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Estimating linear mass transport coefficients in solid solutions via correlation splitting and a law of total diffusion

Directly computing linear mass transport coefficients in stochastic models entails integrating over time the equilibrium correlations between atomic displacements. Here, we show how to improve the accuracy of kinetic Monte Carlo simulations via correlation splitting and conditioning, which statistically amounts to estimating the mass transport coefficients through a law of total diffusion. We illustrate the approach with kinetic path sampling simulations of atomic diffusion in a random alloy model in which percolating solute clusters trap the mediating vacancy. There, Green functions serve to generate first-passage paths escaping the traps and to propagate the long-time dynamics. When they also serve to estimate mean-squared displacements via conditioning, colossal reductions of statistical errors are achieved.

I. INTRODUCTION

Mass transport is the natural phenomenon that governs both the time evolution of thermodynamic systems towards equilibrium and the diffusion of chemical species at equilibrium. Its understanding is fundamentally important and challenging in many engineering applications, ranging from biophysics to materials science. Equilibrium correlations between particle displacements play a crucial role because they allow characterizing transport coefficients close to equilibrium owing to linear response theory [START_REF] Chandler | Introduction to Modern Statistical Mechanics[END_REF][START_REF] Evans | Statistical Mechanics of Nonequilibrium Liquids[END_REF]. Hence, chemical currents in solid solutions can be expressed as products of diffusion matrices and negative gradients of chemical concentrations considered as small thermodynamic forces. In crystalline solids, atomic transport is mediated by defects [START_REF] Allnatt | Atomic Transport in Solids[END_REF][START_REF] Mehrer | Diffusion Mechanisms[END_REF], most often by vacancies exchanging with neighboring substitutional atoms. Interstitial atoms jumping to adjacent interstitial sites also contribute to atomic diffusion, in irradiated alloys especially [START_REF] Zhao | Preferential diffusion in concentrated solid solution alloys: NiFe, NiCo and NiCoCr[END_REF][START_REF] Osetsky | Tunable chemical complexity to control atomic diffusion in alloys[END_REF]. Usually, atomic hops are thermally activated processes occurring at rates that are well predicted by transition state theory and its extensions [START_REF] Hänggi | Reaction-rate theory: Fifty years after Kramers[END_REF]. There, states correspond to local minima of the potential energy surface. They span a discrete space embedded into the continuous space which the dynamical system evolves in. Transition rates computed at the atomic scale possibly include anharmonic [START_REF] Terrier | Using bayes formula to estimate rates of rare events in transition path sampling simulations[END_REF], quantum [START_REF] Arakawa | Quantum de-trapping and transport of heavy defects in tungsten[END_REF], and dynamical [START_REF] Agarwal | Computing long time scale biomolecular dynamics using quasistationary distribution kinetic Monte Carlo (qsd-kmc)[END_REF] corrections, whose respective contributions depend on temperature T . Dynamical corrections are to be included to account for memory effects when state-to-state transitions depend on past transitions [START_REF] Agarwal | Computing long time scale biomolecular dynamics using quasistationary distribution kinetic Monte Carlo (qsd-kmc)[END_REF]. They may be significant in simulations of dynamical systems evolving on complicated potential energy surfaces over long timescales when the encountered barrier heights E are similar or lower than the thermal energy k B T (k B stands for Boltzmann's constant). This specific situation oc-curs, for example, at moderately high temperatures in pure α-iron, where the activation energies for the migration of glissile clusters of self-interstitial atoms may be particularly small, on the order of tens of meV [START_REF] Osetsky | Stability and mobility of defect clusters and dislocation loops in metals[END_REF][START_REF] Terentyev | Dimensionality of interstitial cluster motion in bcc-fe[END_REF]. When the imposed temperature is low enough, the atomic dynamics in the basin of attraction of every visited state reaches a local quasistationary distribution prior to transitioning to another state and the system becomes memoryless [START_REF] Bris | A mathematical formalization of the parallel replica dynamics[END_REF]. This entails that the transition rates do not depend any more on which transition occurred previously. Such transitions are said to be Markovian. In solid solution alloys and compounds, the temperatures of interest are usually low enough so that transitions be considered Markovian. Atomic scale modeling of mass transport then relies on the ability to evaluate an exhaustive list of the important elementary transition rates [START_REF] Swinburne | Self-optimized construction of transition rate matrices from accelerated atomistic simulations with bayesian uncertainty quantification[END_REF]. This makes it possible to construct realistic discrete-space models satisfying the Markov property. Such a description does not preclude complex transport mechanisms to involve concerted atomic displacements [START_REF] Swinburne | Automated calculation and convergence of defect transport tensors[END_REF]. Generic models based on master equations are also very useful as they allow investigating the interplay between transition rates and transport properties by varying their physical parameters in a systematic manner [START_REF] Allnatt | Atomic Transport in Solids[END_REF].

