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Abstract
While contextual language models are now dominant in the field of Natural Language Processing, the representations they build
at the token level are not always suitable for all uses. In this article, we propose a new method for building word or type-level
embeddings from contextual models. This method combines the generalization and the aggregation of token representations. We
evaluate it for a large set of English nouns from the perspective of the building of distributional thesauri for extracting semantic
similarity relations. Moreover, we analyze the differences between static embeddings and type-level embeddings according
to features such as the frequency of words or the type of semantic relations these embeddings account for, showing that
the properties of these two types of embeddings can be complementary and exploited for further improving distributional thesauri.
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1. Introduction
The introduction of contextual language models such
as ELMo (Peters et al., 2018) or BERT (Devlin et al.,
2019) in the field of Natural Language Processing rep-
resents a major change in many dimensions. From the
viewpoint of lexical semantics, one of them is the fact
that these models produce representations at the token
level instead of the word or type level. This change has
generally a positive impact on classification or sequence
labeling tasks that can be addressed by supervised ma-
chine learning approaches. However, it raises more
difficulties for tasks typically addressed by unsuper-
vised approaches and focusing on the word level, such
as the extraction of semantic relations between words
for instance.
One way to bypass these difficulties is to build type-
level embeddings from a contextual language model1,
which was already addressed by some studies. Etha-
yarajh (2019) proposes to use principal component anal-
ysis (PCA) as part of his analysis of the properties of
contextual models while Bommasani et al. (2020) test
a larger set of operations in the perspective of using
type-level embeddings for investigating the properties
of contextual models. The same kind of objective can
also be found in (Vulić et al., 2020b) and (Vulić et al.,
2020a) with a focus on semantic properties. Finally,
Chronis and Erk (2020) explore the more specific issue
of multi-prototype embeddings for accounting for the
diversity of token representations. To some extent, the
problem we consider is also linked to the building of
meta-embeddings since the problem is to combine sev-

1Static embeddings such as those produced by the Skip-
gram model (Mikolov et al., 2013) are intrinsically type-level
embeddings but for avoiding confusion, we use in this paper
the term static embeddings for referring to the embeddings
produced by a non-contextual language model and the term
type-level embeddings for referring to the embeddings built
from a contextual language model.

eral embeddings in both cases (Yin and Schütze, 2016;
O’Neill and Bollegala, 2020).
The work of this article is more particularly focused on
the production of word or type-level embeddings from
contextual models for building distributional thesauri
in the perspective of extracting semantic similarity re-
lations such as synonyms. More precisely, we present
three main contributions:

• first, we propose a new method for producing type-
level embeddings from contextual models by intro-
ducing a kind of generalization of token represen-
tations;

• then, we perform a large-scale evaluation of this
method in a complementary framework to those of
Bommasani et al. (2020) or Ethayarajh (2019);

• finally, we show that considering static embeddings
and type-level embeddings in a complementary per-
spective would be more interesting than replacing
the former with the latter.

2. Method
2.1. Principles
As Bommasani et al. (2020) and Ethayarajh (2019),
the method we propose starts for each word from a set
of Ntok token representations and aims at aggregating
these representations to produce a representation of that
word. Each token representation corresponds to the em-
bedding vector extracted for an occurrence of the target
word in a sentence from the results of the encoding of
this sentence by a contextual language model. More
precisely, we distinguish three steps in the production
of a representation at the type level:

• first, the selection of the considered token repre-
sentations;
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Figure 1: The three strategies for generalizing token representations. The figure graphically distinguishes the
pseudo-similarity relations between token representations only and those between token and word representations
but these two kinds of relations are considered similarly at the level of the retrofitting algorithm.

• then, the generalization of the selected token repre-
sentations;

• finally, the building of the word representation.

