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Body-centered cubic metals and alloys irradiated by energetic particles form highly mobile prismatic
dislocation loops with a/2〈111〉-type Burgers vectors. We show how to simulate thermal diffusion of prismatic
loops using a discrete dislocation dynamics approach that explicitly includes the stochastic forces associated with
ambient thermal fluctuations. We find that the interplay between stochastic thermal forces and internal degrees
of freedom of loops, in particular the reorientation of the loop habit planes, strongly influences the observed loop
dynamics. The loops exhibit three fundamental types of reactions: coalescence, repulsion, and confinement by
elastic forces. The confinement reactions are highly sensitive to the internal degrees of freedom of the loops.
Depending on the orientation of the loop habit planes, the barrier to enter an elastically confined bound state is
lowered substantially, whereas the lifetime of the bound state increases by many orders of magnitude.
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I. INTRODUCTION

Metals exposed to irradiation develop a highly complex
microstructure, involving a mixture of mobile and immobile
defects of both interstitial and vacancy type. The defect and
dislocation network develops under the effect of internal
and external stresses, and temperature, generating its own
fluctuating stress field. This leads to a variety of changes
in mechanical properties, such as hardening and the loss
of ductility, having a detrimental effect on the longevity of
structural reactor components in a radiation environment.

Predicting the dynamics of evolution of microstructure
is a major challenge to computer modeling because of the
broad spectrum of activation energies characterizing defect
and dislocation networks. Defect cluster migration barriers
vary from meVs to eVs. The binding energy of elastically
confined defect structures spans a similar range of energy
scales [1], and the magnitude of elastic interaction depends on
the size of defects and their spatial distribution. Simulating the
temperature dependent dynamics of microstructure requires
the treatment of intrinsic thermally activated Brownian motion
of defects and dislocations, as well as correlated motion of
defects and dislocations mediated by elastic interactions.

Highly glissile prismatic dislocation loops are produced by
irradiation [2,3] together with sessile cavities, as evidenced by
in situ transmission electron microscopy (TEM) observations
[4,5]. The correlated motion of dislocation loops, often ob-
served experimentally, is an elementary process leading to the
formation of rafts of defects and their eventual coalescence
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[6–9]. In other words, the spatial ordering of dislocation
loops stems from their elastic interaction, whereas the loop
motion itself is a thermally activated process, fundamentally
the same as stochastic Brownian motion of individual defects
[9–14]. The subject of this paper is the simulation of stochas-
tic glide motion of prismatic a/2〈111〉 dislocation loops in
body-centered cubic (bcc) iron, with a particular emphasis
on the analysis of elementary reactions between the loops,
treated as dislocation line objects, and modeled using discrete
dislocation dynamics.

Molecular dynamics and lattice type simulations per-
formed over the past two decades investigated the stochas-
tic diffusion of prismatic loops over a range of sizes and
temperatures [10–12,15–18], elementary loop and dislocation
reactions [1,9], as well as energies of binding of loops to
other defects [19]. However, a direct atomistic simulation of
an ensemble of interacting dislocation loops still remains a
challenge because of the constraint imposed by the simulation
cell size accessible to a molecular dynamics simulation, and
the relatively short timescale of such a simulation. While
the more recent atomistic approaches involving the use of
kinetic Monte Carlo [20–23] have reached the experimentally
relevant timescale when exploring the relaxation of radiation
cascade damage in thin films, the identification of pathways of
migration and reaction between interacting dislocation loops
containing more than a few dozen interstitials remains a
largely unexplored problem.

Discrete dislocation dynamics (DDD) provides a com-
pelling alternative approach to modeling complex dislocation
microstructures, offering highly efficient computation of long-
range elastic interactions. Furthermore, dislocation dynamics
enables the treatment of dislocation reactions, simultaneously
simulating internal and collective dislocation loop dynamics,
and enabling the investigation of complex networks and junc-
tions within the same methodological framework. We note
that bringing dislocation core properties on par with atomistic
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simulations remains a challenge, and there have been recent
extensive developments addressing this issue [24–32].

The objective of this work is to include thermal stochastic
forces in DDD through the Langevin stochastic formalism,
to enable modeling the Brownian motion and diffusion of
dislocations. The stochastic dislocation dynamics [33,34] ap-
proach is formulated and applied to the treatment of diffusion
of loops and elementary reactions between interacting loops
as an essential step towards modeling thermal evolution of
complex dislocation ensembles.

Langevin dynamics has been applied earlier to the treat-
ment of collective dynamics of dislocation loops on a coarse-
grained level, where the loops were treated as pointlike objects
interacting through long-range elastic fields described in the
elastic dipole tensor approximation [1,9,35,36]. Extending
the treatment to the case where loop dynamics involves also
the relaxation of their internal degrees of freedom, such as
tilting of the loop habit plane, we find that this strongly in-
creases the lifetime of configurations where pairs of loops are
bound together by their attractive elastic fields. Furthermore,
the barriers to entering such bound states are strongly reduced,
explaining why dislocation loop rafts are able to form so easily
in many materials, as confirmed by in situ TEM observations
[1,9,37].

The paper is organized as follows. In Sec. II we de-
rive an expression for thermal stochastic forces acting on
a dislocation line. In Sec. III the diffusion coefficient of a
single prismatic loop is evaluated and examined as a func-
tion of temperature, and the DDD analysis is benchmarked
against molecular dynamics simulations. We also discuss
the fluctuation-dissipation theorem, relating the amplitude
of stochastic thermal forces to the magnitude of dissipative
drag experienced by a dislocation moving through a crystal.
Next, the concept of the loop-loop interaction potential energy
surface is introduced, and the elementary loop-loop reactions
are simulated, with particular attention devoted to the inves-
tigation of internal degrees of freedom of the loops. Finally,
in Sec. IV we evaluate the lifetime of an elastically confined
loop-loop configuration, which is a functional of the loop-loop
interaction potential energy surface.

