

Turbulent transport in magnetised plasmas Xavier Garbet

▶ To cite this version:

Xavier Garbet. Turbulent transport in magnetised plasmas. 48th conference on plasma physics, Jun 2022, On line conference, France. cea-03736714

HAL Id: cea-03736714 https://cea.hal.science/cea-03736714

Submitted on 22 Jul2022

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Turbulent transport in magnetised plasmas

Xavier Garbet IRFM CEA Cadarache

Turbulent transport: why?

- Turbulent transport degrades confinement in magnetic fusion devices
- Would like to improve confinement → transport barriers
- Plays an important role in astrophysics and geophysics

Nested magnetic surfaces

Turbulent transport: why?

- Turbulent transport degrades confinement in magnetic fusion devices
- Would like to improve confinement → transport barriers
- Plays an important role in astrophysics and geophysics

Outline

- Turbulent transport : an introduction
- Fluxes vs gradients and thermodynamics
- Building transport barriers
- Turbulence self-regulation : when instability threshold matters

Turbulence is driven by micro-instabilities

Driven by gradients → instability threshold Kadomtsev 66, Coppi 67, Horton 81, Rewoldt 87, Romanelli 89

• Family of drift-waves - interchange $\nabla P \cdot \nabla B > 0$ usually prevails.

X. Garbet, Alfvén prize talk, 48th EPS conference, June, 27 2022

What does it look like?

Grandgirard GYSELA-X 2020

Building a transport model

PAGE 8

Building a transport model

- Power law decay , frequency spectra are broad Hennequin 04,09, Mazzucato 08,09
- Amplitude ~mixing-length theory Prandtl 1905

$$\frac{\delta n}{n} \sim \frac{\ell_c}{L_n}$$

$$\rightarrow \text{ yields diffusion vs gradients}$$

$$D \sim \frac{\ell_c^2}{\tau_c}$$

$$\rightarrow \text{ reduced transport models}$$

Staebler 07, Bourdelle 16

Building a transport model

- Power law decay , frequency spectra are broad Hennequin 04,09, Mazzucato 08,09
- Amplitude ~mixing-length theory Prandtl 1905

$$\frac{\delta n}{n} \sim \frac{\ell_c}{L_n}$$

$$\rightarrow \text{ yields diffusion vs gradients}$$

$$D \sim \frac{\ell_c^2}{\tau_c}$$

$$\rightarrow \text{ reduced transport models}$$
Staebler 07, Bourdelle 16

Issues

- Up-gradient transport is ubiquitous consistency with second principle?
- Can turbulent transport be controlled?
- Scale separation may not hold: interaction between small and large scales mediated by mesoscale turbulent structures.

Outline

- Turbulent transport : an introduction
- Fluxes vs gradients and thermodynamics
- Building transport barriers
- Turbulence self-regulation : when instability threshold matters

Transport equations bear a puzzling shape

Evolution of density, velocity, temperature A = (N,V//,T)

$$\frac{\partial A}{\partial t} + \nabla \cdot \Gamma = \Sigma \qquad \Gamma = \overline{L} \cdot A' + \Gamma_{res}$$

- Transport matrix \overline{L} is symmetric Onsager 1931. Unexpected:
- "residual" stress and heat flux $\Gamma_{
 m res}$
- turbulent heating and acceleration Σ Rudakov 71, Ott 72

X. Garbet, Alfvén prize talk, 48th EPS conference, June, 27 2022

PAGE 13

Wave transport is responsible for residual fluxes

- Total field + particle momentum/energy is conserved → extended thermodynamics Boozer 92, Krommes 93, Sugama 96, Watanabe 06, XG 13
- Residual = fluxes of momentum/ energy carried by waves.
- Requires symmetry breaking Peeters 07, Gürcan 07, Diamond 08, Camenen 09 e.g. mean shear flow

