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Evening Morning

Shut-Down Start-Up

Oxygen consumption[1]

CONTEXT

Shut-Down (SD) / Start-Up (SU) process

[1] Oyarce et al. “Comparing shut-down strategies for proton exchange membrane fuel cells” (2014)

[2] Reiser et al. “A Reverse-Current Decay Mechanism for Fuel Cells” (2005)
[3] Pei et al. « A quick evaluating method for automotive fuel cell lifetime”
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Estimation of performance losses [3]
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Evening Morning

Shut-Down Start-Up

Oxygen consumption[1] Ambient Air 
infiltration

Fuel injection = H2|Air front 

CONTEXT

Shut-Down (SD) / Start-Up (SU) process

Reverse Current Decay
mechanism[2]

Implementation of mitigation 
strategies on a system scale

[1] Oyarce et al. “Comparing shut-down strategies for proton exchange membrane fuel cells” (2014)

[2] Reiser et al. “A Reverse-Current Decay Mechanism for Fuel Cells” (2005)
[3] Pei et al. « A quick evaluating method for automotive fuel cell lifetime”

[3]
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Estimation of performance losses [3]
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CONTEXT

Reverse Current Decay mechanism

[1]

[1] Reiser et al. “A Reverse-Current Decay Mechanism for Fuel Cells” (2005)

[2] Radrianarizafy et al. “Modelling Carbon Corrosion during a PEMFC Startup: Simulation of Mitigation Strategies” (2020)
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CONTEXT

Reverse Current Decay mechanism

[1]

[1] Reiser et al. “A Reverse-Current Decay Mechanism for Fuel Cells” (2005)

[2] Radrianarizafy et al. “Modelling Carbon Corrosion during a PEMFC Startup: Simulation of Mitigation Strategies” (2020)

Fuel Cell
operation
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CONTEXT

Reverse Current Decay mechanism
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[1] Reiser et al. “A Reverse-Current Decay Mechanism for Fuel Cells” (2005)

[2] Radrianarizafy et al. “Modelling Carbon Corrosion during a PEMFC Startup: Simulation of Mitigation Strategies” (2020)
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operation
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1.5 s

1.6 V

Cathode electrode potential (input) when the H2/Air 
front passes through the anode side (CEA model) [2] 

Simulated SU phase potential profile

Unprotected SU-phase

CONTEXT

Reverse Current Decay mechanism

[1]

[1] Reiser et al. “A Reverse-Current Decay Mechanism for Fuel Cells” (2005)

[2] Radrianarizafy et al. “Modelling Carbon Corrosion during a PEMFC Startup: Simulation of Mitigation Strategies” (2020)

Electrolysis
operation
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Electrolysis
operation
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IRREVERSIBLE loss of cell performance

Cathod Catalyst Layer (CCL) degradation:
 Carbon Support Corrosion (CSC)
 Pt Dissolution/redeposition
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CONTEXT

Reverse Current Decay mechanism

[1]

[1] Reiser et al. “A Reverse-Current Decay Mechanism for Fuel Cells” (2005)

[2] Radrianarizafy et al. “Modelling Carbon Corrosion during a PEMFC Startup: Simulation of Mitigation Strategies” (2020)

Electrolysis
operation
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1.5 s

1.6 V

Cathode electrode potential (input) when the H2/Air 
front passes through the anode side (CEA model) [2] 

Simulated SU phase potential profile

Cathod Catalyst Layer (CCL) degradation:
 Carbon Support Corrosion (CSC)
 Pt Dissolution/redeposition

IRREVERSIBLE loss of cell performance

Objectives
1. Better understanding of RCD mechanism and 

impact on cell performance decay by sizing of an 
Accelerated Stress Test mimicking SU-phase

2. Evaluate the most impactful mitigating 
parameters by coupling several monitoring in-
situ and post-mortem techniques

Unprotected SU-phase
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In-situ SU-AST protocol

Emulation of realistic cathode potential profile

Start

Break-in
(up to 0.68V @1.0 A/cm²)

Polarization curve
(0.5 V  OCV)

SU-AST
(100 cycles)

Polarization curve
(0.5 V  OCV)

H2/Air

H2/N2

H2/Air

Coupling monitoring techniques
• Cell performance decay (polarization)
• ECSA losses along AST (CV)
• CO2 emission rate along AST

11

x100

60°C – 80/80%HR – 1.0/1.0ba – 300/800 nL/h

SU-AST potential profile
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In-situ SU-AST protocol