II. SIMULATION METHOD

A. Stochastic force in dislocation dynamics

All the simulations described in this paper were performed
using the 3D nodal dislocation dynamics code NUMODIS [38].
In NUMODIS, continuous dislocation lines are discretized into
a series of nodes linked by straight dislocation segments.
The internal elastic stress is then computed according to the
nonsingular isotropic elasticity theory [39]. The Langevin
equation of motion for every point on a dislocation segment
is based on the dynamic equation of motion, taken here in the
overdamped limit [40]:

B · v = f tot + f s, (1)

where v is the velocity of the dislocation line, B is the viscous
drag tensor per dislocation line unit length depending on the
slip system and temperature, and f s is the stochastic force
per unit length. The presence of a stochastic force introduces
time-dependent thermal fluctuations in the dynamics of the

dislocation network, resulting from the coupling between
mobile dislocations and the heat bath.

The total configurational force per unit length f tot exerted
on a dislocation segment equals

f tot = f el − ∇E core. (2)

In the absence of external body and image forces, the elastic
driving force f el reduces to the well-known Peach-Koehler
(PK) force. The core energy E core is a phenomenological
correction describing the effect of nonlinear interactions in
the dislocation core region, which is not taken into account
in the linear elasticity approximation. The core energy is also
required to yield a net positive line tension for small-scale
line fluctuations [29,41], which are expected to arise from the
action of stochastic force. The core energy per unit length of a
dislocation line here is given in the line tension approximation
as [42]

E core = ξμb2

4π (1 − ν)
(1 − ν cos2 ψ (l )), (3)

where ξ is the core strength parameter, ψ is the angle between
the dislocation tangent and the Burgers vector, and l is the
coordinate of a point on a dislocation line.

Consider the intrinsic mobility of an individual prismatic
loop with perimeter L in an infinite medium in the absence
of external forces. Without loss of generality, assume that the
Burgers vector of the loop is collinear with the z direction of
the Cartesian system of coordinates. In the absence of climb
forces, the motion for a dislocation line is one dimensional:

B
∂z(l, t )

∂t
= f tot

z (l, t ) + f s(l, t ), (4)

where B is the viscous drag coefficient for the given slip sys-
tem and the stochastic force f s is assumed to be uncorrelated
in time and space:

〈 f s(l, t )〉 = 0,

〈 f s(l, t ) f s(l ′, t ′)〉 = σ 2
s δ(l − l ′)δ(t − t ′), (5)

where σs sets the scale of the stochastic force, and δ(x) is the
Dirac delta-function

δ(x) = 0, ∀x �= 0,

∫ ∞

−∞
dx δ(x) = 1. (6)

To find the amplitude of stochastic force, the effective
diffusion coefficient for the center-of-position (COP) of the
prismatic loop is matched to a 1D Einstein diffusion law [18].
The projection of the COP on the Burgers vector direction
is given by zCOP = L−1

∫ L
0 dl z(l, t ). After a rearrangement,

Eq. (4) becomes

∂zCOP

∂t
= 1

BL

∫ L

0
dl f s(l, t ). (7)

The effect of internal elastic force on the COP vanishes due
to the boundary condition z(l + L, t ) = z(l, t ). Assuming that
the initial position of the loop center is zCOP(0) = 0, the
solution to Eq. (7) at time τ is

zCOP(τ ) = 1

BL

∫ L

0
dl

∫ τ

0
dt f s(l, t ). (8)
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Since the stochastic force f s(l, t ) is defined in terms of
its correlation function, the mean square displacement of the
COP can be expressed as

〈
z2

COP(τ )
〉 =

(
1

BL

)2 ∫ L

0
dl

∫ L

0
dl ′

×
∫ τ

0
dt

∫ τ

0
dt ′〈 f s(l, t ) f s(l ′, t ′)〉. (9)

Substituting Eq. (5) into Eq. (9) yields

〈
z2

COP(τ )
〉 =

( σs

BL

)2
∫ L

0
dl

∫ L

0
dl ′

×
∫ τ

0
dt

∫ τ

0
dt ′δ(l − l ′)δ(t − t ′). (10)

Evaluating the above integral, we arrive at

〈
z2

COP(τ )
〉 =

( σs

BL

)2
Lτ ≡ 2DCOPτ. (11)

This equation is a mere corollary of the 1D Einstein
diffusion law, where DCOP is the corresponding diffusion
coefficient of the center-of-position [43]. Substituting the
fluctuation-dissipation theorem [44]

DCOP = kBT

BL
(12)

into Eq. (11), which holds under the assumption that the
dislocation loop is in thermodynamic equilibrium with the
thermostat, we find the amplitude of the stochastic force

σs =
√

2kBT B, (13)

where kB is the Boltzmann constant and T is absolute temper-
ature.

As NUMODIS is a nodal dislocation dynamics code, the total
force per unit length is converted into an effective nodal force
by integrating over the neighboring segments [40]. The same
rule is applied to convert the stochastic force per unit length
into a stochastic force acting on a node. However, care must
be taken when rescaling the force, as the randomly applied
force must remain consistent with the choice of the segment
length and the integration time step. For a straight segment of
length 
l indexed by n, the scaled stochastic force per unit
length is found using the stochastic average:

f s
n (t ) = 1


l

∫ ln+
l/2

ln−
l/2
dl f s(l, t ). (14)

Using Eq. (5), for the δ-correlated force generated by thermal
fluctuations, the nodal correlation function acquires the form

〈
f s
n (t ) f s

n′ (t ′)
〉 = σ 2

s

(
l )2

∫ ln+
l/2

ln−
l/2
dl

∫ ln′+
l/2

ln′−
l/2
dl ′

× δ(l − l ′)δ(t − t ′)

= σ 2
s


l
δn,n′δ(t − t ′). (15)

Similarly, assuming an integration time step of 
t ,
the scaled stochastic force per unit length can be finally

expressed as

f s
n =

√
2kBT B


l
t
N (0, 1), (16)

where N (0, 1) is a random number sampled from the standard
normal distribution, and the direction of the force is collinear
with the Burgers vector of the dislocation loop.

B. Simulation setup, parameters, and statistics

All the dislocation dynamics (DD) simulations were per-
formed assuming an infinite elastic medium. The coordinate
system is chosen as orthogonal with axes parallel to x =
[ 112], y = [110], and z = [111] directions. Initially, a hexag-
onal prismatic 〈111〉 dislocation loop is positioned at the ori-
gin. The loop radius is chosen as ρ = 4.5 nm, corresponding
to the loop perimeter of L = 27 nm. The hexagonal loop shape
was chosen out of convenience as this has an almost negligible
effect on its dynamics. A circular loop of equivalent size
would have the radius of 4.09 nm, representing an inclusion
containing the same amount of matter.