The first step arises from the idea that the building of
the representation of a word should benefit from the
diversity of its occurrences as long as this diversity is
not too large. Trying to aggregate the representations
corresponding to different homonyms for instance is
not a priori a good idea, which means that some sort
of selection of token representations has to be done. A
complementary way to control the diversity of such rep-
resentations is to generalize them or at least, bring them
closer. This is the objective of the second step. The
last step is more directly linked to the previous work
of Bommasani et al. (2020) and Ethayarajh (2019) and
performs the aggregation of the selected token represen-
tations.

2.2. Token Representation Selection
The first way to restrict the diversity of the occurrences
tij of a word wi in terms of sense is to draw these oc-
currences from a homogeneous corpus, which we do in
the experiments of Section 3. However, even if, as sug-
gested by McCarthy et al. (2004), most words have one
predominant sense in a specific corpus, it does not mean
that their other senses are fully negligible. For control-
ling this factor and testing its influence, we assume that
averaging the representations v(tij) of the occurrences
of a word should lead to a representation of this word,
denoted avg(wi), very close to its predominant sense.
Considering that we select a fixed number Nsel tok of
occurrences for each word, we propose the following
options:

• random: it is our base option in which Nsel tok

tokens are randomly selected among the Ntok to-
kens initially selected for the word. This is also the
option generally adopted by existing work in this
area;

• closest avg: we select tokens tij such that the rep-
resentation vtij of the token is closest to avg(wi),

with the idea to favor the homogeneity among the
selected tokens towards the predominant sense of
the word. This is a priori the best option in terms
of precision;

• farthest avg: this is the opposite of closest avg.
We select tokens such that vtij is farthest to
avg(wi) to increase the presence of minor senses
of the word;

• uniform: the idea is to account for the diversity of
word’s senses by selecting Nsel tok that are uni-
formly distributed in terms of the similarity of vtij
to avg(wi). This is a priori the best option in terms
of recall.

2.3. Token Representation Generalization
and Word Representation Building

Building a representation covering the selected tokens
of a word requires to some extent erasing the differ-
ences of their representations or at least, enhancing their
similarities. In concrete terms, it means bringing these
representations closer to each other while keeping the
core of their specificities. This objective is close to
the process underlying several methods of injection of
knowledge into static embeddings known under the um-
brella term retrofitting (Faruqui et al., 2015). In the
case of retrofitting methods, the process brings closer
together the vectors of the words that are part of seman-
tic similarity relations while some methods additionally
push away from each other the vectors of words that are
part of dissimilarity relations when they exist.
In our case, we apply a retrofitting method by consider-
ing that the token representations of a word are implic-
itly linked by similarity relations, which is illustrated
in Figure 1. This is actually true when tokens represent
different uses of the same word sense and justifies our
first step of token selection. Contrary to Chronis and
Erk (2020) or Wang et al. (2021), we do not cluster the
occurrences of a word into distinct senses, in the case
of (Chronis and Erk, 2020), or topics, in the case of
(Wang et al., 2021), and do not need to introduce im-
plicit dissimilarity relations between tokens belonging
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Rprec MAP P@1 P@2 P@5

CBERT-l3 15.6 18.1 21.9 15.8 9.2
CBERT-l4 15.6 18.0 22.0 15.9 9.2
CBERT-l5 14.5 16.6 20.6 14.7 8.6

CBERT-l4-all 16.1 18.4 22.5 16.3 9.4

BERTrep-l4 12.2 14.0 17.2 12.5 7.3

BERTiso-l0 14.0 15.8 19.2 14.6 8.7

BERT-l4 14.7 16.7 20.7 15.3 9.0
BERT-l5 15.6 17.9 21.8 16.0 9.5
BERT-l6 14.3 16.5 20.1 14.5 8.5

fastText 15.5 18.4 21.9 15.7 9.2

Table 1: Baseline type-level embeddings from CharacterBERT and BERT by averaging token representations.