Emulation of realistic cathode potential profile

Start

Break-in
(up to 0.68V @1.0 A/cm²)

Polarization curve
(0.5 V  OCV)

SU-AST
(100 cycles)

Polarization curve
(0.5 V  OCV)

H2/Air

H2/N2

H2/Air

Real stack flow-field design
100 cm² MEA single cell

Coupling monitoring techniques
• Cell performance decay (polarization)
• ECSA losses along AST (CV)
• CO2 emission rate along AST

x100
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60°C – 80/80%HR – 1.0/1.0ba – 300/800 nL/h

SU-AST potential profile
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In-situ SU-AST protocol

Parametric study

Start

Break-in
(up to 0.68V @1.0 A/cm²)

Polarization curve
(0.5 V  OCV)

SU-AST
(100 cycles)

Polarization curve
(0.5 V  OCV)

H2/Air

H2/N2

H2/Air ↓

• Efront (1.6  1.0 V)

relative to electrcial current by-passing strategy

• tfront (1.5  0.5s)

relative accelerating H2 injection in Air-filled anode

• RHa/c (95  50%)

relative to water evaporated at the gas inlet

• Tcell (60  30°C)

relative to internal cell temperature

• 1.6V – 1.5s – 80/80%HR – 60°C (Ref)

• 1.4V – 1.5s – 80/80%RH – 60°C

• 1.2V – 1.5s – 80/80%RH – 60°C

• 1.0V – 1.5s – 80/80%RH – 60°C

• 1.6V – 1.0s – 80/80%RH – 60°C

• 1.6V – 0.5s – 80/80%RH – 60°C

• 1.6V – 1.5s – 80/50%RH – 60°C

• 1.6V – 1.5s – 50/50%RH – 60°C

• 1.6V – 1.5s – 80/95%RH – 60°C

• 1.6V – 1.5s – 80/80%RH – 45°C

• 1.6V – 1.5s – 80/80%RH – 30°C

SU phase potential profile
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↓

• Efront (1.6  1.0 V)

relative to electrcial current by-passing strategy

• tfront (1.5  0.5s)

relative accelerating H2 injection in Air-filled anode

• RHa/c (95  50%)

relative to water evaporated at the gas inlet

• Tcell (60  30°C)

relative to internal cell temperature

• 1.6V – 1.5s – 80/80%HR – 60°C (Ref)

• 1.4V – 1.5s – 80/80%RH – 60°C

• 1.2V – 1.5s – 80/80%RH – 60°C

• 1.0V – 1.5s – 80/80%RH – 60°C

• 1.6V – 1.0s – 80/80%RH – 60°C

• 1.6V – 0.5s – 80/80%RH – 60°C

• 1.6V – 1.5s – 80/50%RH – 60°C

• 1.6V – 1.5s – 50/50%RH – 60°C

• 1.6V – 1.5s – 80/95%RH – 60°C

• 1.6V – 1.5s – 80/80%RH – 45°C

• 1.6V – 1.5s – 80/80%RH – 30°C

In-situ SU-AST protocol

Parametric study

Start

Break-in
(up to 0.68V @1.0 A/cm²)

Polarization curve
(0.5 V  OCV)

SU-AST
(100 cycles)

Polarization curve
(0.5 V  OCV)

H2/Air

H2/N2

H2/Air
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SU phase potential profile
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In-situ SU-AST results

Efront investigation – Cell voltage evolution

Start

Break-in
(up to 0.68V @1.0 A/cm²)

Polarization curve
(0.5 V  OCV)

SU-AST
(100 cycles)

Polarization curve
(0.5 V  OCV)

H2/Air

H2/N2

H2/Air
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Polarization curve
Fresh vs 100 SU-AST cycles
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Performance evolution
Fresh vs 100 SU-AST cycles
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1.4 – 1.6 V range

• Harsh voltage loss along overall polarization curve

Fresh – 1.0V – 1.2V – 1.4V – 1.5V – 1.6V
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In-situ SU-AST results

Efront investigation – Cell voltage evolution

Start

Break-in
(up to 0.68V @1.0 A/cm²)

Polarization curve
(0.5 V  OCV)

SU-AST
(100 cycles)

Polarization curve
(0.5 V  OCV)

H2/Air

H2/N2

H2/Air
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1.0 – 1.2 V range

• Unexpected improvement of cell performance 
(even after 100 cycles)