The three parameters included in the stochastic force (16)
require further clarification.

The viscous drag coefficient B characterizes the drag force
acting on a dislocation line. In bcc metals it is generally
assumed that B(T ) = B0 + B1T , where B0 and B1 are inde-
pendent of temperature [24,45,46]. MD simulations of glissile
prismatic loops and self-interstitial clusters in bcc metals
show that B(T ) = B0 and is independent of T over a wide
temperature range. Given that the simulations performed in
this study address prismatic dislocation loops of very small
size, it is appropriate to treat B as a temperature-independent
constant. The numerical value of B used in this work has
been evaluated from the atomistic study by Derlet et al. [18]
using the fluctuation-dissipation relation (12). The resulting
value of the drag coefficient B = 0.08 MPa ns describes the
effective mobility of edge dislocations at temperatures above
T = 200 K, but underestimates the magnitude of drag at lower
temperatures, as shown in Fig. 1. At low temperatures, the
Peierls barrier [47,48] and quantum effects [49,50] play an
important part, affecting dislocation mobility, but are not
considered in this study. The chosen value of B = 0.08 MPa ns
agrees well with previous parametrizations derived from the
analysis of dislocation-defect interactions in bcc iron [51,52].

Since the simulations were performed by splitting dislo-
cation loops into straight segments, and involved solving the
equations of motion by means of a finite difference time inte-
gration algorithm, it would be appropriate to assess the effect
of discretization length 
l and time step 
t on the computed
diffusion coefficient. Thermal diffusion of a single prismatic
loop at 300 K was simulated using three discretization lengths,

l = 5, 10, and 15 Å, and three time steps, 
t = 0.2, 0.5,
and 1.0 fs. Simulations were run over the interval of 6 ns,
with the loop configuration data recorded every 0.6 ps. Loop
diffusion coefficients were computed using the drift diffusion
correction method [18], in which the diffusion trajectory was
split into multiple uncorrelated sub-trajectories. The velocity
autocorrelation function 〈vCOP(t )vCOP(t + τ )〉 yields the cor-
relation time of τ ≈ 2 ps, in broad agreement with atomistic
estimates [13,29]. The velocity correlation time is longer
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FIG. 1. Viscous drag coefficient B for a prismatic dislocation
loop in bcc iron extracted from molecular dynamics simulations [18]
(dots). The viscosity is well described by a non-Arrhenius relation
(line), see Derlet et al. [18] for the choice of parameters in the
functional expression. The dashed line corresponds to the constant
value of B = 0.08 MPa ns used here, which is valid for temperatures
above 200 K.

than the stochastic force correlation time [45] derived from
atomistic simulations, and represents the low limit for the time
length of a subtrajectory, which here was chosen as 6 ps. The
diffusion coefficient is then found by ensemble averaging over
the subtrajectories, with the uncertainty characterized by the
standard error of the mean.

Figure 2 shows a selection of simulated COP trajectories,
which are similar in terms of their statistical properties. The
values of diffusion coefficient derived from these trajectories
remain within their respective error bounds, independent of
the selected values of 
l and 
t , in agreement with the
theoretical analysis by Derlet et al. [18].

Following Scattergood and Bacon [53], the elastic moduli
μ and ν are chosen by matching the isotropic and anisotropic
elasticity energies of infinite a/2〈111〉{110} edge and screw
dislocations. Earlier comprehensive studies [54–56] confirm
that this method leads to highly accurate predictions of
dislocation loop shapes and stress fields. In this work, the
anisotropic moduli used as input were chosen following
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Δl, Δt = 10 Å, 0.2 fs
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FIG. 2. Random walk trajectories of a prismatic loop with radius
ρ = 4.5 nm undergoing Brownian motion at 300 K simulated using
the same viscous drag coefficient, and several different discretization
lengths 
l and time steps 
t . The diffusion behavior of the loop is
independent of the choice of discretization parameters.

TABLE I. Simulation parameters for pure bcc iron [51,58].

Parameter Symbol Value

Burgers vector b 2.47 Å
Shear modulus μ 63 GPa
Poisson’s ratio ν 0.43
Drag coefficient B 0.08 MPa ns
Dislocation core radius Rc 1.4 Å
Core strength parameter ξ 0.257
Time step 
t 0.5 fs
Discretization length 
l 10 Å

Ackland et al. [57] as C11 = 225 GPa, C12 = 124 GPa, and
C44 = 101 GPa, leading to the corresponding isotropic moduli
of μ = 63 GPa and ν = 0.43.

The dislocation core radius Rc, which here has the same
meaning as the delocalization parameter of the nonsingu-
lar elasticity theory [39], and the core strength parameter
ξ were evaluated in earlier studies [51,58] from atomistic
simulations.

Isotropic elasticity theory represents an effective approxi-
mation for bcc iron, which is an elastically anisotropic mate-
rial. The numerical results presented in this work should there-
fore be interpreted qualitatively. This is a foregone conclusion
if we acknowledge the fact that the commonly accepted
models for the dislocation core energy do not capture the
complex anisotropic configurational energy landscape found
in atomistic simulations. The stochastic forces formalism
itself is directly applicable to DDD simulations in elastically
anisotropic materials.

All the further simulations presented in Sec. III were
carried out using the simulation parameters given in Table I,
unless specified otherwise. The integration time step scales
approximately as a cube of the dislocation discretization
length, see Appendix A. We have opted to use a fine time step
and small discretization length, as computational efficiency
and performance was not a concern in the simulations pre-
sented here.

III. RESULTS

A. Stochastic dynamics of an individual dislocation loop

Using stochastic dislocation dynamics, we performed a
series of simulations, investigating the dynamics of a single
prismatic loop at temperatures ranging from 100 to 800 K,
with temperature increments of 100 K. No external stress was
applied.

