

Turbulent transport in magnetised plasmas

Xavier Garbet
IRFM
CEA Cadarache

Turbulent transport: why?

- Turbulent transport degrades confinement in magnetic fusion devices
- Would like to improve confinement → transport barriers
- Plays an important role in astrophysics and geophysics

Nested magnetic surfaces

Turbulent transport: why?

- Turbulent transport degrades confinement in magnetic fusion devices
- Would like to improve confinement → transport barriers
- Plays an important role in astrophysics and geophysics

Outline

- Turbulent transport : an introduction
- Fluxes vs gradients and thermodynamics
- Building transport barriers
- Turbulence self-regulation : when instability threshold matters

Turbulent transport rules confinement in tokamaks

Turbulence is driven by micro-instabilities

- Driven by gradients → instability threshold Kadomtsev 66, Coppi
 67, Horton 81, Rewoldt 87, Romanelli 89
- Family of drift-waves interchange $\nabla P \cdot \nabla B > 0$ usually prevails.

What does it look like?

Grandgirard GYSELA-X 2020

Building a transport model

- Power law decay, frequency
 spectra are broad Hennequin 04,09,
 Mazzucato 08,09
- Amplitude ~mixing-length theory Prandtl 1905

$$\frac{\delta n}{n} \sim \frac{\ell_c}{L_n}$$

→ yields diffusion vs gradients

$$D \sim \frac{\ell_c^2}{\tau_c}$$

→ reduced transport models
Staebler 07, Bourdelle 16

Hennequin 04

Building a transport model

- Power law decay, frequency
 spectra are broad Hennequin 04,09,
 Mazzucato 08,09
- Amplitude ~mixing-length
 theory Prandtl 1905

$$\frac{\delta n}{n} \sim \frac{\ell_c}{L_n}$$

→ yields diffusion vs gradients

$$D \sim \frac{\ell_c^2}{\tau_c}$$

→ reduced transport models
Staebler 07, Bourdelle 16

Building a transport model

- Power law decay, frequency
 spectra are broad Hennequin 04,09,
 Mazzucato 08,09
- Amplitude ~mixing-length theory Prandtl 1905

$$\frac{\delta n}{n} \sim \frac{\ell_c}{L_n}$$

→ yields diffusion vs gradients

$$D \sim \frac{\ell_C^2}{\tau_C}$$

→ reduced transport models
Staebler 07, Bourdelle 16

Issues

- Up-gradient transport is ubiquitous consistency with second principle?
- Can turbulent transport be controlled?
- Scale separation may not hold: interaction between small and large scales mediated by mesoscale turbulent structures.

Outline

- Turbulent transport : an introduction
- Fluxes vs gradients and thermodynamics
- Building transport barriers
- Turbulence self-regulation : when instability threshold matters

Transport equations bear a puzzling shape

Evolution of density, velocity, temperature A = (N,V//,T)

$$\frac{\partial A}{\partial t} + \nabla \cdot \Gamma = \Sigma$$
 $\Gamma = \overline{L} \cdot A' + \Gamma_{res}$

- Transport matrix \overline{L} is symmetric onsager 1931. Unexpected:
- "residual" stress and heat flux $\Gamma_{
 m res}$
- turbulent heating and acceleration \(\Sigma\) Rudakov 71, Ott 72

Wave transport is responsible for residual fluxes

- Total field + particle
 momentum/energy is
 conserved → extended
 thermodynamics Boozer 92, Krommes
 93, Sugama 96, Watanabe 06, XG 13
- Residual = fluxes of momentum/ energy carried by waves.
- Requires symmetry breaking
 Peeters 07, Gürcan 07, Diamond 08,
 Camenen 09 e.g. mean shear flow

Turbulence produces momentum and heat sources

 Source terms Itoh 88, Hinton 06, Barnes 12, Lu Wang 13, XG 13, Seiferling 18, Wang 18

$$\Sigma_{V_{\parallel}} = \langle neE_{\parallel} \rangle$$
 $\Sigma_{T} = \langle \boldsymbol{J} \cdot \boldsymbol{E} \rangle$

- Correlation requires symmetry breaking
- Charge conservation → transfer waltz 11. Wave energy transport → net effect Zhao 12

Turbulent pinch theory successfully tested in tokamaks

- Particle flux $\Gamma = -D \frac{dn}{dr} + \mathcal{V}n$
- "Pinch velocity" V due to temperature and velocity gradients, and compressibility Angioni 03 & 06, XG 04, Camenen 09
- Entropy production rate > 0
 XG05.
- Onsager symmetry → thermal pinch Dominguez 89, Luce 92, Itoh 96, Mantica 05, Lu Wang 11

Turbulent pinch theory successfully tested in tokamaks

- Particle flux $\Gamma = -D \frac{dn}{dr} + \mathcal{V}n$
- "Pinch velocity" V due to temperature and velocity gradients, and compressibility Angioni 03 & 06, XG 04, Camenen 09
- Entropy production rate > 0
 XG05.
- Onsager symmetry →
 thermal pinch Dominguez 89, Luce
 92, Itoh 96, Mantica 05, Lu Wang 11

Outline

- Turbulent transport : an introduction
- Fluxes vs gradients and thermodynamics
- Building transport barriers
- Turbulence self-regulation : when instability threshold matters

