors (4 NUMA nodes) @2.6GHz
 4 x NVIDIA A100 GPUs 40GB

- The process run on a NUMA domain with 16 cores, 32GB of memory and one GPU

Evaluation

Manuel FERAT

18 July 2022CEA Auteur 9/14

Execution environment

 Runtime environment
- Inti compute node hosted at CEA

 2 x AMD EPYC 7H12 64-core processors (4 NUMA nodes) @2.6GHz
 4 x NVIDIA A100 GPUs 40GB

- The process run on a NUMA domain with 16 cores, 32GB of memory and one GPU

 Software environment
- LLVM 14.x

 number of threads = number HHT

- NVIDIA/PGI 22.2
- MPC-OpenMP with target support

 Patched LLVM 14.x libomptarget
 Open MPI 4.0.5

- Optimization enable

Evaluation

Manuel FERAT

18 July 2022CEA Auteur 10/14

State-of-the-Art comparison

 Microbenchmark
- DAXPY OpenMP (tasks+target)

 Vector size T*n
- T = tasks number (64)
- n = size of a task

 T triplets of tasks
- data upload, daxpy, data download

Evaluation

Manuel FERAT

18 July 2022CEA Auteur 10/14

State-of-the-Art comparison

 Microbenchmark
- DAXPY OpenMP (tasks+target)

 Vector size T*n
- T = tasks number (64)
- n = size of a task

 T triplets of tasks
- data upload, daxpy, data download

 Results
- Median of 5 runs
- Comparison to LLVM default (8 HHT)
- Similar target operation and execution time  difference

came from task scheduling

Evaluation

OpenMP speedup compared to LLVM using 8 Hidden Helper Threads 64 tasks

Manuel
FERAT

LLVM Nvidia/PGI MPC

N N N

18 July 2022CEA Auteur 10/14

State-of-the-Art comparison

 Microbenchmark
- DAXPY OpenMP (tasks+target)

 Vector size T*n
- T = tasks number (64)
- n = size of a task

 T triplets of tasks
- data upload, daxpy, data download

 Results
- Median of 5 runs
- Comparison to LLVM default (8 HHT)
- Similar target operation and execution time  difference

came from task scheduling
- LLVM 14.x

 Default setting (8 HHT) reasonable average performance

Evaluation

Manuel FERAT

OpenMP speedup compared to LLVM using 8 Hidden Helper Threads 64 tasks

Manuel
FERAT

LLVM Nvidia/PGI MPC

N N N

18 July 2022CEA Auteur 10/14

State-of-the-Art comparison

 Microbenchmark
- DAXPY OpenMP (tasks+target)

 Vector size T*n
- T = tasks number (64)
- n = size of a task

 T triplets of tasks
- data upload, daxpy, data download

 Results
- Median of 5 runs
- Comparison to LLVM default (8 HHT)
- Similar target operation and execution time  difference

came from task scheduling
- LLVM 14.x

 Default setting (8 HHT) reasonable average performance

- NVIDIA/PGI 22.2
 Low performance
 Number of threads does not impact performances

Evaluation

Manuel FERAT

OpenMP speedup compared to LLVM using 8 Hidden Helper Threads 64 tasks

Manuel
FERAT

LLVM Nvidia/PGI MPC

N N N

18 July 2022CEA Auteur 10/14

State-of-the-Art comparison

 Microbenchmark
- DAXPY OpenMP (tasks+target)

 Vector size T*n
- T = tasks number (64)
- n = size of a task

 T triplets of tasks
- data upload, daxpy, data download

 Results
- Median of 5 runs
- Comparison to LLVM default (8 HHT)
- Similar target operation and execution time  difference

came from task scheduling
- LLVM 14.x

 Default setting (8 HHT) reasonable average performance

- NVIDIA/PGI 22.2
 Low performance
 Number of threads does not impact performances

- MPC-OpenMP with target support
 Improve performances on fine-grain offloading
 Small performance variation with the number of threads

Evaluation

Manuel FERAT

OpenMP speedup compared to LLVM using 8 Hidden Helper Threads 64 tasks

Manuel
FERAT

LLVM Nvidia/PGI MPC

N N N

18 July 2022CEA Auteur 11/14

LULESH
- Simulation of hydrodynamic problems, describes the motion of materials subjected to forces

Evaluation

Manuel FERAT

18 July 2022CEA Auteur 11/14

LULESH
- Simulation of hydrodynamic problems, describes the motion of materials subjected to forces

 Original Parallel for application to MPI+OpenMP tasks
- Loops were transformed to tasks generating loops with dependencies
- Single-producer/multi-consumer scheme
- MPI communications finely nested within OpenMP tasks

Evaluation

Manuel FERAT

18 July 2022CEA Auteur 11/14

LULESH
- Simulation of hydrodynamic problems, describes the motion of materials subjected to forces

 Original Parallel for application to MPI+OpenMP tasks
- Loops were transformed to tasks generating loops with dependencies
- Single-producer/multi-consumer scheme
- MPI communications finely nested within OpenMP tasks

 Porting MPI + OpenMP Task version to MPI + OpenMP (Task + Target)
- GPU tasks “super tasks” are composed of several CPU tasks
- Offload parts