Turbulence produces momentum and heat sources

• Source terms Itoh 88, Hinton 06, Barnes 12, Lu Wang 13, XG 13, Seiferling 18, Wang 18

$$\Sigma_{V_{\parallel}} = \langle neE_{\parallel} \rangle$$
$$\Sigma_{T} = \langle \boldsymbol{J} \cdot \boldsymbol{E} \rangle$$

- Correlation requires symmetry breaking
- Charge conservation \rightarrow transfer Waltz 11. Wave energy transport \rightarrow net effect Zhao 12

Waltz 08

Turbulent pinch theory successfully tested in tokamaks

- Particle flux $\Gamma = -D \frac{dn}{dr} + \mathcal{V}n$
- "Pinch velocity" V due to temperature and velocity gradients, and compressibility Angioni 03 & 06, XG 04, Camenen 09
- Entropy production rate > 0 XG05.
- Onsager symmetry → thermal pinch Dominguez 89, Luce 92, Itoh 96, Mantica 05, Lu Wang 11

Turbulent pinch theory successfully tested in tokamaks

- Particle flux $\Gamma = -D \frac{dn}{dr} + \mathcal{V}n$
- "Pinch velocity" V due to temperature and velocity gradients, and compressibility Angioni 03 & 06, XG 04, Camenen 09
- Entropy production rate > 0 XG05.
- Onsager symmetry → thermal pinch Dominguez 89, Luce 92, Itoh 96, Mantica 05, Lu Wang 11

Luce 95 – DIII-D

X. Garbet, Alfvén prize talk, 48th EPS conference, June, 27 2022

PAGE 17

Outline

- Turbulent transport : an introduction
- Fluxes vs gradients and thermodynamics
- Building transport barriers
- Turbulence self-regulation : when instability threshold matters

Mean shear flow reduces turbulent transport

Mean shear flow → vortex distortion, size reduction.
 Shear flow rate

$$\omega_E = \frac{dV_E}{dr}$$

- Reduction of correlation length → diffusivity is reduced
- Turbulence quench Biglari 90, Waltz 95, Hahm 95

$$\omega_E > \gamma_{max}$$

Evidence of shear flow driven transport barriers

X. Garbet, Alfvén prize talk, 48th EPS conference, June, 27 2022

PAGE 20

Controlling shear flows

Radial electric field

controlled by radial currents

Itoh 88, Kobayashi 20

$$\epsilon_{pol} \frac{\partial E_r}{\partial t} = -\sum J_r$$

 Many contributions: viscous damping, Reynolds stress, orbit losses, wave momentum transport, neutrals → power threshold

• Mean shear flow only? Burrell 99, Gohil 11, Ryter 13, Viezzer 13, Schmitz 12, Tynan 13

Controlling shear flows

Radial electric field

controlled by radial currents

Itoh 88, Kobayashi 20

$$\epsilon_{pol} \frac{\partial E_r}{\partial t} = -\sum J_r$$

 Many contributions: viscous damping, Reynolds stress, orbit losses, wave momentum transport, neutrals → power threshold

• Mean shear flow only? Burrell 99, Gohil 11, Ryter 13, Viezzer 13, Schmitz 12, Tynan 13

Magnetic perturbations is one way to control mean flows

Becoulet 22

 Ergodic field lines degrade confinement: E_r w/o RMP shear weaker Schmitz 19, Becoulet 22, + less zonal flow generation Chen 20 Non resonant 3D field perturbations enhance E_r with **RMP** Varennes 22 + effect on stability Huang 22. Can be optimised Park 21

-20 -20 -20 -20 -20 -40 -60 -7.6e+01

Magnetic perturbations is one way to control mean flows

- Ergodic field lines degrade confinement: E_r shear weaker Becoulet 22, + less zonal flow generation Chen 20
- Non resonant 3D field perturbations enhance E_r
 Varennes 22 + effect on
 stability Huang 22 . Can be
 optimised Park 21

Outline

- Turbulent transport : an introduction
- Fluxes vs gradients and thermodynamics
- Building transport barriers
- Turbulence self-regulation : when instability threshold matters