Kinetic Monte Carlo (kMC) [START_REF] Lanore | Simulation de l'évolution des défauts dans un réseau par la méthode de Monte-Carlo[END_REF][START_REF] Bortz | A new algorithm for monte carlo simulation of ising spin systems[END_REF] provides a direct method to estimate transport coefficients in physical systems governed by high-dimensional master equations. However, the method is hindered by the low occurrence of important events. A considerable amount of computations are often needed to collect sufficient statistics in many systems of interest [START_REF] Trochet | Algorithmic developments of the kinetic activation-relaxation technique: Accessing long-time kinetics of larger and more complex systems[END_REF][START_REF] Trochet | Off-Lattice Kinetic Monte Carlo Methods[END_REF], including basic models of defect migration through homogeneous media [START_REF] Swinburne | Automated calculation and convergence of defect transport tensors[END_REF]. Besides, low-complexity models are amenable to nonstochastic master-equation approaches [START_REF] Koiwa | Integral methods in the calculation of correlation factors for impurity diffusion[END_REF][START_REF] Nastar | Atomic diffusion theory challenging the Cahn-Hilliard method[END_REF][START_REF] Bocquet | Correlation factor for diffusion in cubic crystals with solute-vacancy interactions of arbitrary range[END_REF][START_REF] Vaks | Statistical theory of diffusion in concentrated bcc and fcc alloys and concentration dependencies of diffusion coefficients in bcc alloys FeCu, FeMn, FeNi, and FeCr[END_REF] that may yield accurate predictions at much lower cost. These methods involve integrating fundamental matrices [START_REF] Koiwa | Integral methods in the calculation of correlation factors for impurity diffusion[END_REF][START_REF] Bocquet | Correlation factor for diffusion in cubic crystals with solute-vacancy interactions of arbitrary range[END_REF][START_REF] Schuler | Kineclue: A kinetic cluster expansion code to compute transport coefficients beyond the dilute limit[END_REF] or equivalently evaluating lattice Green functions [START_REF] Trinkle | Automatic numerical evaluation of vacancymediated transport for arbitrary crystals: Onsager coefficients in the dilute limit using a Green function approach[END_REF][START_REF] Agarwal | Exact Model of Vacancy-Mediated Solute Transport in Magnesium[END_REF] that either minimize a variational problem [START_REF] Arita | Variational calculation of transport coefficients in diffusive lattice gases[END_REF][START_REF] Arita | Bulk diffusion in a kinetically constrained lattice gas[END_REF][START_REF] Trinkle | Variational Principle for Mass Transport[END_REF] or satisfy a Poisson equation [START_REF] Duflo | Random Iterative Models of Applications of Mathematics[END_REF][START_REF] Veretennikov | Modern Problems of Stochastic Analysis and Statistics[END_REF][START_REF] Delmas | Does waste recycling really improve the multi-proposal Metropolis-Hastings algorithm? An analysis based on control variates[END_REF][START_REF] Athènes | Conditioning and enhanced sampling schemes for simulating thermodynamic and kinetic properties of condensed matter[END_REF]. The dimension of the linear systems to solve and the viability of approximations made to handle exponentially increasing numbers of configurations limit the applicability of nonstochastic approaches.

Here, we develop a correlation splitting and conditioning scheme aiming to facilitating the estimation of linear mass transport coefficients at thermodynamic equilibrium using conventional and advanced kinetic Monte Carlo simulations. The approach alleviates the aforementioned issues: scarcity of harvested important events and combinatorial explosion in numerical algebra. It furthermore leads us to formulate a law of total diffusion (LTD) that relates to the laws of total expectation (LTE) and variance (LTV) considered so far to compute thermodynamic expectations and their statistical variance via conditioning [START_REF] Delmas | Does waste recycling really improve the multi-proposal Metropolis-Hastings algorithm? An analysis based on control variates[END_REF][START_REF] Athènes | Conditioning and enhanced sampling schemes for simulating thermodynamic and kinetic properties of condensed matter[END_REF][START_REF] Frenkel | Speed-up of monte carlo simulations by sampling of rejected states[END_REF][START_REF] Frenkel | Waste-Recycling Monte Carlo[END_REF][START_REF] Athènes | Web ensemble averages for retrieving relevant information from rejected monte carlo moves[END_REF][START_REF] Athènes | Free energy reconstruction from steered dynamics without post-processing[END_REF][START_REF] Adjanor | Waste-recycling monte carlo with optimal estimates: Application to free energy calculations in alloys[END_REF][START_REF] Cao | Free energy calculations from adaptive molecular dynamics simulations with adiabatic reweighting[END_REF][START_REF] Athènes | Estimating thermodynamic expectations and free energies in expanded ensemble simulations: Systematic variance reduction through conditioning[END_REF][START_REF] Frenkel | Monte carlo sampling for stochastic weight functions[END_REF]. We illustrate the approach on a random alloy model [START_REF] Trinkle | Variational Principle for Mass Transport[END_REF] exhibiting dynamical trapping and percolation by estimating the diffusion matrix, denoted below by D[d] and defined as half the asymptotic variance of the vector d of chemical displacements.

II. DIFFUSION MATRIX FOR REVERSIBLE MARKOV CHAINS

To monitor the displacements of each of the c chemical species along each of the s space dimensions, any state χ is mapped onto a descriptor r ∈ R sc . Component r i represents here the coordinate sum of all α-type atoms in space direction a, the descriptor index being encoded as i = a + s(α -1), where a ∈ N s and α ∈ N c . Then, displacement d(χ, χ ) from state χ to state χ is computed using the minimum image representation of rr. 1 The variance matrix of vector r over a Markov chain reads as 2 , with r 2 standing for tensorial square r ⊗ r and E[•] denoting the expectation operator. The successive states of the chain are denoted by χ h with h ∈ N or Z. The displacement vector after transitions, -1 h=0 d(χ h , χ h+1 ), is simply written r 0→ in the following. The expected square displacement divided by twice the elapsed time is written

V [r] = E[r 2 ] -E[r]
D [d] = 1 2 E[r 0→ ⊗ r 0→ ] E[t 0→ ] = 1 2 V [r 0→ ] E[t 0→ ] . ( 1 
)
The asymptotic limit yields the diffusion matrix, i.e.,

D[d] = lim →∞ D [d].
The variance amounts to squaring here because the expected displacement E[r 0→ ] is zero at equilibrium. The Markov chain obeys detailed balance with respect to an equilibrium stationary distribution ρ eq χ . Fulfillment of this strong condition entails the invariance of expectations under arbitrary translation of chain indices and under chain reversal. Expected autocorrelations are thus invariant after interchange of displacements:

E[r 0→1 ⊗ r h→h+1 ] is succes- sively equal to E[r -1-h→-h ⊗ r -1→0 ], E[r h+1→h ⊗ r 1→0 ],
and eventually E[r h→h+1 ⊗ r 0→1 ], displacements being antisymmetrical under chain reversal: r h+1→h = -r h→h+1 , ∀ h. Hence, D[d] is symmetric non-negative. Translational invariance also entails that the expected elapsed time is multiplied by the mean elapsed time before the next event τ = E[t 0→1 ]. The autocorrelation symmetry properties enable us to split the diffusion matrix into two parts:

D[d] = D 1 [d] + 1 τ ∞ h=1 E[r 0→1 ⊗ r h→h+1 ]. (2) 
For uncorrelated Markov chains, the uncorrelated part 