Consider first the internal degrees of freedom of the pris-
matic loop. It is readily seen from simulations that the initially
purely prismatic [111] loop with its Burgers vector normal
to its habit plane, within a few picosecond adopts a tilted
configuration, see Fig. 3(a). If the shape of the loop is defined
by its dislocation countour C, the vector area of the loop is
given by [36,59]

A = 1

2

∮
C

r × dl, (17)
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(deg)

FIG. 3. (a) Snapshots from a stochastic dislocation dynamics
simulation of a hexagonal initially pure prismatic loop of 4.5 nm
radius at 100 K show that the loop habit plane becomes tilted within
a few picoseconds. (b) The tilt angle θ is defined as the angle between
the normal vector (red arrow) and the Burgers vector (black arrow).
(c) The prismatic loop adopts a tilted configuration on the glide
cylinder to minimize its potential energy.

and the effective loop normal unit vector is

n̂ = 1

2||A||
∮

C
r × dl . (18)

The angle between the Burgers vector and the effective loop
normal shall be referred to as the tilt angle θ , with the
azimuthal angle φ defined in full analogy with the spherical
system of coordinates, see Fig. 3(b) for illustration. Following
this definition and depending on the nature of the loop (va-
cancy or interstitial), the loop is pure prismatic if n̂ · b̂ = ±1
corresponding to θ = 0 or 180◦. We note that the elastic
relaxation volume of a loop is given by the scalar product of
the Burgers vector and the loop vector area �rel = b · A [36].

The elastic potential energy of a prismatic loop is mini-
mized for configurations tilted away from the perfect pris-
matic loop orientation, with the resulting tilt angle θ de-
termined by the competition between the elastic self-energy
associated with interaction between dislocation segments and
the core energy proportional to the length of the perimeter of
the loop, see Fig. 3(c). The potential energy is invariant with
respect to rotations around the Burgers vector, allowing the
loop to rotate freely with respect to φ in a DD simulation.

The mean value of the tilting angle 〈θ〉 decreases at higher
temperatures, reflecting the anharmonicity of the potential
self-energy of the loop. Indeed, it takes comparatively less
energy for the loop normal to tilt towards the Burgers vector
than away from it, hence on average smaller values of θ are
favored at higher temperature.

In addition to the tilting degrees of freedom, the loop
shape also develops transient fluctuations on a smaller scale.
However, any part of the loop is constrained to remain on the

FIG. 4. Top: Random walk trajectories of a hexagonal prismatic
loop of radius ρ = 4.5 nm simulated for 200 and 600 K. Bottom:
Plots of diffusion coefficients as a function of temperature for differ-
ent loop sizes ρ. Dashed lines are analytical predictions derived from
the fluctuation-dissipation theorem DCOP = kBT/(BL).

glide cylinder, as the relaxation volume of the loop �rel =
b · A is conserved throughout the simulation.

Consider next the diffusion behavior of the entire loop.
The prismatic loop trajectories exhibit a characteristic pattern
of Brownian motion, with higher temperature inducing a
more pronounced loop displacement per unit time. The single
loop COP trajectories for 200 and 600 K, and the diffusion
coefficients calculated with the drift diffusion correction [18],
are given in Fig. 4. Globally, the temperature dependence
of the diffusion coefficient is found to be consistent with
the fluctuation-dissipation theorem, regardless of the loop
radius ρ.

Moreover, for ρ = 4.5 nm and T < 400 K the diffusion
coefficients derived from simulations are consistently lower
than expected from the linear interpolation from higher tem-
perature (dashed line) because the tilting of the loop results in
the elongation of its perimeter, see Fig. 3(b). According to the
fluctuation-dissipation theorem, DCOP ∝ 1/L, and therefore
the reorientation of the habit plane gives rise to a lower value
of the diffusion coefficient. This effect is found to become
less pronounced at higher temperature as the mean tilt angle
〈θ〉 decreases with temperature.

The stochastic DD simulations performed in this work de-
scribe thermally induced Brownian motion of prismatic loops,
which for T > 200 K is consistent with molecular dynamics.
The simulations further reveal that the prismatic loop habit
plane becomes tilted with respect to the Burgers vector, while
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FIG. 5. (a) Two prismatic loops defined using the coordinate
system introduced in Sec. III B, with identical Burgers vectors b
parallel to z direction. Loop configuration (line) is free to deviate
from the pure prismatic form (dashed) on the glide cylinder, as
indicated by the loop normal vectors n̂. (b) A selection of represen-
tative metastable configurations of interacting loops extracted from
dislocation dynamics simulations, also showing the loop normal and
Burgers vectors. Configurations are ordered from top to bottom in the
order of increasing stability, and hence in the order of descending to-
tal potential energy. Configuration 3 is the most stable configuration.

remaining highly mobile with respect to rotations around the
Burgers vector.

The tilting behavior of prismatic loops in atomistic simu-
lations is possibly dominated by singular orientation effects
in the core energy [60]. Considering that the core energy
scales linearly with the loop radius ∝ ρ, whereas the elastic
self-energy varies superlinearly as ∝ ρ log ρ [61], one would
expect the core energy to become less significant for larger
loops. However, the singular nature of the core energy in com-
bination with atomic discreteness would break the cylindrical
symmetry of the system, subsequently introducing energy
barriers in relation to its rotation around the Burgers vector.

B. Diffusion of interacting dislocation loops

The question about thermal evolution of interacting dis-
location loops has recently attracted attention in the context
of dipole tensor formalism as an efficient approximation for
the long range elastic interaction between the loops [35,62].
Here we show that the internal degrees of freedom of loops,
not explicitly treated by the dipole tensor formalism, have a
profound effect on the stochastic dynamics of loops, particu-
larly where the loops form bound configurations confined by
attractive elastic interactions.

Consider a pair of prismatic loops with unit Burgers vectors
b̂1 = b̂2 = ẑ. The loop centers are separated by distance s in
the glide direction and by 
x in the direction perpendicular to
the Burgers vector direction, see Fig. 5(a). In the absence of

climb force, either loop can move or distort only in the glide
direction.

While the stochastic simulations involve an explicit treat-
ment of internal degrees of freedom of the loops, it is also
instructive to consider the static properties of a simplified
system of two loops. Following the discussion in Sec. III A,
the internal degrees of freedom of the simplified system are
reduced to the tilting modes only, thus keeping the loops
otherwise flat and of ellipsoidal shape.