Mean shear flow reduces turbulent transport

 Mean shear flow → vortex distortion, size reduction.
 Shear flow rate

$$\omega_E = \frac{dV_E}{dr}$$

- Reduction of correlation length → diffusivity is reduced
- Turbulence quench Biglari 90,
 Waltz 95, Hahm 95

$$\omega_E > \gamma_{max}$$

$$V_E(r) = -\frac{E_r}{B}$$

Evidence of shear flow driven transport barriers

Controlling shear flows

 Radial electric field controlled by radial currents Itoh 88, Kobayashi 20

$$\epsilon_{pol} \frac{\partial E_r}{\partial t} = -\sum J_r$$

- Many contributions: viscous damping, Reynolds stress, orbit losses, wave momentum transport, neutrals → power threshold
- Mean shear flow only? Burrell 99, Gohil 11, Ryter 13, Viezzer 13, Schmitz 12, Tynan 13

Controlling shear flows

 Radial electric field controlled by radial currents Itoh 88, Kobayashi 20

$$\epsilon_{pol} \frac{\partial E_r}{\partial t} = -\sum J_r$$

- Many contributions: viscous damping, Reynolds stress, orbit losses, wave momentum transport, neutrals → power threshold
- Mean shear flow only? Burrell 99, Gohil 11, Ryter 13, Viezzer 13, Schmitz 12, Tynan 13

Magnetic perturbations is one way to control mean flows

- Ergodic field lines
 degrade confinement: E_r
 shear weaker Schmitz 19,
 Becoulet 22, + less zonal flow
 generation Chen 20
- Non resonant 3D field perturbations enhance E_r
 Varennes 22 + effect on stability Huang 22. Can be optimised Park 21

w/o RMP

Becoulet 22

with RMP

Magnetic perturbations is one way to control mean flows

-3.0e-6

0.3

- Ergodic field lines degrade confinement: E_r shear weaker Becoulet 22, + less zonal flow generation Chen 20
- Non resonant 3D field perturbations enhance E_r
 Varennes 22 + effect on stability Huang 22. Can be optimised Park 21

0.5

r/a

0.6

0.4

Varennes 22

0.7

Outline

- Turbulent transport : an introduction
- Fluxes vs gradients and thermodynamics
- Building transport barriers
- Turbulence self-regulation : when instability threshold matters

Turbulence drives zonal flows

- Zonal Flows generated by turbulence Sagdeev 78, Hasegawa 79, Lin 98, Diamond 05
- Similar to jet streams in rotating fluids Roberts 68, Busse 70

Zonal flows back react on turbulence via wave scattering from large to small scales

Avalanches enhance transport

- Avalanches: large
 scale transport events
 Diamond 95, Carreras 96, Sarazin
 98, XG 98, Beyer 02, Sanchez 15
- Propagating fronts
 Hahm 04, Gurcan 05, XG07,
 Idomura 09, McMillan 09, Villard
 19

Avalanches enhance transport

Avalanches: large
 scale transport events
 Diamond 95, Carreras 96, Sarazin
 98, XG 98, Beyer 02, Sanchez 15

Propagating fronts
 Hahm 04, Gurcan 05, XG07,
 Idomura 09, McMillan 09, Villard
 19

Turbulence self-organises near threshold

Dif-Pradalier 17

- Staircase patterns observed in turbulence simulations Dif-Pradalier 15&17, Rath 16, Weikl 18, Wang 18, Qi 19, Ivanov 20.
- Consistent with
 observations Hornung 16,
 Choi 20, Qi 21.

• Staircase: avalanching areas bounded by zonal shear layers Kosuga 14, Ashourvan 16, 17, Wang 18, Guo 19, XG21

Turbulence self-organises near threshold

Dif-Pradalier 15

- Staircase patterns observed in turbulence simulations Dif-Pradalier 15&17, Rath 16, Weikl 18, Wang 18, Qi 19, Ivanov 20.
- Consistent with
 observations Hornung 16,
 Choi 20, Qi 21.

• Staircase: avalanching areas bounded by zonal shear layers Kosuga 14, Ashourvan 16, 17, Wang 18, Guo 19, XG21

Turbulence self-organises near threshold

- Staircase patterns observed in turbulence simulations Dif-Pradalier 15&17, Rath 16, Weikl 18, Wang 18, Qi 19, Ivanov 20.
- Consistent with
 observations Hornung 16,
 Choi 20, Qi 21.

Salt fingers in thermocline of the tropical atlantic Schmitt Science 05

• Staircase: avalanching areas bounded by zonal shear

ayers Kosuga 14, Ashourvan 16, 17, Wang 18, Guo 19, XG21

Turbulence spreads

- 2 mechanisms xg 94,96:
- wave group velocity
 Kishimoto 96,99
- front propagation Diamond-Hahm 95, Gürcan 05, Zonca 05, XG07
- Range of spreading depends on damping.
 Related to avalanches Idomura 09, McMillan 09

Interplay of edge with core turbulence

- Immersive boundary conditions → limiter
- Produces turbulence, propagates inward
- Back-reacts on far edge turbulence.
- → turbulence fills-in linearly stable edge region

2020

GYSELA

Interplay of edge with core turbulence

- Immersive boundary conditions → limiter
- Produces turbulence, propagates inward
- Back-reacts on far edge turbulence.
- → turbulence fills-in linearly stable edge regio

Dif-Pradalier 2022

Interplay of edge with core turbulence

- Immersive boundary conditions → limiter
- Produces turbulence, propagates inward
- Back-reacts on far edge turbulence.
- → turbulence fills-in linearly stable edge region

Dif-Pradalier 2022

Conclusion

- A lot has been understood key is self-organisation via flows
- Some outstanding issues:
- interplay edge/core turbulence (see plenary S. Krasheninnikov)
- electromagnetic effects (see plenary J. Garcia), link with MHD
- interplay with collisional transport, 3D magnetic perturbations