to different clusters, either senses or topics.
While we have presented the last two steps of our
method as sequential in Section 2.1, their relationship
is actually more complex, with two main options. The
first option, called gen+agg, corresponds to the scheme
of Section 2.1: a pseudo-similarity relation is gener-
ated for each pair of tokens of a word, as shown in
Figure 1, a retrofitting method is applied to the represen-
tations of these tokens according to the pseudo-relations
and finally, the token representations are aggregated for
building the type-level representation of the word2.
The second option is partially a joint approach: the
token representations are first aggregated3. Then, the
generalization step is performed and applied to both the
token representations and the result of their aggregation.
The interest of this second option is to include the rep-
resentation of the word into the generalization process
as it is done in (Ferret, 2018) and to implement indi-
rectly a new kind of aggregation. Two variants of this
second option can be distinguished. The first variant,
called agg+genall, considers the aggregation result as
an additional token representation and generates pseudo-
similarity relations between all the tokens, including the
aggregate, as in the first option. The second variant,
called agg+genagg , generates pseudo-relations only be-
tween the aggregate and all the tokens, which is a way
to focus the generalization operation on the type-level
representation of the word.
Similarly to Vulić et al. (2017), we adopt PARAGRAM
(Wieting et al., 2015) as our default retrofitting method
due to the effectiveness of its contrastive learning-alike
objective function.

2The result of this aggregation does not appear in Figure 1
since it does not influence the generalization step.

3The result of this aggregation is represented by a red circle
in Figure 1.

3. Experiments
3.1. Experimental Setup
For evaluating our method, we mainly consider two pre-
trained contextual language models: BERT and Char-
acterBERT (El Boukkouri et al., 2020), both in their
uncased version with 12 layers (plus the input layer
L0). As Bommasani et al. (2020), we build the repre-
sentation of each token with BERT by averaging the
representations of its wordpieces. The interest of con-
sidering CharacterBERT in our context is to investigate
the impact of this representation of tokens since Charac-
terBERT can directly produce a representation for each
token.
The building of our word or type-level embeddings is
based on the encoding by these models of a set of sen-
tences. More precisely, we randomly selected a maximal
numberNtok of 250 sentences for each considered word
wi from the AQUAINT corpus, a 380 million-word cor-
pus of news articles in English. For the second selection
step of Section 2.2, we discarded sentences with less
than 10 words and more than 90 words for having a
significant and focused context when at least Nsel tok

(Nsel tok = 10) sentences fulfilled these constraints.
The evaluation itself is performed in the context of the
building of distributional thesauri: for each target word
wi, a set of distributional neighbors are retrieved by
computing the similarity of wi with all the other target
words wj and ranking these words in the decreasing
value of their similarity with wi. This similarity is com-
puted by applying the cosine measure to their type-level
representation, built from the contextual language mod-
els. We evaluate the relevance of this ranking as in
Information Retrieval with R-precision (Rprec.), MAP
(Mean Average Precision), and precisions at various
ranks (P@r). Similarly to work such as (Landauer and
Dumais, 1997) or (Freitag et al., 2005) whose evaluation
is based on the TOEFL paradigm, our reference is made
up of synonyms, coming in our case from WordNet
(Miller, 1990)4, with 3 synonyms by word on average.

4More precisely, for each considered word, we gather all
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Rprec MAP P@1 P@2 P@5

CBERT-avg (CBERT-l4) 15.6 18.0 22.0 15.9 9.2
CBERT-pca 15.6 17.9 22.0 15.9 9.2

CBERT-gen+agg 16.1 18.6 22.6 16.3 9.5
CBERT-agg+genall 16.3 18.9 22.8 16.5 9.7
CBERT-agg+genagg 16.3 18.8 22.8 16.4 9.6

CBERT-retr-agg+genagg 15.6 18.0 22.0 15.9 9.2

BERT-avg (BERT-l5) 15.6 17.9 21.8 16.0 9.5
BERT-agg+genagg 16.2 18.8 22.5 16.1 10.1

fastText 15.5 18.4 21.9 15.7 9.2

Table 2: Evaluation of the proposed method for building type-level embeddings from contextual models.

The evaluation is performed for 10,305 nouns covering
a large spectrum of frequencies.