For a single loop the potential energy is invariant with
respect to rotations around its Burgers vector. For a pair of
loops the invariance is lifted by their elastic interaction: for a
loop-pair separation constrained at s, the system has multiple
tilting configurations corresponding to local energy minima,
giving rise to a complex potential energy surface (PES)
with several branches and crossing points. In full analogy
to the Born-Oppenheimer approximation [63], the internal
degrees of freedom of loops evolve significantly faster (on
the timescale of ∼ps) than the loop-pair separation (varying
on the ∼ns timescale), and thus the notion of PES describes
the system of interacting loops in the adiabatic approxima-
tion. Each PES branch represents a metastable tilting state
for a given reaction coordinate s. Transitions between PES
branches occur by the rotation of loop habit planes, which are
therefore separated by energy barriers.

The energy of interaction between pairs of prismatic loops
is computed in the order of ascending accuracy: in the dipole
tensor approximation for a pair of pure prismatic loops, as
exact elastic interaction between a pair of pure prismatic
loops, and as exact elastic interaction between prismatic loops
with internal degrees of freedom relaxed to metastable con-
figurations. Note that in the dipole tensor approximation the
expression for the loop-loop interaction in the pure prismatic
case reduces to the Foreman-Eshelby expression [1,2,64].
The treatment of internal relaxation is explained in detail in
Appendix B. The energy of interaction between the loops is
defined as the energy difference between the total energy of
two loops minus the energy of isolated loops with the same
orientation of the Burgers vector:

W int(s) = W tot(s) − lim
s→∞W tot(s). (19)

Energies of elastic interaction are compared in Fig. 6 for
the various loop separations 
x using an example of two
round loops with radii ρ = 4.09 nm. Note that the choice of
radii is consistent with loops being hexagonal and having the
same area, as discussed in Sec. II B.

The exact interaction energy trend for pure prismatic pairs
of loops broadly follows the PES trend, but does not reflect
the full complexity of interaction between internally relaxed
loops. The dipole approximation is consistent with the exact
treatment, but only for loop separations several times larger
than the sum of loop radii. The dipole tensor formalism
becomes inaccurate for smaller separations, resulting in a
qualitatively incorrect predicted interaction behavior, see the
top two panels in Fig. 6.

A major effect of internal relaxation is found when we
follow how the loops approach an elastically confined bound
state from infinite separation. This reaction is fundamental
to the formation of dislocation loop rafts. From Fig. 6 it is
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(a)

(b)

(c)

(d)

FIG. 6. Comparison of energies of elastic interaction of two pure
prismatic dislocation loops of radius ρ = 4.09 nm, obtained by exact
integration (solid, blue) and computed in the dipole tensor approxi-
mation using the Foreman-Eshelby equation [1,2,64] (dashed, red).
Allowing the loops to tilt, and thus to acquire a mixed character,
reveals a complex potential energy surface (solid, gray). Plots (a) to
(d) represent loop pairs with increasing separation 
x perpendicular
to the glide cylinders.

evident that loop interaction energy at large separations is
positive. Therefore an energy barrier first has to be overcome
before the loops can enter a bound state. This barrier is
here given by the maximum value of the chosen potential
energy branch. In the pure prismatic loop picture the barrier
is substantial, ranging from 8, 2, and 0.4 eV for separations

x of 8, 12, and 20 nm, respectively. In contrast, the lowest
PES branches have dramatically reduced barriers to trapping
of 2, 0.5, and 0.1 eV, respectively, and as such may eventually
be overcome by diffusion. In our earlier work based on a pure
prismatic loop picture, where elastic interaction between the
loops was described by the Foreman-Eshelby equation [2,64],
the trapping barrier had to be artificially lowered to facilitate
elastic confinement of loops, as otherwise no formation of
loop rafts would occur [1].

We also note that in the limit of large separation s, only
three PES branches form. The corresponding fundamental
configurations of pairs of loops are shown in Fig. 5(b), and

their energy ordering is consistent with the separations 
x
studied here.

This comparison demonstrates that the energy of inter-
action between prismatic loops is strongly affected by the
internal degrees of freedom of the loops. Consequently, the
competition between the elastic energy and the core energy
plays a pivotal role in determining the landscape of binding
energies of loops. This subtlety is neglected in any physical
approximation where the dislocation loops are treated as being
purely prismatic, or where they are treated as pointlike objects
defined only by their position in real space and involving no
consideration of their internal degrees of freedom.

In what follows, we carry out stochastic dislocation dy-
namics simulations of interacting pairs of loops. The simu-
lations start from large initial separations 
x and s at 200 K
in an attempt to emulate various elementary interactions ob-
served in experiment, see Sec. I, namely coalescence, repul-
sion, and mutual elastic confinement of interacting loops.

Case A: Coalescence of dislocation loops

The coalescence of dislocation loops was observed using
TEM and was found to involve loops of comparable size
[8], with diameters larger than 4 nm. To match experimental
observations, two pure prismatic hexagonal 〈111〉 loops with
ρ = 4.5 nm are introduced in a simulation cell with separa-
tions of 
x = 8 nm and s = 5 nm, giving rise to a mutually
attractive elastic force, see Fig 6. Note that the glide cylinders
of the loops overlap slightly. Sequential snapshots taken dur-
ing simulations are shown in Fig. 7(a). The loops coalesce into
a larger prismatic loop, with small debris released and ejected
by a strong repulsive elastic force.

The corresponding time evolution of the diffusion coeffi-
cient of the resulting large loop is shown in Fig. 7(b). We
observe that the diffusion coefficient becomes constant over
the interval of a few nanoseconds and converges to a notably
smaller value than the diffusion coefficient of a single loop
with ρ = 4.5 nm. Using the DCOP ∝ 1/L scaling relation, the
equivalent loop size of the loop produced by the coalescence
of a pair of loops equals ρeq ≈ 7 nm. This is consistent with
an estimate of the equivalent loop size obtained by removing a
quarter of each loop’s circumference, leading to ρeq ≈ 3/2ρ.
While the relaxation volume of the loops is a conserved
quantity, the length of the loop circumference is not; this
example demonstrates clearly that the effective diffusivity of
an ensemble of prismatic loops may reduce over time as a
result of coalescence of loops.