D 1 [d] = E[r 0→1 ⊗ r 0→1 ]/2τ
e(χ 1 ) = E[r 1→2 |χ 1 ] = -E[r 0→1 |χ 1 ], (3) 
and the associated relaxation vector (χ 1 ) = +∞ h=1 E[e(χ h )|χ 1 ] whose knowledge will give access to the correlated part of the diffusion matrix. The relaxation vector is a particular solution of the following discrete Poisson equation:

(χ 1 ) = E[ (χ 2 )|χ 1 ] + e(χ 1 ), (4) 
where χ 1 runs over the state space. The solution is fully determined by additionally imposing E[ ] = E[e] = 0. It characterizes the expected correlations

E[r 0→1 ⊗ (χ 1 )] = ∞ h=1 E[E[r 0→1 ⊗ r h→h+1 |χ 0 , χ 1 ]] = ∞ h=1 E[r 0→1 ⊗ r h→h+1 ]. (5) 
Combining ( 2) and ( 5) then yields the diffusion matrix

D[r 0→1 ] = D 1 [r 0→1 ] + 1 τ E[r 0→1 ⊗ (χ 1 )] = 1 2τ E[[r 0→1 + (χ 1 )] 2 -2 ], (6) 
where the first equality is similar to Green-Kubo formulas [START_REF] Arita | Variational calculation of transport coefficients in diffusive lattice gases[END_REF][START_REF] Arita | Bulk diffusion in a kinetically constrained lattice gas[END_REF] and symmetry is formally recovered in the second equality. Expressions in [START_REF] Osetsky | Tunable chemical complexity to control atomic diffusion in alloys[END_REF] are the cornerstone of variational approaches to mass transport [START_REF] Arita | Variational calculation of transport coefficients in diffusive lattice gases[END_REF][START_REF] Arita | Bulk diffusion in a kinetically constrained lattice gas[END_REF][START_REF] Trinkle | Variational Principle for Mass Transport[END_REF] and serve here the purpose of improving kMC estimations via correlation splitting and conditioning.

III. CORRELATION SPLITTING AND CONDITIONING

We proceed by first writing the LTV for displacement r 1→2 with conditioning on χ 1 and rescaling with 2 τ , [START_REF] Hänggi | Reaction-rate theory: Fifty years after Kramers[END_REF] where 2 . Further splitting the diffusion matrix ( 6) is then obtained through (i) inserting the LTV ( 7) in ( 6) and conditioning the expectation of r 0→1 ⊗ (χ 1 ) on χ 1 ; (ii) inserting the reversibility property (3); (iii) plugging the Poisson equation ( 4); (iv) simplifying the plugged expectation

D 1 [r 1→2 ] = E[D 1 [r 1→2 |χ 1 ]] + D 1 [E[r 1→2 |χ 1 ]],
D 1 [r 1→2 |χ 1 ] = V [r 1→2 |χ 1 ]/2τ and the conditional variance is V [r 1→2 |χ 1 ] = E[(r 1→2 ) 2 |χ 1 ] -e(χ 1 )
E[E[e(χ 1 ) ⊗ (χ 2 )|χ 1 ]] into E[e(χ 1 ) ⊗ (χ 2 )] using the LTE; (v) regrouping like quanti- ties D 1 [e] = E[e 2 ]
/2τ ; (vi) identifying the diffusion matrix of the conditionally expected displacements

D[e(χ 1 )] = D 1 [e(χ 1 )] + 1 τ E[e(χ 1 ) ⊗ (χ 2 )] = 1 2τ E[[e(χ 1 ) + (χ 2 )] 2 -2 ] ( 8 
)
by analogy to expressions of Eq. ( 6). Both contributions ( 6) and ( 8) are measurable by kMC simulations. The resulting splitting yields the LTD

D[r 1→2 ] = E[D 1 [r 1→2 |χ 1 ]] -D[E[r 1→2 |χ 1 ]], (9) 
in which the diffusion matrix is expressed as the difference between two symmetric non-negative contributions, the intracorrelated and extracorrelated diffusion matrices, respectively. Intracorrelations involve consecutive displacements ex-

clusively since E[D 1 [r 1→2 |χ 1 ]] = D 2 [r 0→1 ]. The remaining correlations contribute to the extracorrelated part D[e(χ 0 )] = -E[r 0→1 ⊗ (r 1→2 + 2 ∞ h=2 r h→h+1 )]/2τ
. The former equality arises as the particular case = 2 of a more general relationship

D [d] = E[D 1 [d|χ ]] + 1 D 1 [E[d|χ ]] - -1 D -1 [E[d|χ ]], (10) 
derived from the reversibility property (3) and the law of total covariance [42], where χ ≡ χ 1 and d ≡ r 0→1 . Relationship [START_REF] Agarwal | Computing long time scale biomolecular dynamics using quasistationary distribution kinetic Monte Carlo (qsd-kmc)[END_REF] bridges between the LTV at the lower extremity and the LTD obtained for → ∞. The LTD entails that the diffusion matrix can be estimated from mean local quantities, by plugging the expected displacements and their conditional variances given the visited states into its extracorrelated and intracorrelated parts. Besides, the LTD and bridging law are meaningful for reversible Markov chains and for any stochastic variable that is antisymmetric under chain reversal. Laws ( 7) and ( 9) also yield a Löwner partial ordering: [START_REF] Agarwal | Computing long time scale biomolecular dynamics using quasistationary distribution kinetic Monte Carlo (qsd-kmc)[END_REF] over a sample of l trajectories of L = max steps each. For statistical errors to be small, l must be large enough, standard deviations decaying as 1/ √ l [START_REF] Caflisch | Monte Carlo and quasi-Monte Carlo methods[END_REF]. Letting χ i,h denote state h of trajectory i and