3.2. Baseline Evaluation
The first step of our evaluations is the application of
the approach of Bommasani et al. (2020), which con-
sists in building the type-level embedding of a word
by averaging the embeddings of its occurrences in a
set of sentences. We present the results of this applica-
tion, considered as a baseline, in Table 1 for both BERT
and CharacterBERT (CBERT). More precisely, for each
model, we provide the results for the best layer (shaded
rows) and its two adjacent layers. These results are ob-
tained from 10 sentences randomly selected among the
250 sentences available for each of our 10,305 nouns.
We can first observe that both models have their highest
performance for nearly the same layer with very compa-
rable values for all our evaluation measures. However,
it should be noted that CharacterBERT is trained with
the same settings as BERTrep, which is equivalent in
terms of model and corpus size to BERT but trained
with only half as many batches. The results of BERTrep
in Table 1, clearly lower than BERT’s results, make it
difficult to conclude about the impact of averaging word-
piece representations in BERT for building type-level
word representations since the results of CharacterBERT
may be higher with more batches.
Table 1 also provides the results of CharacterBERT with-
out the second step of sentence selection (CBERT-l4-all).
While the difference with CBERT-l4 is statistically sig-
nificant5, it is not very large compared to the computa-
tional cost of taking into account all sentences, which is
a little bit contradictory with the findings of Bommasani
et al. (2020) in another evaluation framework. As a
consequence, we will only consider the performance
with the selection of 10 sentences hereafter.
Most of the approaches for building static embeddings
from contextual embeddings rely on a set of example
sentences containing occurrences of the target words.

the synonyms of the synsets it is part of.
5The significance of differences is judged according to a

paired Wilcoxon test with p equal to 0.01.

However, Vulić et al. (2020b) experimented with the
“word in isolation” approach in which only one occur-
rence of each target word is encoded as a sentence by the
considered contextual model and the embedding of this
occurrence is used as the static embedding of the word.
The line BERTiso-l0 of Table 1 reports the performance
of this approach for the best layer of BERT, which is L0
in that case. As already observed by Vulić et al. (2020b)
in a different evaluation framework, this approach is out-
performed by the use of several in-context occurrences
for each target word. Hence, we will not consider it
hereafter.
Finally, the last line of Table 1 (fastText) shows the
results of the pretrained Skip-gram model (Mikolov et
al., 2013) adopted by Vulić et al. (2020b), which was
trained using fastText (Bojanowski et al., 2017)6. This
model obtains results that are comparable to the results
of the embeddings built from CharacterBERT or BERT,
which is also different from the findings of Bommasani
et al. (2020) and Ethayarajh (2019), made in a different
evaluation context.

3.3. Evaluation of the Proposed Method
In Table 2, we first evaluate the method we propose and
its different variants with the best layer of Character-
BERT (CBERT-*) and we finally test the best variant on
the best layer of BERT (BERT-*) since the two models
are close in the first evaluation. Our reference baseline
is CBERT-avg for CharacterBERT and BERT-avg for
BERT. All the results are obtained with 10 randomly
selected sentences for each word. CBERT-pca corre-
sponds to the application of PCA to token embeddings
proposed by Ethayarajh (2019) instead of averaging
them as Bommasani et al. (2020). Table 2 shows that
the two options are equivalent in our case.
Concerning our method, we first observe that our three
variants significantly outperform our reference. This
improvement is not large but is sufficient to significantly
outperform the Skip-gram embeddings. We also observe
that our three variants are very close but that separat-

6https://dl.fbaipublicfiles.com/
fasttext/vectors-wiki/wiki.en.zip

https://dl.fbaipublicfiles.com/fasttext/vectors-wiki/wiki.en.zip
https://dl.fbaipublicfiles.com/fasttext/vectors-wiki/wiki.en.zip
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Rprec MAP P@1 P@2 P@5

random 16.3 18.8 22.8 16.4 9.6

uniform 16.4 18.9 22.9 16.7 9.7
farthest 16.5 18.9 22.9 16.6 9.8
closest 16.3 18.8 22.9 16.4 9.6

Table 3: Impact of the selection strategy of tokens for
the CBERT-agg+genagg method of Table 2.

