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Turbulent transport: why?

e Turbulent transport
degrades confinement in
magnetic fusion devices

* Would like to improve
confinement — transport
barriers

* Plays an important role in
astrophysics and geophysics

Nested magnetic surfaces
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Outline

* Turbulent transport : an introduction
* Fluxes vs gradients and thermodynamics
* Building transport barriers

* Turbulence self-regulation : when instability
threshold matters
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Turbulent transport rules

confinement in tokamaks
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Turbulence is driven by micro-instabilities

* Driven by gradients — instability threshold kadomtsev 66, Coppi
67, Horton 81, Rewoldt 87, Romanelli 89

* Family of drift-waves - interchange VP - V B > 0 usually
prevails.
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What does it look like?

SN=—— 7 . 9\ Grandgirard
) R XS, GYSELA-X

|
0 \
\ ’\\“” A\

sl ’ : ,
d ! " N, A
o LA R 2020
‘k" | o SIS /
o) RN A s ey,
, ‘ N N3 _— K |
.

X. Garbet, Alfvén prize talk, 48th EPS conference, June, 27 2022 | PAGE 7



Building a transport model

* Power law decay, frequency

spectra are broad Hennequin 04,09, Hennequin 04

Mazzucato 08,09 S5 , . —
O
 Amplitude “mixing-length 10" ¢ Sy _, Heplasma
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Issues

e Up-gradient transport is ubiquitous — consistency
with second principle?

* Can turbulent transport be controlled?

 Scale separation may not hold: interaction
between small and large scales mediated by
mesoscale turbulent structures.
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Outline

* Turbulent transport : an introduction
* Fluxes vs gradients and thermodynamics
* Building transport barriers

* Turbulence self-regulation : when instability
threshold matters
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Transport equations bear a puzzling shape
* Evolution of density, velocity, temperature A= (N,V,,T)

0A = p
Z+V-T=X T=L A+l

* Transport matrix L is symmetric onsager 1931. Unexpected:

|H

- “residual” stress and heat flux I'

- turbulent heating and acceleration X Rudakov 71, Ott 72

Bale 2012

XGBTTOODY
— wave coupling . interactions
“& & turbulence e ——

field lines y B
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Wave transport is responsible
for residual fluxes

* Total field + particle

momentum/energy is TV
r Y/

conserved — extended

thermodynamics Boozer 92, Krommes
93, Sugama 96, Watanabe 06, XG 13

* Residual = fluxes of 5

momentum/ energy carried by =

waves. -V

* Requires symmetry breaking Drift wave propagation
Peeters 07, Glrcan 07, Diamond 08, >

Camenen 09 €.8. mean shear flow
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Turbulence produces momentum
and heat sources

e Source terms Itoh 88, Hinton 06,

Barnes 12, Lu Wang 13, XG 13, Seiferling
18, Wang 18 03

Sy, = (nek) e

Xr ={J - E) :

e Correlation requires
symmetry breaking

Waltz 08

o

S

Heating Flow (MW)
o

* Charge conservation — .
transfer waltz 11 . Wave energy
transport — net effect zhao 12
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Turbulent pinch theory
successfully tested in tokamaks

e Particle fluxT' = —D % + Vn

* “Pinch velocity” V due to

Hoang 04 - Tore Supra

temperature and velocity 3

Angioni 03 & 06, XG 04, Camenen 09

* Entropy production rate >0
XGO5.

* Onsager symmetry — thermal

T I T T T I T T T I T T T I T T
Particle source

gradients, and compressibility 250 an -

pinch Dominguez 89, Luce 92, Itoh 96,
Mantica 05, Lu Wang 11
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Turbulent pinch theory
successfully tested in tokamaks

e Particle fluxI'=—-D—+7Vn

Luce 95 - DIII-D

* “Pinch velocity” V due to
temperature and velocity
gradients, and

compressibility Angioni 03 & 06, XG
04, Camenen 09
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* Entropy production rate >0
XGO5.