D[d] E[D 1 [d|χ ]] D 1 [d], entailing that D[d] is better approximated by its intracor- related part D 2 [d] than its uncorrelated part D 1 [d]. Further increasing provides a decaying sequence (D [d]) 1 of upper-bound approximates of D[d] [29]. We then estimate D[d] via D [d] in
V(χ i,h ) stand for V [r i,h→h+1 |χ i,h ], the LTD-based conditioned estimator of D [d] writes D cnd l, = 1 2 τ 1 lL l i=1 L-1 h=0 V(χ i,h ) + 1 e(χ i,h ) 2 - 1 2 τ 1 l l i=1 -1 h=1 e(χ i,h ) 2 , ( 11 
)
where τ is an estimate of τ obtained via LTE-based conditioning, i.e., by averaging the MFPTs [START_REF] Athènes | Identification of novel diffusion cycles in B2 ordered phases by Monte Carlo simulation[END_REF][START_REF] Puchala | An energy basin finding algorithm for kinetic Monte Carlo acceleration[END_REF]:

τ = 1 lL l i=1 L-1 h=0 E[t i,h→h+1 |χ i,h ]. ( 12 
)
Note that information about the lL gathered states is included in the estimation of static expectations in [START_REF] Osetsky | Stability and mobility of defect clusters and dislocation loops in metals[END_REF] and [START_REF] Terentyev | Dimensionality of interstitial cluster motion in bcc-fe[END_REF]. Conditioned estimator in [START_REF] Terentyev | Dimensionality of interstitial cluster motion in bcc-fe[END_REF] has a statistical variance that is lower than that of the plain estimator l i=1 t i,0→ , a property guaranteed by the LTV [START_REF] Athènes | Conditioning and enhanced sampling schemes for simulating thermodynamic and kinetic properties of condensed matter[END_REF][START_REF] Frenkel | Waste-Recycling Monte Carlo[END_REF][START_REF] Athènes | Estimating thermodynamic expectations and free energies in expanded ensemble simulations: Systematic variance reduction through conditioning[END_REF]. The conditioning over time is traditionally done in the standard estimator of D [d]:

D std l, = 1 2 τ 1 l l i=1 r i,0→ ⊗ r i,0→ . ( 13 
)
While estimators [START_REF] Osetsky | Stability and mobility of defect clusters and dislocation loops in metals[END_REF] and ( 13) are both valid, their statistical variances usually differ. Hereafter, the optimal linear combination of the standard and conditioned estimators will be employed as a third estimator, as in waste-recycling Monte Carlo [START_REF] Delmas | Does waste recycling really improve the multi-proposal Metropolis-Hastings algorithm? An analysis based on control variates[END_REF][START_REF] Adjanor | Waste-recycling monte carlo with optimal estimates: Application to free energy calculations in alloys[END_REF], because it provides maximum reduction of the statistical variance via a control variate [START_REF] Caflisch | Monte Carlo and quasi-Monte Carlo methods[END_REF]. Consider a mobile defect evolving randomly on a flat potential energy surface. Its conditional mean displacements e(χ ) are all zero and its conditional variances V(χ ) all equal a same constant matrix Ṽ. For all generated trajectories, the conditioned estimator yields Ṽ/2τ , the exact diffusion matrix of the defect. In this trivial situation, the conditioned estimator is the perfect zero-variance estimator whereas the standard estimator has nonzero statistical variance. Statistical errors of the conditioned estimator occur when the transition rates of mobile defects differ and their atomic environment also evolves. Thus, the interesting question to address is how the three estimators behave when the spectrum of the hopping rates is extremely broad, that is, when severe kinetic trapping of the mobile defect is observed in the Monte Carlo simulations.

IV. AUXILIARY ABSORBING MARKOV CHAINS

Correlation splitting and conditioning can be employed in conventional or advanced kMC simulations. Here, we present simulations of severe kinetic trapping using the kinetic path sampling (kPS) algorithm [START_REF] Athènes | Path Factorization Approach to Stochastic Simulations[END_REF][START_REF] Athènes | Elastodiffusion and cluster mobilities using kinetic monte carlo simulations: Fast first-passage algorithms for reversible diffusion processes[END_REF][START_REF] Sharpe | Efficient and exact sampling of transition path ensembles on Markovian networks[END_REF]. kPS is an accelerated kMC algorithm developed upon theories of absorbing Markov chains (AMC) and graph transformation [START_REF] Wales | Calculating rate constants and committor probabilities for transition networks by graph transformation[END_REF]. It performs nonlocal displacements avoiding the most trapping states. Those are formally pooled together into a prespecified set, called transient set using AMC terminology and denoted by T. Moreover, kPS algorithm is able to generate first-passage paths and times efficiently based on matrix factorizations or inversions. Other AMC-kMC algorithms rely either on matrix diagonalizations [START_REF] Novotny | Monte Carlo Algorithms with Absorbing Markov Chains: Fast Local Algorithms for Slow Dynamics[END_REF][START_REF] Opplestrup | First-Passage Monte Carlo Algorithm: Diffusion without All the Hops[END_REF][START_REF] Oppelstrup | First-passage kinetic Monte Carlo method[END_REF][START_REF] Donev | A First-Passage Kinetic Monte Carlo algorithm for complex diffusion-reaction systems[END_REF][START_REF] Nandipati | First-passage time approach to kinetic monte carlo simulations of metal (100) growth[END_REF][START_REF] Fichthorn | A local superbasin kinetic monte carlo method[END_REF], a mean rate ersatz [START_REF] Athènes | Identification of novel diffusion cycles in B2 ordered phases by Monte Carlo simulation[END_REF][START_REF] Puchala | An energy basin finding algorithm for kinetic Monte Carlo acceleration[END_REF] based on Eq. ( 12), or an on-the-fly modification of the hopping rates [START_REF] Chatterjee | Accurate acceleration of kinetic Monte Carlo simulations through the modification of rate constants[END_REF]. The kMC and kPS stochastic matrices, respectively denoted by P o and P, satisfy the conditions P o χχ = 0 and P χζ = 0, ∀ χ , ∀ ζ ∈ T ∪ {χ }. The probabilities of not transitioning are always zero from any state and the respective MFPTs, denoted by τ o χ and τ χ , are state dependent. Matrix P is constructed from P o and an absorbing stochastic matrix, P a coinciding with P o over T and with identity matrix I over T, the complement of T. This entails that transitions from T are canceled, making T states transient and T states absorbing:

P a χχ = 1 T (χ )P o χχ + 1T(χ )I χχ , ( 14 
)
where indicator function 1 S is 1 if χ ∈ S and 0 otherwise. Resorting to AMC theory [START_REF] Athènes | Identification of novel diffusion cycles in B2 ordered phases by Monte Carlo simulation[END_REF][START_REF] Puchala | An energy basin finding algorithm for kinetic Monte Carlo acceleration[END_REF][START_REF] Athènes | Path Factorization Approach to Stochastic Simulations[END_REF][START_REF] Athènes | Elastodiffusion and cluster mobilities using kinetic monte carlo simulations: Fast first-passage algorithms for reversible diffusion processes[END_REF][START_REF] Sharpe | Efficient and exact sampling of transition path ensembles on Markovian networks[END_REF][START_REF] Wales | Calculating rate constants and committor probabilities for transition networks by graph transformation[END_REF][START_REF] Novotny | Monte Carlo Algorithms with Absorbing Markov Chains: Fast Local Algorithms for Slow Dynamics[END_REF][START_REF] Opplestrup | First-Passage Monte Carlo Algorithm: Diffusion without All the Hops[END_REF][START_REF] Oppelstrup | First-passage kinetic Monte Carlo method[END_REF][START_REF] Donev | A First-Passage Kinetic Monte Carlo algorithm for complex diffusion-reaction systems[END_REF], the mean number of visits of transient state ζ is defined as the conditional expectation of the indicator function

1 {ζ } given initial state χ 1 ∈ T. It corresponds to the Green function χ 1 → G a χ 1 ζ = ∞ k=0 E a [1 {ζ } (χ k+1 )|χ 1 ] solution of the Poisson equation over T: G a χ 1 ζ = E a G a χ 2 ζ |χ 1 + 1 {ζ } (χ 1 ), (15) 
entailing 

G a ζ ζ = ξ ∈T P o ζ ξ G a ξζ + I ζ ζ ,
Π a ζ χ = ζ G a ζ ζ P a ζ χ + I ζ χ , τ a ζ = ζ G a ζ ζ τ o ζ . ( 16 
)
The overlying transition probability from χ to χ = χ and the MFPT from χ eventually write

P χχ = ζ P o χζ Π a ζ χ π χ , τ χ = ζ P o χζ τ o χ + τ a ζ π χ , ( 17 
)
where rescaling of both transition probabilities and elapsed times by probability π χ = 1ζ P o χζ Π a ζ χ serves to cancel the flicker probability, thus, P χχ = 0. Besides, if P o χχ obeys detailed balance with respect to its stationary probability distribution ρ o χ over T ∪ T, then so does P χχ with respect to ρ χ ∝ ρ o χ π χ over T. The scaled probability distribution ρ eq χ ∝ ρ o χ τ o χ ∝ ρ χ τ o χ /π χ then corresponds to the thermodynamic equilibrium. Fulfilment of the reversibility property allows conditioning to be performed. The conditioned estimator [START_REF] Osetsky | Stability and mobility of defect clusters and dislocation loops in metals[END_REF] can thus be used. Note that the kPS algorithm reverts to the conventional kMC algorithm when none of the states are made transient.

V. RANDOM ALLOY MODEL

We illustrate the approach by computing the mass transport coefficients in a random binary alloy on a square lattice with periodic conditions. Diffusion is mediated by a single vacancy V exchanging with A or B nearest-neighbor atoms [START_REF] Allnatt | Atomic Transport in Solids[END_REF][START_REF] Trinkle | Variational Principle for Mass Transport[END_REF][START_REF] Barbe | A self-consistent mean field calculation of the phenomenological coefficients in a multicomponent alloy with high jump frequency ratios[END_REF]. As aforementioned, transition rates are usually computed in the framework of transition state theory [START_REF] Hänggi | Reaction-rate theory: Fifty years after Kramers[END_REF]. They have the classical form ν X = ν exp[-E X /(k B T )] where E X > 0 is the energy barrier that neighboring atom X jumping into the vacancy must cross and ν is the attempt frequency for both species. Here, transition rates are environment independent and only depend on the type of the jumping atom. Consequently, all states are equiprobable, and the system energy has same constant value for all stable states. No thermodynamic transition occurs in the random solid solution [START_REF] Allnatt | Atomic Transport in Solids[END_REF]. In particular, the site percolation threshold is independent of the jumping frequencies ν A and ν B . Despite its simplicity, the random alloy model is a nontrivial system and is thus customarily used to study trapping and percolation [START_REF] Trinkle | Variational Principle for Mass Transport[END_REF][START_REF] Barbe | A self-consistent mean field calculation of the phenomenological coefficients in a multicomponent alloy with high jump frequency ratios[END_REF]. Assuming E A > E B > 0, the frequency ratio ν B /ν A increases with decreasing the temperature. Hence, low temperatures result in dynamical trapping. Here, the jump rate of B atoms, ν B , will be much higher than the one of A atoms, ν A . For the sake of simplicity, we adopt ν A units by setting this value to 1 in the following. To perform kPS simulations, the transient graph is to be crafted as the union of many disconnected subgraphs, so that relatively small blocks of I -P a need being numerically manipulated on the fly (for computing Π a and τ a ). We illustrate the construction of the simulated networks on a square lattice in Fig. 1. Trapping is suppressed by making transient all the states where the vacancy is located next to a B atom. The difficulty is that vacancy-solute cluster shapes are connected to each other [see Fig. 1(a)], rendering the size of the local transient block so huge that its enumeration is numerically impracticable except for small and isolated B clusters. The problem is mitigated by first augmenting the transition network through the insertion of saddle states along AV exchanges to divide the trapping network into many disconnected subgraphs [see Fig. 1(b)]. Transition probabilities from any added saddle state to its two adjacent stable states both equal half. Besides, doubling the transition rates from a stable state to its adjacent saddle states and nullifying the residence times τ o at the added saddles compensates the effect of the occasional flickers between stable and saddle states. Finally, stable states are all turned transient, as diagramed in Fig. 1(c). That is, set T is the space of stable states and the simulated network T exclusively consists of the inserted saddle states. The augmentation or reduction of the network leaves the distributions of the sequences of simulated events and times unaffected.