1.4 – 1.6 V range

• Harsh voltage loss along overall polarization curve

Polarization curve
Fresh vs 100 SU-AST cycles

Fresh – 1.0V – 1.2V – 1.4V – 1.5V – 1.6V
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Performance evolution
Fresh vs 100 SU-AST cycles
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In-situ SU-AST results

Efront investigation – CO2 measurements

Start

Break-in
(up to 0.68V @1.0 A/cm²)

Polarization curve
(0.5 V  OCV)

SU-AST
(100 cycles)

Polarization curve
(0.5 V  OCV)

H2/Air

H2/N2

H2/Air
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1.0 – 1.2 V range

• Unexpected improvement of cell performance
• Low CO2 emission rate expected during the first 20 

cycles

1.4 – 1.6 V range

• Harsh voltage loss along overall polarization curve
• Higher CO2 emission rate for 1.6 V case along cycles

CO2 emission along SU-AST

CO2 total
46 mg
15 mg
6 mg
5 mg

Fresh – 1.0V – 1.2V – 1.4V – 1.5V – 1.6V
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In-situ SU-AST results

Efront investigation – CO2 measurments
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Important CO2 emission
during the first cycles

CO2 total
46 mg
15 mg
6 mg
5 mg

1.0 – 1.2 V range

• Unexpected improvement of cell performance
• Low CO2 emission rate expected during the first 20 

cycles

 CSC of only poorly ordered domains

1.4 – 1.6 V range

• Harsh voltage loss along overall polarization curve
• Higher CO2 emission rate for 1.6 V case along cycles

 CSC of poorly and more ordered domains

CO2 emission along SU-AST

CO2 total
46 mg
15 mg
6 mg
5 mg

Fresh – 1.0V – 1.2V – 1.4V – 1.5V – 1.6VStart

Break-in
(up to 0.68V @1.0 A/cm²)

Polarization curve
(0.5 V  OCV)

SU-AST
(100 cycles)

Polarization curve
(0.5 V  OCV)

H2/Air

H2/N2

H2/Air



The French Alternative Energies and Atomic Energy Commission Timothée DRUGEOT

0

200

400

600

800

1000

0 20 40 60 80 100

C
O

2
 r

a
te

 /
 (

µ
g
/c

y
cl

e)

SU-AST cycle

In-situ SU-AST results

Efront investigation – CV evolution
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1.0 – 1.2 V range

• Unexpected improvement of cell performance
• Low CO2 emission rate expected during the first 20 

cycles

 CSC of poorly ordered domains
 Pt Dissolution/redeposition

1.4 – 1.6 V range

• Harsh voltage loss along overall polarization curve
• Higher CO2 emission rate for 1.6 V case along cycles

 CSC of poorly and more ordered domains [1]
 Pt dissolution/reposition + 

Pt detachement/agglomeration (linked to CSC)
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ECSA evolution along SU-ASTCO2 emission along SU-AST

Fresh – 1.0V – 1.2V – 1.4V – 1.5V – 1.6VStart

Break-in
(up to 0.68V @1.0 A/cm²)

Polarization curve
(0.5 V  OCV)

SU-AST
(100 cycles)

Polarization curve
(0.5 V  OCV)

H2/Air

H2/N2

H2/Air
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In-situ SU-AST results

Efront investigation – Conclusion

20

1.0 – 1.2 V range

• Unexpected improvement of cell performance
• Low CO2 emission rate expected during the first 20 

cycles

 CSC of poorly ordered domains
 Pt Dissolution/redeposition

1.4 – 1.6 V range

• Harsh voltage loss along overall polarization curve
• Higher CO2 emission rate for 1.6 V case along cycles

 CSC of poorly and more ordered domains [1]
 Pt dissolution/reposition + 

Pt detachement/agglomeration (linked to CSC)

 Validation & Quantification of the mitigation of performance decay by lowering Efront potential
 Further insights on degradation mechanisms through a post-mortem study
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ECSA evolution along SU-ASTCO2 emission along SU-AST

Fresh – 1.0V – 1.2V – 1.4V – 1.5V – 1.6VStart

Break-in
(up to 0.68V @1.0 A/cm²)

Polarization curve
(0.5 V  OCV)

SU-AST
(100 cycles)

Polarization curve
(0.5 V  OCV)

H2/Air

H2/N2

H2/Air
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Post-mortem Protocol

Start

Break-in
(up to 0.68V @1.0 A/cm²)

Polarization curve
(0.5 V  OCV)

SU-AST
(100 cycles)

Polarization curve
(0.5 V  OCV)