Case B: Repulsion between the loops

An example of repulsive interaction between diffusing
dislocation loops is obtained by placing the loops with sepa-
rations of 
x = 5 nm and s = 7 nm, using the different initial
configurations shown in Fig. 5(b). Note that configuration 1
was placed at a separation of s = 12 nm, as its corresponding
PES branch vanishes at closer separations. Figure 8 shows the
evolution of the corresponding interaction energies during the
simulation performed without stochastic forces (T = 0 K) and
with stochastic forces (T = 200 K) included, in comparison
with the theoretical prediction derived from examining the
corresponding potential energy surface.
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FIG. 7. (a) Shapshots taken from stochastic dislocation dynamics
simulations of a loop coalescence reaction, for the initial loop-pair
separations of 
x = 8 nm and s = 5 nm, viewed at an angle from
the −ŷ direction. Note the occurrence of ejection of debris during
loop coalescence. (b) Plot of the effective diffusion coefficient as a
function of time. The dotted line is a reference value computed for a
single loop with size ρ = 4.5 nm.

As expected for repulsive configurations, we find that
the distance between the loops gradually increases over the
interval of time spanned by the simulation. Inspection of the
loop-pair configuration shows that the cold (T = 0 K) systems
retain their initial orientation of the habit plane, which is
consistent with the energy trajectories propagating along the
distinct PES branches. On the other hand, the trajectories
of the heated system (T = 200 K) soon start overlapping,
starting from s ≈ 20 nm, eventually becoming indistinguish-
able. The stochastic force supplies additional thermal energy
to the loops, which is evidently sufficient to overcome the
energy barrier between the different PES branches, enabling
the loops to rotate and thus oscillate between various tilting
configurations.

Case C: Elastic confinement of loops

Prismatic loops may exhibit strong elastic attraction and
form an elastically confined configuration as seen in Fig. 6.
Depending on loop size and loop separation, the binding
energy can vary from meVs to eVs, potentially surpassing
the binding energy of dislocations to substitutional defects.
Therefore it can be reasoned that elastic confinement of
loops represents the key step leading to the stabilization of
experimentally observed rafts of dislocation loops.

We adopt the initial setup corresponding to 
x = 12 nm
and s = 12 nm, for which the pair of loops exhibit mutual
attraction. As in the repulsive case investigated above, the sim-
ulations were run for three initial loop configurations shown in

(a) (b)

FIG. 8. Dislocation dynamics simulation of two prismatic loops
in a repulsive arrangement without (a) and with stochastic forces at
T = 200 K (b) included. The initial loop configurations (conf.) are
taken from Fig. 5. Trajectories in (b) are shifted down by an estimated
amount of additional thermal energy supplied by the thermostat W th

for better comparison. In the absence of stochastic forces the system
of two loops moves along the PES branches, see conf. 1 and conf.
3 in (a). On the other hand, the trajectories of the heated system
eventually become indistinguishable, oscillating between various
tilting configurations.

Fig. 5(b), corresponding to distinct branches of the potential
energy surface. The evolution of the energy of interaction
between the two loops as a function of their separation in
comparison with the idealized PES is shown in Fig. 9.

In the absence of stochastic forces, the two-loop system
is hindered from reaching the lowest energy state because
it is unable to overcome the energy barrier associated with
the rotation of the loop habit planes. In contrast, the addi-
tion of stochastic forces supplies the loops with additional
energy, enabling the system to explore the potential energy
landscape more freely to the point where it even oscillates
around the global energy minimum. As in the loop repulsion
case investigated above, the interaction energy derived using
simulations involving elevated temperature is found to be
shifted upwards by about 1.5 eV compared to the PES, as the
Langevin thermostat adds additional energy to the system.

The COP trajectories of the two loops corresponding to
conf. 1 state are shown in Fig. 10. After a brief initial relax-
ation time, the loops become mutually trapped in their relative
frame by attractive elastic interaction, with their COP trajecto-
ries becoming strongly spatially correlated. The loop separa-
tion distance in the elastically confined state fluctuates around
the global potential energy minimum as a result of the effect of
stochastic force, in agreement with experimental observations
and simulations reported in Figs. 3–5 of Ref. [1]. Interestingly,
the simulated trajectories suggest that the two bound loops
oscillate on a ∼0.5 ns timescale, thus evolving significantly
slower than the tilt angle of the isolated loop, see Fig. 3.
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(a) (b)

FIG. 9. Dislocation dynamics simulation of a pair of prismatic
loops in an attractive arrangement without (a) and with stochastic
forces at T = 200 K (b) included. The initial configurations (conf.)
of loops are taken from Fig. 5. Trajectories in (b) are shifted down
by an estimated amount of additional thermal energy supplied by the
thermostat W th for better comparison. In the absence of stochastic
forces, the loop pair is stuck in metastable configurations. In con-
trast, the heated system escapes from the metastable state, instead
fluctuating around the global minimum.

IV. THE LIFETIME OF ELASTICALLY CONFINED
LOOP CONFIGURATIONS

In Sec. III B above, we have explored the three types of
fundamental reactions between prismatic dislocation loops.
These reactions, namely loop coalescence, repulsion, and
mutual elastic trapping or confinement, have all been mod-
eled using stochastic dislocation dynamics at 200 K. The
simulations enable comparison with models developed earlier
for simulating the thermal evolution of multiple loops, which
involve the dipole approximation [9] and treat the loops as
point objects, assuming that they remain purely prismatic

FIG. 10. z coordinates of centers of elastically confined loops
plotted versus simulation time. The initial position of the loops
corresponds to conf. 1.

over the duration of the simulation. In this paper we show
that the internal degrees of freedom significantly influence
the nature of interaction between the loops, with potentially
significant implications for the lifetime of elastically confined
loop configurations. We now analyze this effect quantitatively.

Introducing the probability density P(s, t ) of finding the
two loops at separation s at time t , the equation of motion for
this probability density, see Appendix C, can be expressed as
a Fokker-Planck equation [65–67]

∂P(s, t )

∂t
= −∂J (s, t )

∂s
, (20)

where J is the flux of the probability density

J (s, t ) = − 2

βBL
e−βV (s) ∂

∂s

(
eβV (s)P(s, t )

)
, (21)

where β = 1/(kBT ) and V (s) refers to a branch of the po-
tential energy surface. It is sufficient to consider the s ∈
[0,+∞) interval of variation of s as the potential energy
surface is symmetric. In the following discussion we assume
that the potential energy surface includes a confined state that
transforms, over an energy barrier, into an unbound state at
large separation s. While this assumption is valid for a pair
of loops, caution needs to be taken in densely populated mi-
crostructures, as the potential energy can be strongly distorted
by the elastic field of other defects.