Rprec MAP P@1 P@2 P@5

unifhigh 18.0 20.5 26.6 19.8 12.0
uniflow 14.8 17.3 19.3 13.4 7.3

fthigh 14.5 16.8 22.0 15.9 9.7
ftlow 16.4 20.0 21.8 15.4 8.6

Table 4: Comparison of the embeddings built from Char-
acterBERT (unif ; see uniform in Table 3) and Skip-gram
(ft) embeddings according to the frequency of words
(high or low).

ing generalization and aggregation (CBERT-gen+agg)
is slightly worse than joining them. The two joint vari-
ants are fairly equivalent in terms of evaluation but
CBERT-agg+genagg is computationally less intensive
because of a much lower number of pseudo-similarity
relations. The performance of CBERT-retr-agg+genagg ,
which replaces PARAGRAM by the retrofitting method
of (Faruqui et al., 2015), confirms the interest of PARA-
GRAM for the task of generalization. Finally, BERT-
agg+genagg shows that the results obtained for Charac-
terBERT can be globally transposed to BERT.
The last aspect of the proposed method to evaluate is
the strategy for selecting the tokens used for building
type-level representations. This evaluation is reported
in Table 3 for the CB-agg+genagg variant, with random
as our reference from Table 2. Contrary to the expecta-
tions arising from the fact that token representations are
supposed to be strongly contextual, selecting tokens ac-
cording to their proximity with their average meaning in
a corpus does not have a strong influence on results. A
slight advantage is observed for the strategies favoring
diversity among tokens (uniform and farthest) but the
results are probably limited by the fact that, as demon-
strated by (Ethayarajh, 2019), the contextualization is
stronger for high layers.

4. Discussion
The results we have presented in the previous section
show that the method we propose for building static
embeddings from contextual ones outperforms the ref-
erence methods of (Bommasani et al., 2020) and Etha-
yarajh (2019) in a TOEFL-like evaluation and can also
be compared favorably to a method directly producing
static embeddings such as fastText. In addition to these
global results, we also considered more detailed results
according to two dimensions.

Rprec MAP P@1 P@2 P@5

fastText 15.5 18.4 21.9 15.7 9.2
uniform 16.4 18.9 22.9 16.7 9.7

Borda 17.5 20.5 24.6 17.9 10.6
RRF 17.6 20.6 24.6 18.1 10.7
CombSum 18.6 21.5 25.9 19.0 11.1

Table 5: Fusion of thesauri built from static embeddings
(fastText) and our best type-level embeddings built from
contextual embeddings (uniform).

Word frequency The first one is the frequency of tar-
get words. Table 4 splits the figures for both fastText’s
embeddings and our best type-level embeddings (uni-
form in Table 3) according to the median frequency of
target words. While type-level uniform embeddings
unquestionably outperform fastText’s embeddings for
high-frequency words, the trend is opposite for low-
frequency words, illustrating that beyond their respec-
tive performance, native static embeddings and type-
level embeddings exhibit complementary properties con-
cerning word frequency.
This is typically an interesting configuration for apply-
ing ensemble methods. Table 5 reports the results of
such an application according to a late fusion approach.
More precisely, this approach, based on (Curran and
Moens, 2002; Ferret, 2015), consists in fusing the the-
sauri built from fastText’s embeddings and the type-
level embeddings by merging the lists of distributional
neighbors associated with each of their entries. This
merge is performed according to methods used in Infor-
mation Retrieval for merging ranked lists of retrieved
documents. More precisely, we experimented with two
kinds of methods: the Borda (Aslam and Montague,
2001) and Reciprocal Rank (RRF) (Cormack et al.,
2009) fusions based on ranks and the CombSum fu-
sion (Fox and Shaw, 1994) based on similarity values,
normalized with the Zero-one method (Wu et al., 2006).
As illustrated in Table 5, the thesauri resulting from all
the fusion methods clearly outperform the two initial
thesauri, which confirms the complementary nature of
the two embeddings they come from. More precisely,
the two rank-based methods obtain comparable results
that are exceeded by the method based on similarity.