H2/Air

H2/N2

H2/Air

PEIS (H2/Air)
@0.85 – 0.675 – 0.5 V

PEIS (H2/N2)
@0.4 V

SEM

Post-mortem AST

In-situ AST

End

Polarization curve
@0.1 V  OCV

CV @50 mV.s-1

(0.065  1.0 V)

H2/N2

X3 
operating 
conditions

↓
80°C - 50%HR*
80°C - 80%HR*

80°C - 100%HR*

*1.5/1.5 bara – St 50/50

21

Cutting sample of fresh / aged MEA
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Post-mortem Protocol

Start

Break-in
(up to 0.68V @1.0 A/cm²)

Polarization curve
(0.5 V  OCV)

SU-AST
(100 cycles)

Polarization curve
(0.5 V  OCV)

H2/Air

H2/N2

H2/Air

PEIS (H2/Air)
@0.85 – 0.675 – 0.5 V

PEIS (H2/N2)
@0.4 V

SEM

Post-mortem AST

In-situ AST

End

Polarization curve
@0.1 V  OCV

CV @50 mV.s-1

(0.065  1.0 V)

H2/N2

X3 
operating 
conditions

↓
80°C - 50%HR*
80°C - 80%HR*

80°C - 100%HR*

Local structural analysis
By

Scanning Electron Microscopy
(SEM)

*1.5/1.5 bara – St 50/50

7-layer MEA
(side view)
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Cutting sample of fresh / aged MEA
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Post-mortem Protocol

Start

Break-in
(up to 0.68V @1.0 A/cm²)

Polarization curve
(0.5 V  OCV)

SU-AST
(100 cycles)

Polarization curve
(0.5 V  OCV)

H2/Air

H2/N2

H2/Air

PEIS (H2/Air)
@0.85 – 0.675 – 0.5 V

PEIS (H2/N2)
@0.4 V

SEM

Post-mortem AST

In-situ AST

End

1.8 cm² MEA sample

Cutting sample of fresh / aged MEA

Polarization curve
@0.1 V  OCV

CV @50 mV.s-1

(0.065  1.0 V)

H2/N2

X3 
operating 
conditions

↓
80°C - 50%HR*
80°C - 80%HR*

80°C - 100%HR*

Local EC analysis
By

• Polarization
• CV

• Impedance Spectroscopy (PEIS)

Local structural analysis
By

Scanning Electron Microscopy
(SEM)

*1.5/1.5 bara – St 50/50

7-layer MEA
(front view)

7-layer MEA
(side view)
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Post-mortem Protocol

Start

Break-in
(up to 0.68V @1.0 A/cm²)

Polarization curve
(0.5 V  OCV)

SU-AST
(100 cycles)

Polarization curve
(0.5 V  OCV)

H2/Air

H2/N2

H2/Air

PEIS (H2/Air)
@0.85 – 0.675 – 0.5 V

PEIS (H2/N2)
@0.4 V

SEM

Post-mortem AST

In-situ AST

End

1.8 cm² MEA sample

Polarization curve
@0.1 V  OCV

CV @50 mV.s-1

(0.065  1.0 V)

H2/N2

X3 
operating 
conditions

↓
80°C - 50%HR*
80°C - 80%HR*

80°C - 100%HR*

Local EC analysis
By

• Polarization
• CV

• Impedance Spectroscopy (PEIS)

Local structural analysis
By

Scanning Electron Microscopy
(SEM)

*1.5/1.5 bara – St 50/50

7-layer MEA
(front view)

7-layer MEA
(side view)

• Reproducibility on fresh MEA ✔

• Homogeneity (inlet – middle – outlet) on aged 

MEA @1.6 – 1.4 V ✔

24

Cutting sample of fresh / aged MEA
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Post-mortem RESULTS

SEM observation

25

Fresh 1.0 V 1.2 V

15 k X 15 k X 15 k X

Low thinning from fresh to 1.2 V aged commercial MEA

• No CCL structural modification from fresh to aged MEA at 1.2 V
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Post-mortem RESULTS

SEM observation

Fresh 1.0 V 1.2 V

1.4 V 1.6 V

15 k X 15 k X 15 k X

15 k X 15 k X

Low thinning from fresh to 1.2 V aged commercial MEA

High thinning beyond 1.4 V
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• No CCL structural modification from fresh to aged MEA at 1.2 V
• Low compaction of CCL and densification of Pt nanoparticles at 1.4 V and harsher at 1.6 V

 Linear correlation with CSC mechanisms

-7%-0%
-20%

-44%

CCL thickness VS CO2
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Post-mortem RESULTS