Turbulence drives zonal flows

Zonal Flows generated by

turbulence Sagdeev 78, Hasegawa 79, Lin 98, Diamond 05

• Similar to jet streams in rotating fluids Roberts 68, Busse 70

[GYSELA, 2018] r 0.012 0.010 0.008 0.006 0.004 0.002 A 0.000 -0.002

Zonal Flows in tokamak plasma

Zonal flows back react on turbulence via wave scattering from large to small scales

| PAGE 27

Avalanches enhance transport

• Avalanches: large scale transport events Diamond 95, Carreras 96, Sarazin

98, XG 98, Beyer 02, Sanchez 15

• Propagating fronts

Hahm 04, Gurcan 05, XG07, Idomura 09, McMillan 09, Villard 19

Avalanches enhance transport

r

Heat diffusivity vs radius and time

Idomura 09 GT5D

Avalanches: large

scale transport events

Diamond 95, Carreras 96, Sarazin 98, XG 98, Beyer 02, Sanchez 15

Propagating fronts

Hahm 04, Gurcan 05, XG07, Idomura 09, McMillan 09, Villard 19

Turbulence self-organises near threshold

Dif-Pradalier 17

- Staircase patterns

 observed in turbulence
 simulations Dif-Pradalier
 15&17, Rath 16, Weikl 18, Wang
 18, Qi 19, Ivanov 20.
- Consistent with

observations Hornung 16, Choi 20, Qi 21.

• Staircase : avalanching areas bounded by zonal shear layers Kosuga 14, Ashourvan 16, 17, Wang 18, Guo 19, XG21

Turbulence self-organises near threshold

Dif-Pradalier 15

Staircase patterns observed in turbulence simulations Dif-Pradalier 15&17, Rath 16, Weikl 18, Wang 18, Qi 19, Ivanov 20.

Consistent with

observations Hornung 16, Choi 20, Qi 21.

• Staircase : avalanching areas bounded by zonal shear

ayers Kosuga 14, Ashourvan 16, 17, Wang 18, Guo 19, XG21

Turbulence self-organises near threshold

- Staircase patterns

 observed in turbulence
 simulations Dif-Pradalier
 15&17, Rath 16, Weikl 18, Wang
 18, Qi 19, Ivanov 20.
- Consistent with

observations Hornung 16, Choi 20, Qi 21.

Salt fingers in thermocline of the tropical atlantic Schmitt Science 05

• Staircase : avalanching areas bounded by zonal shear

ayers Kosuga 14, Ashourvan 16, 17, Wang 18, Guo 19, XG21

Turbulence spreads

- 2 mechanisms xG 94,96:
- wave group velocity Kishimoto 96,99
- front propagation Diamond-Hahm 95, Gürcan 05, Zonca 05, XG07
- Range of spreading depends on damping.
 Related to avalanches Idomura 09, McMillan 09

Interplay of edge with core turbulence

- Immersive boundary conditions \rightarrow limiter
- Produces turbulence, propagates inward
- Back-reacts on far edge turbulence.

→ turbulence fills-in linearly stable edge region

Interplay of edge with core turbulence

- Immersive boundary conditions \rightarrow limiter
- Produces turbulence, propagates inward
- Back-reacts on far edge turbulence.

→ turbulence fills-in linearly stable edge regio

Dif-Pradalier 2022

Interplay of edge with core turbulence

- Immersive boundary conditions → limiter
- Produces turbulence, propagates inward
- Back-reacts on far edge turbulence.

→ turbulence fills-in linearly stable edge region

Dif-Pradalier 2022

Conclusion

- A lot has been understood key is self-organisation via flows
- Some outstanding issues:
- interplay edge/core turbulence (see plenary S. Krasheninnikov)
- electromagnetic effects (see plenary J. Garcia), link with MHD
- interplay with collisional transport, 3D magnetic perturbations