Reference semantic relations The second dimension
we have considered for performing our analyses is the
type of semantic relations in our gold standard. In the
previous sections, we have only focused on synonyms,
similarly to the TOEFL evaluation paradigm. However,
the hierarchy of WordNet’s synsets can be exploited
for building a large set of other paradigmatic semantic
relations. More precisely, we extracted three other types
of relations, defined as follows:

• hypernyms [HYPE]: all the words of the synsets
{Synsethype} having a direct hypernymy relation
with the synsets of the target word (whose words
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Rprec MAP P@1 P@2 P@5

SYN 16.3 18.8 22.8 16.4 9.6
q 4.5% q 4.4% q 3.6% q 3.1% q 4.3%

HYPE 3.1 3.4 4.0 3.8 3.0
q 6.9% q 9.7% q 5.3% q 6.6% q 7.1%

HYPO 4.2 3.2 6.6 6.4 5.5
q 2.4% q 3.2% 0.0% s 3.4% 0.0%

COHYP 4.7 2.3 10.5 10.0 8.6
q 2.2% q 4.5% s 0.9% q 1.0% q 2.4%

Table 6: Results of CBERT-agg+genagg in Table 2 ac-
cording to different paradigmatic semantic relations. Be-
low each measure, we give the percentage of difference
compared to the baseline CBERT-avg (CBERT-l4).

are referred to as [SYN]);

• hyponyms [HYPO]: all the words of the synsets
having a direct hyponymy relation with the synsets
of the target word;

• cohyponyms [COHYP]: all the words of the synsets,
except {Synsethype}, having a direct hyponymy
relation with the {Synsethype} synsets.

We report in Table 6 the results of our best compro-
mise between cost and performance in terms of strategy,
CBERT-agg+genagg with the random strategy for token
selection, according to the four types of paradigmatic se-
mantic relations we consider. We first note that the best
results are obtained for both synonyms (our reference
type of relations in the previous sections) and cohy-
ponyms, except for MAP in the case of cohyponyms.
Even if synonyms have a clear advantage over cohy-
ponyms, this can be regarded as a little bit surprising
since synonyms correspond to the narrowest paradig-
matic relations while cohyponyms correspond to the
widest ones. However, this phenomenon was already
observed with count-based models (Heylen et al., 2008).
The values of R-precision and MAP measures are espe-
cially higher for synonyms than for cohyponyms, in part
because the number of reference relations is much larger
for cohyponyms than for synonyms. This is also why
cohyponyms have the worst value for MAP among all se-
mantic relations. While hypernyms obtain the worst re-
sults, we can observe that the method we propose brings
the largest improvement in terms of percentage for this
type of relations compared to the average baseline of
Bommasani et al. (2020) (CBERT-avg (CBERT-l4) in
Table 2). Conversely, while the results for hyponyms
are also low, the improvement brought by our method
is much lower in that case, especially for ranking them
among the first neighbors. Finally, after hypernyms,
synonyms are the greatest beneficiaries of our method,
which suggests that it tends to favor narrower paradig-
matic relations than the average baseline.
Table 7 focuses on the differences between fastText and
CBERT-agg+genagg . We can globally note that the type-
level embeddings we build from contextual embeddings

Rprec MAP P@1 P@2 P@5

SYN 15.5 18.4 21.9 15.7 9.2
s 5.2% s 2.2% s 4.1% s 4.4% s 4.3%

HYPE 3.8 4.4 4.9 4.4 3.5
q 18.4% q 22.7% q 18.4% q 14.7% q 14.3%

HYPO 4.1 3.2 6.4 6.2 5.2
s 2.4% 0.0% s 3.1% s 3.2% s 5.8%

COHYP 4.7 2.3 10.1 9.5 8.0
0.0% 0.0% s 4.0% s 5.3% s 7.5%

Table 7: Results of fastText according to different
paradigmatic semantic relations. Below each mea-
sure, we give the percentage of difference compared
to CBERT-agg+genagg in Table 2.