Local polarization curve
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0

0.2

0.4

0.6

0.8

1

0 1 2 3 4

U
 /

 V

I / (A/cm²)

100%HR

Polarization curve on 1.8 cm²
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• At 50 %HR : No performance decay excepted for 1.6 V case
↓

• At 100 %HR : Emergence of progressive performance decay
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Post-mortem RESULTS

Local polarization curve

• At 50 %HR : No performance decay excepted for 1.6 V case
↓

• At 100 %HR : Emergence of progressive performance decay

• Improvement of performance for 1.0 V case similar as in previous in-situ SU-AST (98 cm²)

 Mass transport limitation is more pronounced At higher RH
↓

 Water management is altered due to CCL chemical and/or electrochemical modifications:
i. Loss of hydrophobicity
ii. Modification of carbon surface properties
iii. Higher Pt/C loading ratio due to carbon support corrosion
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Post-mortem RESULTS

Local polarization curve

• By zooming in low current density region (< 2 A/cm²)
 Loss of cell performance for every case
 Probably linked to Pt ECSA decrease
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Post-mortem RESULTS

PEIS (H2/Air) @0.85 V
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Post-mortem RESULTS

PEIS (H2/Air) @0.85 V
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• Slight increase of charge transfer resistance from
fresh up to aged MEA at 1.4 V

• High increase of Rct value above 1.5 V
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Post-mortem RESULTS

PEIS (H2/Air) @0.85 V vs ECSA
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 Rct evolution cannot be fully linked to ECSA loss and 
thus Pt degradations

 Other limiting mechanisms above 1.5 V
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• No significant variation for CCL protonic transport 
resistance from fresh up to aged MEA at 1.5 V

• Drastic RH+,CCL increase for 1.6 V case in FC operation

 Modification of proton transport properties in CCL due to 
carbon support collapse ?
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Post-mortem RESULTS

PEIS (H2/N2) @0.4 V
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• Progressive reduction RH+ in CCL 
under N2 when Efront is increased

• Drastic decrease in proton 
resistance at 1.6 V at 50%RH

Higher water retention in damaged
CCL ?

 To be confirmed by additional
tenchiques
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@100/100%RH
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CONCLUSION & PERSPECTIVES

 Validation of complete in-situ & post-mortem investigation by:

 Electrochemical and physico-chemical analysis on large (98 cm²) and localized small (1.8 cm²) MEA areas

 Mitigating parameters confirmed and quantified with represented potential profile in real flow field design:

- Efront: Lowering cathode potential by by-passing electrical current through dummy load

- tfront: Lowering exposure time by accelerating H2 injection in Air-filled anode

- RHa/c: Flushing cell with dry gas before H2 injection

- Tcell: Lowering stack temperature before H2 injection

 Complex degradation mechanism revealed:

 Weaker water management for damaged MEA in our SU-AST beyond 1.4 V

 Better cell performance for damaged MEA at 1.0 V

 Further insights on degradation mechanisms by using:

 Water sorption measurements

 Raman spectroscopy Investigation of amorphous and graphitized domains into CCL

 XPS technique Investigation of functional groups onto carbon surface
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Post-mortem RESULTS

Overview of post-mortem investigation
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Lowering Efront / tfront / HR / Tcell

 Reduce CSC mechanism and Pt degradations
 Reduce CCL thinning and thus loss of porosity

 Require additional post-mortem analysis to validate water retention and degradation mechanisms
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Post-mortem RESULTS

Polarization & CV

80°C – 50/50%HR – 1.5/1.5ba – St 50/50
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Post-mortem RESULTS

PEIS (H2/Air) at high RH
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80°C – 1.5/1.5ba – St 50/50

Fresh – 1.0V – 1.2V – 1.4V – 1.5V – 1.6V (ref) Fresh – 0.5 s – 1.0 s – 1.5 s (ref) Fresh – 50/50% – 80/50% – 80/80% (ref) - 80/95% Fresh – 30°C – 45°C– 60°C (ref)

Post-mortem RESULTS

PEIS (H2/N2) at low and high RH :  « Fresh » vs « Aged » MEA

PEIS at high HR condition (95/95% HR)
• Lower resistance with higher RH was excepted
• Lower resistance for more degraded CCL could be explained by :

• A structural modification of ionomer phases with the carbon
support collapse

• A lower water removal abilities due to loss of hydrophobicity

 Requires additional analysis (water sorption, Raman spectroscopy…)
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