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Philippe Huynh, E. Lerche, D. Van Eester, Jeronimo Garcia, Frazzoli G, et al.. ICRF heating and turbulent transport modelling of the WEST L-mode plasma using ets: interpretative and predictive codevalidation. 48th EPS Conference on plasma physics, Jun 2022, Maastricht (virtual event), Netherlands. cea-03736757 • Figure 3 shows that for low power (1MW), the collisional ion heating is dominant but the power is too low to impact the D-D neutron rate. • For higher power (>3MW), electron heating is dominant but ion heating is strong enough to enhance the neutron rate, in particular at low concentration (enhanced N=2 D absorption). The neutron rate is limited at large H fraction due to dilution. • The neutron enhancement comes from ICRF induced deuterium tails (thermal T i constant). Finite orbit width effects and ripple losses not taken into account.

Neutron rate sensitivity to the ion temperature Transport modelling
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Predictive simulation

• The kinetic profiles are predicted with NCLASS and TGLF respectively for computing the neoclassical and turbulent transport coefficients. The values of T e , T i , N e and N i are imposed at normalized r=0.8 as boundary condition. Impurity radiation profiles are prescribed from the bolometry data. Due to the presence of sawteeth up to r=0.35, ad-hoc transport coefficients are manually set to fit the electron temperature and density experimental data in that region. • The initial T i profile is provided by the method described in the previous section. • First validation of ICRF computation with BIS method show an agreement on the total electron heating at low ICRF power. Further investigations are ongoing.

• Power and minority scans show that electron heating is always dominant for PICRF>2-3MW in the studied conditions in particular with X[H]=5%-7%. Enhanced D-D neutron rate can be achieved at low H concentrations due to direct N=2 D absorption.

• Predictive simulation yields a good agreement with available measurements (electron and density temperature profiles, stored energy and neutron rate).

• The simulation suggests that turbulence is dominated by the ion temperature gradient (ITG) instability at low k y .

• The next step would be to perform self-consistent impurity transport modelling. 
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 21 Fig 2: shot #55607 at 39s. (Left) Stiff D-D cross section at the interest region. (Right) Variation of neutron rate according to ion temperature. Turbulence characterization • Figure 5 (a) and (b) show the presence of the high-k y electron temperature gradient (ETG). The influence of trapped electron mode (TEM) is small (fig. 5 (a) and (d)). As shown in fig. 5 (a) and (c), the turbulence is dominated by the ion temperature gradient (ITG) instability at low-k y .

Fig 3 :

 3 Fig 3: shot #55607 at 39s. H Minority scan for various ICRF power. For each power, plots of integrated direct absorption power, integrated collisional power and neutron rate.

Fig 4 :

 4 Fig 4: shot #55607 at 39s after 0.5s simulated time. Temperature and density profile compared with the electron cyclotron emission (ECE) and interferometer diagnostics Exp. Sim. W mhd (MJ) ~0.37 0.31 Neutron rate (10 11 neutrons/s) ~27 33

Fig 5 :

 5 Fig 5: shot #55607 at 39s and normalized ρ=0.5. (a) Turbulent linear growth rate γ. (b) Turbulent linear growth rate when T e gradient is set to 0. (c) Turbulent linear growth rate when T i gradient is set to 0. (d) Turbulent linear growth rate when N e and N i gradients are set to 0. γ is in units of c s /R with c 𝑠 = 𝑇 /𝑚 , m i the main ion mass and k y is the poloidal wave number.
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 2 shot #55607 at 39s after 0.5s simulated time. Comparison of stored energy and neutron rate with experimental data.
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• A minimization loop with Cyrano/StixRedist accounting for ICRF heated deuterium distributions and neutron rate computations suggests T i to be 12% lower than the value obtained assuming purely Mawellian distributions.