Consider now the pair of loops at an energy minimum
at smin. At equilibrium steady state the flux vanishes, J = 0,
leading to the probability acquiring the form of the Gibbs dis-
tribution P(s) ∼ exp [−βV (s)]. Similarly, the escape process
from the energy minimum at smin to a very far separation along
the glide direction sfar � smin can be considered to proceed
slow enough to preserve the steady state, leading to a constant
flux J = J0. The steady-state flux is found by solving Eq. (21)
for the derivative and subsequently integrating from smin to
sfar, namely

[
eβV (s)P(s)

]sfar

smin
= −J0βBL

2

∫ sfar

smin

ds e−βV (s). (22)

Using P(smin) � P(sfar ), the escape flux can be found as

J0 ≈ 2

βBL

eβV (smin )P(smin)∫ sfar

smin
ds eβV (s)

. (23)

Assuming that the probability density decays rapidly out-
side the potential well associated with the energy minimum,
the probability p of finding the pair of loops in an elastically
confined state is derived by integration over the well width
±δs, using the method of steepest descent

p =
∫ smin+δs

smin−δs
ds P(s)

= P(smin)
∫ smin+δs

smin−δs
ds e−β[V (smin )−V (s)]

≈ P(smin)

2

∫ +∞

−∞
ds e−βV ′′(smin )s2/2

= P(smin)

2

(
2π

βV ′′(smin)

)1/2

, (24)
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TABLE II. The lifetime of an elastically confined pair of disloca-
tion loops computed for some selected loop radii ρ and temperatures
T assuming the separation between the loops in a plane perpendicular
to their glide cylinders of 
x = 12 nm. Three distinct configurations
of pairs of loops are considered.

Conditions Pure prismatic Lowest PES 30◦ fixed tilt

ρ = 4.5 nm, T = 200 K ∼10259 yr ∼10258 yr +∞
ρ = 4.5 nm, T = 600 K ∼1075 yr ∼1075 yr ∼10117 yr
ρ = 2.0 nm, T = 200 K 4 s 18 min 3 yr
ρ = 2.0 nm, T = 300 K 5 ms 0.3 s 5 min
ρ = 2.0 nm, T = 400 K 0.2 ms 6 ms 0.5 s
ρ = 2.0 nm, T = 500 K 0.02 ms 0.5 ms 10 ms
ρ = 2.0 nm, T = 600 K 0.005 ms 0.1 ms 0.8 ms

where V ′′(smin) is the second derivative of V (s) evaluated
at the stationary point smin. Similarly, the integral term in
Eq. (23) peaks at the point smax corresponding to the max-
imum barrier height. Applying the same approach as in
Eq. (24), the escape rate � can be finally expressed as

� ≡ J0

p
= [V ′′(smin)|V ′′(smax)|]1/2

2πBL
e−β
V , (25)

where 
V = V (smax) − V (smin) is the energy barrier that the
pair of loops has to overcome in order to separate. The inverse
of the escape rate equals the lifetime of the confined state of
the loops. Under these conditions, a small variation of 
V can
significantly affect the lifetime.

Consider now the choice of the potential branch V (s).
We use three different tilting configurations to investigate
the effect of internal degrees of freedom on the confinement
lifetime. First, the pure prismatic pair of loops is a reference
configuration to models involving no internal degrees of free-
dom. Next, the freely tilting loop pair is represented by the
lowest energy curve of the PES. Finally, the tilting of each
loop is fixed ad-hoc at an angle of 30◦ each [unfavorable
in energy, see conf. 1 in Fig. 5(b)], in an attempt to mimic
the habit plane locking observed in molecular dynamics. The
corresponding lifetimes of elastically confined loop configura-
tions are listed in Table II for circular loops with ρ = 4.09 nm
and ρ = 1.8 nm, which are equivalent to hexagonal loops
with ρ = 4.5 nm and ρ = 2 nm. In either case the separation
between the two loops in the plane perpendicular to the glide
cylinders is chosen as 
x = 12 nm.

Table II shows that the lifetime of the elastically confined
configuration depends strongly on the loop size and temper-
ature. For ρ = 4.5 nm the pair of loops is effectively unable
to escape from the elastically confined state, as the lifetime is
dominated by the escape barrier of ≈10 eV. On the other hand,
the lifetime of an elastically confined configuration involving
smaller loops ρ = 2 nm is comparable with experimental
timescales even at low temperatures.

The specific form of configuration of interacting dislo-
cation loops is found to have a most significant effect on
its lifetime. An approximation where the loops are treated
as pure prismatic objects underestimates the escape time in
comparison with the case of freely rotating loops by several
orders of magnitude. In contrast to that, the pair of loop

with the orientation of their habit planes fixed at 30◦ has
a significantly longer lifetime in comparison with a freely
rotating pair of loops, and it only breaks apart at relatively
high temperatures. This offers a possible explanation for why
the experimentally observed rafts of loops remain stable over
an appreciable temperature range, while a simple estimate
based on the purely prismatic picture of interacting loops
predicts much shorter lifetimes [1]. The loop habit plane reori-
entation not only changes the barrier that the system needs to
overcome in order to escape, but most importantly it strongly
lowers the curvature of the potential energy barrier, see Fig. 6,
hence further increasing the lifetime of an elastically confined
configuration by several orders of magnitude.

V. CONCLUSION

The stochastic motion of prismatic dislocation loops dif-
fusing in the glide direction is successfully simulated using
dislocation dynamics that also includes the stochastic ther-
mal forces treated using the Langevin equation formalism.
The dependence of the diffusion coefficient of a dislocation
loop on temperature is consistent with molecular dynamics
simulations.