 First loop of IntegrateStressForElems and CalcKinematicsForElems
 Overlap with CalcAccelerationForNodes

- Use of cudaMallocHost to allocate memory
 Pinned memory for asynchronous execution

Evaluation

Manuel FERAT

18 July 2022CEA Auteur 11/14

LULESH
- Simulation of hydrodynamic problems, describes the motion of materials subjected to forces

 Original Parallel for application to MPI+OpenMP tasks
- Loops were transformed to tasks generating loops with dependencies
- Single-producer/multi-consumer scheme
- MPI communications finely nested within OpenMP tasks

 Porting MPI + OpenMP Task version to MPI + OpenMP (Task + Target)
- GPU tasks “super tasks” are composed of several CPU tasks
- Offload parts

 First loop of IntegrateStressForElems and CalcKinematicsForElems
 Overlap with CalcAccelerationForNodes

- Use of cudaMallocHost to allocate memory
 Pinned memory for asynchronous execution

 Problem size
- 264³ elements

 80% of the NUMA domain memory capacity
 20% of the GPU memory capacity

- 128 iterations

Evaluation

Manuel FERAT

18 July 2022CEA Auteur

LULESH

 Fully functional Hybrid and Heterogenous task-based version
- Automatic overlapping MPI communication and GPU operation

Evaluation

Manuel FERAT 12/14

18 July 2022CEA Auteur

LULESH

 Fully functional Hybrid and Heterogenous task-based version
- Automatic overlapping MPI communication and GPU operation

 Weak scaling
- Median runtime of 10 runs
- Each version scale very well

Evaluation

Manuel FERAT 12/14

18 July 2022CEA Auteur

LULESH

 Fully functional Hybrid and Heterogenous task-based version
- Automatic overlapping MPI communication and GPU operation

 Weak scaling
- Median runtime of 10 runs
- Each version scale very well
- OpenMP tasks version significatively improve performances due to

cache reuse
- Slight performance gain with GPU offloading

Evaluation

Manuel FERAT 12/14

18 July 2022CEA Auteur 13/14

 Unification of the CPU/GPU task-based programming model on a distributed machine

Conclusion

Manuel FERAT

18 July 2022CEA Auteur 13/14

 Unification of the CPU/GPU task-based programming model on a distributed machine

 Asynchronism of OpenMP Target Task is not guaranteed by the standard

Conclusion

Manuel FERAT

18 July 2022CEA Auteur 13/14

 Unification of the CPU/GPU task-based programming model on a distributed machine

 Asynchronism of OpenMP Target Task is not guaranteed by the standard

 User-space cooperative target task design
- Overlapping of GPU operations with CPU computation

Conclusion

Manuel FERAT

18 July 2022CEA Auteur 13/14

 Unification of the CPU/GPU task-based programming model on a distributed machine

 Asynchronism of OpenMP Target Task is not guaranteed by the standard

 User-space cooperative target task design
- Overlapping of GPU operations with CPU computation

 Add heterogeneity support into the MPC framework
- Integration of the LLVM libomptarget in MPC
- Only NVIDIA GPUs are supported

Conclusion

Manuel FERAT

18 July 2022CEA Auteur 13/14

 Unification of the CPU/GPU task-based programming model on a distributed machine

 Asynchronism of OpenMP Target Task is not guaranteed by the standard

 User-space cooperative target task design
- Overlapping of GPU operations with CPU computation

 Add heterogeneity support into the MPC framework
- Integration of the LLVM libomptarget in MPC
- Only NVIDIA GPUs are supported

 Future works
- Increase the computing load on GPU

 Offload more loops

- Develop more applications MPI+OpenMP (Task+Target)
- Support GPUs from other vendors

Conclusion

Manuel FERAT

DE LA RECHERCHE À L’INDUSTRIE

CEA - www.cea.fr

Thanks for your
attention

 Enhancing MPI + OpenMP Task based Applications for Heterogenous Architectures with
 GPU support

 Laboratoire d’informatique en calcul intensif et image pour la simulation
 Commissariat à l’énergie atomique et aux énergies alternatives – www.cea.fr
 Institut national de recherche en informatique et en automatique – www.inria.fr

https://www.cea.fr/

	Diapo 1
	Introduction (4)
	Introduction (5)
	Introduction (6)
	Introduction (7)
	Introduction (8)
	Introduction (9)
	Introduction (10)
	Introduction (11)
	Introduction (12)
	Introduction (13)
	Introduction (14)
	Introduction (19)
	Introduction (20)
	Introduction (21)
	Introduction (22)
	Contents
	Contribution
	Contribution (2)
	Contribution (3)
	Contribution (4)
	Contribution (5)
	Contribution (6)
	Contribution (7)
	Evaluation
	Evaluation (2)
	Evaluation (3)
	Evaluation (4)
	Evaluation (5)
	Evaluation (6)
	Evaluation (7)
	Evaluation (8)
	Evaluation (9)
	Evaluation (10)
	Evaluation (11)
	Evaluation (12)
	Evaluation (13)
	Evaluation (14)
	Conclusion
	Conclusion (2)
	Conclusion (3)
	Conclusion (4)
	Conclusion (5)
	Diapo 44