outperform fastText’s embeddings (the table gives the
results of fastText and the percentages refer to its differ-
ences with CBERT-agg+genagg). However, hypernyms
represent a strong exception in this global picture, with
a large difference in favor of fastText. In the case of
cohyponyms, we also observe similar values for the
two types of embeddings concerning R-precision and
MAP measures. More globally, the differences between
fastText and our type-level embeddings are difficult to
interpret in terms of types of relations since there is no
correlation between synonyms and hypernyms and not
even between the two best types of relations, synonyms
and cohyponyms. However, as in the case of word fre-
quency, the main lesson is that contextual embeddings
do not necessarily invalidate static embeddings since
they do not have exactly the same properties regarding
the type of semantic relations they account for.

5. Conclusion and Perspectives
In this article, we have presented a new method for
building static embeddings from contextual ones. This
method is based on a threefold process starting with
the selection of token representations produced by a
contextual language model, their generalization, and
finally, their aggregation for building type-level repre-
sentations. This method was evaluated according to
the TOEFL paradigm for a large number of nouns and
a large number of reference synonyms from WordNet.
This evaluation was performed against both reference
methods for building type-level embeddings from con-
textual ones and static embeddings. The results of these
evaluations show that our type-level embeddings out-
perform both other type-level embeddings and static
embeddings.
Similarly to Vulić et al. (2020b), this could suggest
that these static embeddings would not be useful any-
more. However, our work also shows that the situation
is more complex. First, type-level embeddings in our
evaluations do not outperform static embeddings by a
large margin while building static embeddings from a
specific corpus is much easier than training a contextual
language model on that corpus and building type-level
embeddings from this model. More importantly, our
complementary evaluations and analyses about both



2589

the frequency of words and the type of the reference
semantic evaluation show that type-level and static em-
beddings can be complementary in tasks such as unsu-
pervised semantic relation extraction or distributional
thesaurus building since their properties are not neces-
sarily identical.
In this work, we have focused on the building of type-
level representations of words from their token-level
representations but without considering the option of
mixing token-level representations coming from differ-
ent layers of the contextual language models. The work
of Vulić et al. (2020b) suggests that associating repre-
sentations coming from different layers can be interest-
ing. We plan to study this possibility by going beyond
the use of the baseline approach consisting in averaging
representations, either by applying the kind of process
we have proposed in this article or methods based on
the projection of different representation spaces into a
shared space, such as (Caciularu et al., 2021).
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Appendix
For BERT, our experiments relied on the
bert-base-uncased model with 110
million parameters available at: https:

//storage.googleapis.com/bert_models/

2018_10_18/uncased_L-12_H-768_A-12.zip.
For CharacterBERT and the BERTrep version of
BERT, we exploited the models available at: https:

//github.com/helboukkouri/character-

bert#pre-trained-models.
The encoding of sentences with the BERT and Charac-
terBERT models was performed on a GTX 1080 GPU
card with 10GB RAM. It took 10 min for the 102,687
sentences we used for our experiments with 10 sen-
tences by word. The other processings were performed
on a CPU node of a cluster with 16 cores (Intel(R)
Xeon(R) CPU E5-2650 v2 @ 2.60GHz) and 252GB
RAM. They took 3 hours, almost totally dedicated to
the application of PARAGRAM.
For the generalization process, we applied both PARA-
GRAM and Retrofitting with the following parameters:

• PARAGRAM: https://github.com/nmrksic/
attract-repel

– number of epochs = 50
– attract margin δatt = 0.6
– repel margin δrpl = 0.0
– regularization constant λreg = 10−9

– batch size = 128
• Retrofitting: https://github.com/

mfaruqui/retrofitting

– number of epochs = 50
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