Reactions involving interacting dislocation loops, includ-
ing loop coalescence, repulsion, and the formation of an elas-
tically confined pairs of loops, are well reproduced using the
stochastic dislocation dynamics framework proposed above.
The internal degrees of freedom of interacting loops result in
the formation of complex potential energy landscape of states
with distinctly tilted loop habit planes, separated by potential
barriers. The addition of thermal energy through stochastic
Langevin forces acting on dislocation lines enables interacting
loops to switch between the tilted configurations, allowing the
system to explore the entire energy landscape of excited states.

In comparison to the purely prismatic case of interacting
loops first explored by Foreman and Eshelby [64], the reori-
entation of the habit plane of interacting loops is found to
strongly affect the rates of reactions resulting in the elastic
confinement of loops. For one, the potential barrier for the
elastic trapping a loop approaching another loop from a
distance is strongly reduced, making it much more likely for
loops to form elastically trapped configurations. Second, the
lifetime of the elastically confined state increases by several
orders of magnitude, bringing the estimated lifetime into
broad agreement with experimental observations. The habit
plane reorientation effect highlights the pivotal significance
of including internal degrees of freedom of loops in the
treatment of microstructural evolution, to achieve a physically
consistent description of dynamics of complex dislocation
microstructures.
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APPENDIX A: RELATION BETWEEN THE INTEGRATION
TIME STEP AND SEGMENT LENGTH

Here we give an estimate to the maximum time step that
can be used for integrating the coupled stochastic equations
of motion describing a fluctuating dislocation. We assume that
the stochastic force acting on a dislocation node n is greater
than elastic forces, and that the adjacent segments have length

l:

Bżn(t ) ≈ f s
n =

√
2kBT B


l
t
N (0, 1). (A1)

We continue by making a conservative assumption that the
nodal positions are updated according to Euler’s scheme,
and that the randomly generated number N (0, 1) is equal
to three. For the sake of numerical stability in updating the
dislocation network, we assert that the node should not move
by more than a fraction q � 1 of the segment length, leading
to żn(t )
t � q
l . We then arrive at a cubic relation between
time step and segment length:


t � q2(
l )3B

18kBT
. (A2)

Using values of q = 0.1, B = 0.08 MPa ns, T = 300 K, and

l = 10 Å, we arrive at a maximum allowed time step 
t =
11 fs. Similarly, for 
l = 30 Å we find 
t = 290 fs. Hence
the stochastic simulations of coarsely resolved dislocation
networks can proceed with larger time steps than the matching
atomistic simulations.

APPENDIX B: POTENTIAL ENERGY SURFACE
OF THE LOOP PAIR

Given a vector z containing all the node positions, we
define a set of local energy minima that depend parametrically
on the distance between the loops:

VS (s) = {W tot(z) | z ∈ Z is a local minimum}, (B1)

where

Z = {
z
∣∣z(2)

COP − z(1)
COP = s

}
(B2)

refers to the set of nodal positions for which the separation
between the loops is s. In other words, the loop separation
is held constant, whereas the remaining internal degrees of
freedom are varied to find local potential energy minima.

The potential energy surfaces defined by Eqs. (B1) and
(B2) are found by the numerical minimization of energy of
a simplified system of two loops. The internal degrees of
freedom are reduced to tilting modes only, leading to the
following parametrization of the dislocation loop:

r(ψ ) =
⎛
⎝ ρ cos ψ

ρ sin ψ

u sin ψ + v cos ψ

⎞
⎠, (B3)

where ψ ∈ [0, 2π ) is the parametrization variable, and u ∈ R
and v ∈ R are tilting amplitudes. The normal vector of the
parametrization is independent of ψ and is free to point in
any direction, while the loop relaxation volume is constant as
�rel = b · A = bπρ2. Thus the loop habit plane may tilt freely
within the glide cylinder. The above parametrization may also
be used to include tilting in the dipole-tensor approximation
[35], though for carrying out a dynamic simulation one would
also need an approximate analytic expression for the self-
energy of a mixed ellipsoidal loop. Some expressions suitable
for this purpose are already available in literature [68,69], but
they are relatively limited in comparison with the general case
addressed here.

The total potential energy of interacting loops is computed
using the nonsingular de Wit formula [39], including the core
energy (3). The energy has multiple stationary points at a
given separation s, which are not trivially identified. Here the
total energy was minimized over tilt amplitudes of both loops
{u(1), v(1), u(2), v(2)} using the BFGS [70] implementation in
SCIPY [71] for a broad range of initial tilt configurations.
While this approach does not consistently identify all the
stationary points, it still gives a qualitative overview of the
potential energy landscape.

All the energy minima identified in this way are shown
in Fig. 6. Multiple potential energy branches belonging to
distinct tilt configurations are found. Note that transitions at
a crossing may involve a significant change in tilting, and thus
would involve a transition over a large energy barrier.

APPENDIX C: LANGEVIN EQUATION OF MOTION
FOR THE LOOP-LOOP SEPARATION

Assuming that the relaxation of internal loop degrees of
freedom occurs on a much shorter timescale than the COP
diffusion, the adiabatic equation of motion for the individual
loop COP is derived from the two equations of motion for the
loops:

Bż(1)
COP = − 1

L(1)

∂V (s)

∂z(1)
COP

+ F (1)
s ,

(C1)

Bż(2)
COP = − 1

L(2)

∂V (s)

∂z(2)
COP

+ F (2)
s ,

where V ∈ VS is a branch of the PES, and the total stochastic
force F (i)

s with strength σ
(i)
COP acting on loop i is derived

following Sec. II using

〈
F (i)

s (t )F (i)
s (t ′)

〉 = σ 2
s

L(i)
δ(t − t ′), (C2)

leading to σ
(i)
COP = σs/

√
L(i). The total energy derivative is

evaluated using the chain rule with s = z(2)
COP − z(1)

COP, and the
two equations of motion (C1) are subtracted, resulting in

Bṡ = −V ′(s)

(
1

L(2)
+ 1

L(1)

)
+ F (2)

s − F (1)
s . (C3)

The equation of motion (C3) simplifies further for the case
L(1) = L(2) = L:

BLṡ = −2V ′(s) + Fs, (C4)
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where Fs is the net stochastic force with standard devia-
tion σ = σs

√
2L, following the sum theorem of Gaussian

distributed variables. Note that the expectation value of the
loop velocity over independent trajectories is temperature

independent as the stochastic force has zero mean:

〈ṡ〉 = − 2

BL
V ′(s). (C5)
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