Computing the conditional cumulants given the sampled states in estimator ( 11) is strenuous when a solute cluster, i.e., a subgraph of the transient network, percolates through the periodically replicated supercell, as illustrated in Fig. 2. Cumulants e(χ 0 ) and V(χ 0 ) must account for all the displacements r 0→1 possibly sampled by kPS algorithm. The sampled displacements starting in χ 0 and ending in χ 1 ∈ T are all congruent to d(χ 0 , χ 1 ) modulo the cell periods along the percolating directions [see Fig. 2(a)], and many among them may differ from d(χ 0 , χ 1 ). This consequent sampling burden is avoided by analytically integrating the underlying conditional expected displacements e a (χ h ) E a [r u h→h+1 |χ h ], in a similar way to [START_REF] Swinburne | Automated calculation and convergence of defect transport tensors[END_REF][START_REF] Athènes | Elastodiffusion and cluster mobilities using kinetic monte carlo simulations: Fast first-passage algorithms for reversible diffusion processes[END_REF]. Letting E o [•] denote expectation with respect to P o , both cumulants of overlying displacement r 0→1 are determined by the underlying sequences r u 0→1 + r u 1→∞ ≡ r 0→1 associated with the successive states of the AMC, {χ u h } h 1 , and where χ u 0 = χ 0 and χ u ∞ = χ 1 . Conditioning after the P o transition within decomposition [START_REF] Bortz | A new algorithm for monte carlo simulation of ising spin systems[END_REF] yields

e(χ 0 ) = E o r u 0→1 + E a r u 1→∞ |χ 1 χ 0 /π χ 0 , (18a) V(χ 0 ) = E o r u 0→1 + E a r u 1→∞ |χ 1 -e(χ 0 ) 2 χ 0 π χ 0 . ( 18b 
)
The mean displacement E a [e a ] being null, the relaxation vector a (χ 1 ) E a [r 1→∞ |χ 1 ] = +∞ h=1 E a [e a (χ h )|χ 1 ], is null outside T and satisfies a Poisson equation inside T:

a (χ 1 ) = E a [ a (χ 2 )|χ 1 ] + e a (χ 1 ). ( 19 
)
The solution is unique, and reads as a (ζ ) = ζ G a ζ ζ e a (ζ ) for ζ ∈ T and cancels outside T. It serves to evaluate the two conditional cumulants [START_REF] Trochet | Algorithmic developments of the kinetic activation-relaxation technique: Accessing long-time kinetics of larger and more complex systems[END_REF] for estimator [START_REF] Osetsky | Stability and mobility of defect clusters and dislocation loops in metals[END_REF]. We resort to their respective LTE and LTV expressions with conditioning over the underlying absorbing chain initiated from ζ ≡ χ 1 to obtain a numerically tractable expression

e(χ ) = ζ [d(χ, ζ ) + a (ζ )]P o χζ /π χ , (20a) V(χ ) = ζ V a (ζ ) + [d(χ, ζ ) + a (ζ ) -e(χ )] 2 P o χζ π χ , ( 20b 
)
where χ ≡ χ 0 in [START_REF] Trochet | Algorithmic developments of the kinetic activation-relaxation technique: Accessing long-time kinetics of larger and more complex systems[END_REF]. The variance of the absorbing chain conditioned on ζ ≡ χ 1 is also computed using the Green function and relaxation vectors, resorting to relation [START_REF] Bocquet | Correlation factor for diffusion in cubic crystals with solute-vacancy interactions of arbitrary range[END_REF] below: Note that quantities a and V a are first and second derivatives of a displacement cumulant generating function at its origin, respectively [START_REF] Swinburne | Automated calculation and convergence of defect transport tensors[END_REF].

V a (χ 1 ) = E a ∞ h=1 r u h→h+1 2 χ 1 -a (χ 1 ) 2 (21) = ∞ h=1 E a (r u h→h+1 + a (χ h+1 )) 2 -a (χ h ) 2 χ 1 = χζ G a χ 1 χ P a χζ [d(χ, ζ ) + a (ζ )] 2 -a (χ ) 2 . ( 22 
)

VI. ESTIMATION OF THE DIFFUSION COEFFICIENTS

We perform a series of kPS simulations of extreme dynamical trapping by setting ν B = 10 5 and ν A = 1 in a periodically replicated square lattice of size 16 × 16. Compositions are gradually increased from 1 to 254 B atoms. The atomic concentration of X is denoted by C X , entailing that

C A+B = C A + C B is one. The diffusion matrix D[d] is estimated us- ing D std
l,L and D cnd l,L estimators with L = max = 200, l = 5 × 10 5 for C B < 0.5, and l = 10 4 for C B 0.5. Estimates D std X and D cnd X of the diffusion coefficients D X for both species and the vacancy (X = A, B, and A + B) are then obtained via D std l,L and D cnd l,L by averaging the corresponding elements over the two space directions. The optimal estimate is then obtained as [START_REF] Agarwal | Computing long time scale biomolecular dynamics using quasistationary distribution kinetic Monte Carlo (qsd-kmc)[END_REF] where Σ and Γ -1 are estimates of the corresponding intracorrelated and extracorrelated parts. Last, we define and evaluate the intracorrelation-toextracorrelation ratio φ = Σ L /Γ L and the reduction factor of the statistical variance η = var(D std X )/var(D opt X ). The atomic diffusivities D X = D X /C X evaluated using the standard and optimal estimators for the entire composition range are displayed in Fig. 3, together with η, φ, and c . We observe that the speedup measured in terms of η is considerable whenever the intracorrelated contribution to diffusivity dominates (φ 1). In this situation, the optimal estimator perfectly matches the conditioned estimator (c = 1). The optimal estimator is relatively less efficient for the fast-diffusing B atoms when the extracorrelated contribution to B diffusivity is significant, at B concentration lower than 40%. The lowest reductions of variance are about a factor of 2. To investigate the origin of the relatively lower performance of the conditioned estimator, we display in Fig. 4 the transient regime estimated from D std X ( ), D cnd X ( ), and Γ -1 with estimates of their standard errors for 0 max . The errors associated with Γ -1 terms are negligible compared to those with Σ terms and are attributed to the intermittent binding of the vacancy to the B clusters. Removing this intermittency in the kPS algorithm would require making additional states transient and handling A-connected subgraphs similarly to B clusters.