* Onsager symmetry —

thermal pinch pominguez 89, Luce
92, Iltoh 96, Mantica 05, Lu Wang 11
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Outline

* Turbulent transport : an introduction
* Fluxes vs gradients and thermodynamics
* Building transport barriers

* Turbulence self-regulation : when instability
threshold matters
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Mean shear flow reduces

turbulent transport

* Mean shear flow — vortex
distortion, size reduction.
Shear flow rate

dVg
- dr
* Reduction of correlation
length — diffusivity is
reduced

WE

* Turbulence quench Biglari 90,
Waltz 95, Hahm 95

WEg > Ymax

X. Garbet, Alfvén prize talk, 48th EPS conference, June, 27 2022 | PAGE 19



Evidence of shear flow driven
transport barriers
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Controlling shear flows

e Radial electric field

controlled by radial currents
ltoh 88, Kobayashi 20 Viezzer 13, AUG

OE,

€pol ET 2]7‘
* Many contributions: viscous
damping, Reynolds stress,
orbit losses, wave
momentum transport,

neutrals — power threshold

E.[kV/m]

* Mean shear flow only? Burrell

99, Gohil 11, Ryter 13, Viezzer 13,
Schmitz 12, Tynan 13
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Magnetic perturbations is one way to

control mean flows
Becoulet 22
* Ergodic field lines
degrade confinement: E, w/o RMP
shear weaker schmitz 19,
Becoulet 22, + less zonal flow
generation Chen 20

* Non resonant 3D field

perturbations enhance E,

Varennes 22 + effect on with RMP
stability Huang 22. Can be

optimised park 21
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Outline
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threshold matters
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Turbulence drives zonal flows

Zonal Flows in tokamak plasma
[GYSELA, 2018]

e Zonal Flows generated by

turbulence sagdeev 78,
Hasegawa 79, Lin 98, Diamond 05

e Similar to jet streams in

rotating fluids Roberts 68,
Busse 70
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Zonal flows back react on turbulence via
wave scattering from large to small scales
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Avalanches enhance transport

A

e Avalanches: large n,T

Scale tra nsport events Average profile

Diamond 95, Carreras 96, Sarazin
98, XG 98, Beyer 02, Sanchez 15

steep gradients

° Propagating fronts
Hahm 04, Gurcan 05, XGO07,

Idomura 09, McMillan 09, Villard
19

Avalanche
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Avalanches enhance transport

Heat diffusivity vs radius and time

* Avalanches: large

scale transport events

Diamond 95, Carreras 96, Sarazin
98, XG 98, Beyer 02, Sanchez 15 ldomura 09 GT5D

deuterium

r

* Propagating fronts

Hahm 04, Gurcan 05, XGO07, r
Idomura 09, McMiillan 09, Villard
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Turbulence self-organises near threshold
Dif-Pradalier 17

e Staircase patterns
observed in turbulence

simulations Dif-Pradalier

15&17, Rath 16, Weikl 18, Wang
18, Qi 19, Ivanov 20.

dVg
EXB shear rate d_

e Consistent with

observations Hornung 16,
Choi 20, Qi 21.

0.2 Normalised radius

e Staircase : avalanching areas bounded by zonal shear
layers Kosuga 14, Ashourvan 16, 17, Wang 18, Guo 19, XG21
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Turbulence self-organises near threshold

Salinity
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00—

e Staircase patterns
observed in turbulence

simulations Dif-Pradalier

15&17, Rath 16, Weikl 18, Wang
18, Qi 19, Ivanov 20.

Salt fingers in
thermocline of
the tropical
atlantic Schmitt
Science 05

e Consistent with

observations Hornung 16,
Choi 20, Qi 21.
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e Staircase : avalanching areas bounded by zonal shear
layers Kosuga 14, Ashourvan 16, 17, Wang 18, Guo 19, XG21
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Turbulence spreads

* 2 mechanisms xG 94,96: ]

- wave group velocity .
Kishimoto 96,99

- front propagation bpiamond-

pr.t) XG 96

.....
s

Hahm 95, Giircan 05, Zonca 05, XGO7 '

0.5 1.0

* Range of spreading
depends on damping.

Related to avalanches 20

Idomura 09, McMillan 09
10

Strong Idamping r/a -

111111111
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Interplay of edge with core turbulence

* Immersive boundary GYSELA
conditions — limiter 2020

* Produces turbulence,
propagates inward

* Back-reacts on far edge
turbulence.

— turbulence fills-in
linearly stable edge region
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Interplay of edge with core turbulence

_ Dif-Pradalier 2022
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* Produces turbulence,
propagates inward

* Back-reacts on far edge
turbulence.

— turbulence fills-in
linearly stable edge regio
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Interplay of edge with core turbulence

* Immersive boundary Dif-Pradalier 2022

conditions — limiter
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p. = 1/316 E : ]
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Conclusion

* A lot has been understood — key is self-organisation via
flows

* Some outstanding issues:

interplay edge/core turbulence (see plenary S.
Krasheninnikov)

electromagnetic effects (see plenary J. Garcia), link with
MHD

interplay with collisional transport, 3D magnetic
perturbations
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