D opt X = (1 -c )D std X + c D cnd X where the optimal control variate is c = -cov(D std X , D cnd X -D std X )/var(D cnd X - D std X ). We furthermore record the transient regimes D cnd X ( ) = Σ + 1 Γ 1 + 1-Γ -1 from
Interestingly, the negative contributions 1-Γ in Fig. 4 undergo fast algebraic decays towards their plateau values δ. The three curves are very well fitted by a law of the form g( + 0 ) α + δ. Implementing the nonlinear leastsquares Marquardt-Levenberg algorithm with the four fitting parameters g, 0 , α, and δ yields the power-law exponents α associated with A, B, and A + B diffusivities. The obtained α values lie in the following 68%-confidence intervals: -1.302 ± 0.091, -1.015 ± 0.008, and -1.015 ± 0.008, respectively. The convergence features of the mean-squared mean displacements entail that a standard diffusive regime exhibiting short-range dependence is quickly reached as increases [START_REF] Rust | Spectral analysis for stochastic processes[END_REF]. This property is related to the fast algebraic decay of the autocorrelation function, as detailed in [42]. Note that the larger exponent associated with A diffusivity decreases as the frequency ratio is decreased [42]. This physical trend results from a nontrivial interplay between composition, FIG. 5. Diffusion coefficient D A+B as a function of composition for various lattice sizes S using the kPS and kMC algorithms. The optimized estimator is used in all calculations. The kPS simulations are performed with same setup as in Fig. 3, but four additional supercell sizes, S = 8, 12, 24, and 32. The conventional kMC simulations employ 10 4 trajectories of 10 6 steps. Their CPU costs are almost independent of the system sizes. Note that the speedups η obtained through conditioning are considerable in conventional kMC simulations of dilute A x B 1-x systems with x < 0.1. transition rates, site interactions, and geometry. We refer to the recent work of Settino et al. [START_REF] Settino | Emergence of anomalous dynamics from the underlying singular continuous spectrum in interacting manybody systems[END_REF] who studied anomalous diffusion in the Aubry-André model via the autocorrelation functions and investigated the dependence of their power-law decay on the model physical parameters.

Here, the extremely severe dynamical trapping of the vacancy with B atoms strongly impacts the monotonous increase of B diffusivity with C B . The sudden sharp increase of D B observed at C B ≈ 0.35 occurs at a concentration much lower than p s = 0.592 745, the site percolation threshold [START_REF] Ziff | Spanning Probability in 2D Percolation[END_REF]. This dynamical transition is due to the cooperative motion of small B clusters whose effectiveness increases considerably with C B in small supercells. With increasing supercell sizes, the transition further sharpens and occurs closer to the percolation threshold, as shown in Fig. 5.

The kPS simulations for the two largest supercell sizes in Fig. 5 became inefficient and were stopped before terminating. The inefficiency from the larger sizes of the percolating solute clusters and to the cost of computing the Green functions for the associated transient subgraphs, a task involving matrix inversion or factorization. Here, a direct nonoptimized dense solver was used whose complexity scales cubically with the sizes of the transient subgraphs. As a result, the approach starts consuming CPU time enormously when supercell sizes and B concentrations are too large. Nevertheless, dynamical trapping disappearing beyond the percolation threshold, conventional kMC simulations can be used instead. One then obtains reliable estimates of the diffusion coefficients at much larger system sizes, as shown in Fig. 5. The variance reduction factor η allowed by the optimal estimator in kMC simulations increases from 1 below the percolation threshold to 10 5 in pure B. For concentrated alloy system A 0.1 B 0.9 , the factor of variance reduction η is 10 2 , yielding an appreciable speedup. However, the conditioned estimator underperforms the standard one at the low-B concentrations, when trapping becomes important in conventional kMC simulations. Results obtained using the conventional kMC algorithm in systems exhibiting moderate dynamical trapping are also reported in [42], where it is shown that significant variance reductions via conditioning are systematically observed. The conventional kMC algorithm outperforms kPS algorithm with excessively large transient subgraphs because the trapping strength measured in number of steps the vacancy remains attached to a solute cluster scales linearly with the cluster size, while the factorization cost scales cubically here. A smaller prefactor for the factorization costs makes kPS advantageous for transient subgraphs smaller than a certain threshold value. Hence, there are two complementary ways to improve kPS simulations: (i) avoid turning a large vacancy-solute cluster into a transient subgraph when its size is above the threshold, (ii) resort to a sparse linear solver to reduce the factorization and inversion costs. The latter costs grow quadratically with the subgraph sizes for the direct multifrontal linear solver used in Ref. [START_REF] Athènes | Elastodiffusion and cluster mobilities using kinetic monte carlo simulations: Fast first-passage algorithms for reversible diffusion processes[END_REF].

Nonetheless, an interesting trend emerges from the results of the kPS simulations with severe trapping. We indeed observe that the extracorrelation-to-intracorrelation ratio φ -1 vanishes for all diffusion measurements reported in Fig. 3 when the solute concentrations are larger than the dynamical percolation threshold values. This property means that the correlations of the underlying process are well captured by the auxiliary absorbing Markov chains. It entails that the extracorrelated part of the diffusion matrix is negligible and justifies the use of the kinetic cluster expansion (KineCluE) method [START_REF] Schuler | Kineclue: A kinetic cluster expansion code to compute transport coefficients beyond the dilute limit[END_REF] to solve this particularly difficult diffusion problem. This method neglects the extracorrelated part and similarly resorts to auxiliary absorbing Markov chains, but these ones are constructed from a subgraph expansion. To adapt the KineCluE method to concentrated alloys, the absorbing Markov chains should be solved for a sample of alloy configurations generated at thermodynamic equilibrium. Whenever the extracorrelated part containing the cluster correlations is negligible, the transport coefficients may be correctly estimated from their intracorrelated contributions exclusively.

Concerning the transport properties of the slowly migrating solvent species, we observe that A diffusivity is almost not impacted by dynamical trapping and remains constant. Reproducing a sluggish diffusion behavior where A diffusivity exhibits a minimum at intermediate compositions, as observed experimentally in several concentrated solid solution alloys [START_REF] Athènes | Identification of novel diffusion cycles in B2 ordered phases by Monte Carlo simulation[END_REF] and highly debated in the literature on high-entropy alloys [START_REF] Tsai | Sluggish diffusion in Co-Cr-Fe-Mn-Ni high-entropy alloys[END_REF][START_REF] Paul | Comments on "Sluggish diffusion in Co-Cr-Fe-Mn-Ni high-entropy alloys[END_REF][START_REF] Miracle | A critical review of high entropy alloys and related concepts[END_REF][START_REF] Osetsky | On the existence and origin of sluggish diffusion in chemically disordered concentrated alloys[END_REF][START_REF] Kottke | Experimental and theoretical study of tracer diffusion in a series of (CoCrFeMn) 100-x Ni x alloys[END_REF][START_REF] Daw | Sluggish diffusion in random equimolar fcc alloys[END_REF], will necessitate to parametrize the exchange rates ν A and ν B , for instance, by accounting for the binding energies and entropies between alloying elements and vacancies [START_REF] Swinburne | Self-optimized construction of transition rate matrices from accelerated atomistic simulations with bayesian uncertainty quantification[END_REF][START_REF] Trochet | Algorithmic developments of the kinetic activation-relaxation technique: Accessing long-time kinetics of larger and more complex systems[END_REF][START_REF] Trochet | Off-Lattice Kinetic Monte Carlo Methods[END_REF][START_REF] Lapointe | Machine learning surrogate models for prediction of point defect vibrational entropy[END_REF]. This would affect short-range ordering or clustering, introduce a dependency of vacancy concentration on alloy composition, and impact atomic diffusion.

VII. CONCLUSION

Splitting the diffusion matrix into its intracorrelated and extracorrelated parts and conditioning the correlations enables one to formulate a law of total diffusion. A conditioned estimator then allows measuring atomic diffusivities with considerably improved accuracy in absence of dynamical trapping. The use of an optimized control variate guarantees systematic variance reductions compared with standard computations performed with conventional or advanced kinetic Monte Carlo methods. Conditioning is particularly useful when the latter methods employ auxiliary absorbing Markov chains able to suppress trapping at the underlying scale, like kinetic path sampling, as it leverages the Green functions that are computed to generate the escaping first-passage paths. However, the cost of computing these Green functions must remain reasonable so that kinetic path sampling simulations always outperforms conventional kinetic Monte Carlo simulations. If this condition is not met, it is preferable to limit the sizes of the transient subgraphs or to revert to conventional kMC simulations. The conditioning approach is in principle amenable to the numerous kMC simulations dealing with realistic potential energy surface accounting for lattice distortions [START_REF] Trochet | Off-Lattice Kinetic Monte Carlo Methods[END_REF] or describing amorphous structures [START_REF] Li | Effect of local structural disorder on lithium diffusion behavior in amorphous silicon[END_REF]. In these simulations, the computation of the transition rates is often so costly that the number of simulated events is quite limited. The variance reduction technique proposed here will certainly be useful in this particular context. As the conditioning approach represents a small overhead, it can be readily applied to estimate transport properties of any particles migrating through thermally activated events in crystalline or noncrystalline solids. Its range of applicability encompasses surface and bulk diffusion in presence of extended defects [START_REF] Athènes | Elastodiffusion and cluster mobilities using kinetic monte carlo simulations: Fast first-passage algorithms for reversible diffusion processes[END_REF][START_REF] Grabowski | Kinetic Monte Carlo simulations of vacancy diffusion in nondilute Ni-X (X = Re, W, Ta) alloys[END_REF][START_REF] Landeiro Dos Reis | Atomic scale simulations for the diffusion-assisted crossing of dislocation anchored by vacancy clusters[END_REF][START_REF] Rahman | Pressure effect on diffusion of carbon at the 85.91 • 100 symmetric tilt grain boundary of α-iron[END_REF] like cavities, clusters, dislocations, or grain boundaries, within complex alloys or any material compounds.

  while G a χχ is set to zero whenever χ or χ lies outside T. Thus, G a and I -P a are two singular matrices, pseudoinverse of each other, whereasG a ζ ζ is the regular inverse of I ζ ζ -P a ζ ζ for ζ , ζ ∈ T.For an absorbing Markov chain starting from ζ , the knowledge of the number of visits of state ζ enables one to deduce the probability of being absorbed at χ ∈ T and the mean time for being absorbed in T:

FIG. 1 .

 1 FIG. 1. Transformation of transition networks: (a) physical network wherein blue and black barriers map out exchanges of a vacancy (empty squares) with bulk A atoms (not displayed) or solute B atoms (red disks); (b) augmented network after inserting saddle states along vacancy-A exchanges (empty diamonds represent vacancies at saddle positions); (c) reduced network after eliminating stable states

FIG. 2 .

 2 FIG. 2. A supercell (in bold) is periodically replicated horizontally. The blue and green paths represent two distinct sequences of atomic displacements through the percolating solute cluster (the transient subgraph) between the same starting state in (a) and ending state in (b).

FIG. 3 .

 3 FIG. 3. Atomic diffusivities D X (X = A, B, and A + B) for extreme dynamical trapping (ν A = 1 and ν B = 10 5 ), as a function of C B , with corresponding variance reduction factor η, intracorrelationto-extracorrelation ratio φ, and optimal variate c . The supercell size is 16 × 16.

FIG. 4 .

 4 FIG.4. Time dependence of the estimated D X ( ) with = t/ τ , using standard (13) and conditioned (11) estimators, for X = A, B, and A + B. Filled areas around the curves represent 95% confidence intervals (CI). CIs around 1 Γ 1 and 1-Γ curves are too small to be visible.

d(χ, χ ) equals rr + arg min rr + m , where the components m i of argument m run over the multiples of the simulation supercell periods.
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