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ABSTRACT

Deep learning (DL) has shown remarkable results in solving inverse problems in various domains. In particular, the Tikhonet approach
is very powerful in deconvolving optical astronomical images. However, this approach only uses the `2 loss, which does not guarantee
the preservation of physical information (e.g., flux and shape) of the object that is reconstructed in the image. A new loss function has
been proposed in the framework of sparse deconvolution that better preserves the shape of galaxies and reduces the pixel error. In this
paper, we extend the Tikhonet approach to take this shape constraint into account and apply our new DL method, called ShapeNet, to
a simulated optical and radio-interferometry dataset. The originality of the paper relies on i) the shape constraint we use in the neural
network framework, ii) the application of DL to radio-interferometry image deconvolution for the first time, and iii) the generation of
a simulated radio dataset that we make available for the community. A range of examples illustrates the results.

Key words. miscellaneous – radio continuum: galaxies – techniques: image processing – methods: data analysis –
methods: numerical

1. Introduction
Sparse wavelet regularization, based either on the `0 or `1 norm,
has been the commonly approved technique for astronomical
image deconvolution for years. It has led to striking results,
such as an improvement in resolution by a factor of four (two
factors in each dimension) in the Cygnus-A radio image recon-
struction compared to the CLEAN standard algorithm (Garsden
et al. 2015). Sparsity, similarly to the positivity regularization
constraint, can be considered as a weak prior on the distribu-
tion of the wavelet coefficients of the solution because most if
not all images present a compressible behavior in the wavelet
domain. In recent years, the emergence of DL has shown promis-
ing results in various domains, including deconvolution (Xu et al.
2014). In astrophysics, methods based on DL have been devel-
oped to perform model fitting that can be seen as a parametric
deconvolution (Tuccillo et al. 2018). Sureau et al. (2020) intro-
duced the Tikhonet neural network for optical galaxy image
deconvolution. Tikhonet clearly outperformed sparse regulariza-
tion for the mean square error (MSE) and a shape criterion, the
galaxy shape being encoded through a measure of its ellipticity
(Sureau et al. 2020). These great results can be explained by the
fact that DL learns, or rather approximates, the mean of the pos-
terior distribution of the solution. As there is no guarantee that
a nonlinear deconvolution process preserves the galaxy shapes,
Nammour et al. (2021) introduced a new shape penalization term
and showed that the addition of this penalty to sparse regulariza-
tion improves both the solution shape and the MSE. In this paper,
we propose a new deconvolution method, called ShapeNet, by
extending the Tikhonet method to include the shape constraints.
We present first results for optical galaxies image deconvolution

and then show that Tikhonet and ShapeNet can also be used in
the framework of radio galaxy image deconvolution. To achieve
these results, we have developed our own datasets for optical and
radio astronomical images. The optical dataset generation uses
Hubble Space Telescope (HST)-like target images and simulates
Canada France Hawaii telescope (CFHT)-like noisy observa-
tions by using real images and point spread functions (PSF)
from the coordinates, sizes, magnitudes, orientations, and shapes
(COSMOS) catalog (Mandelbaum et al. 2012). The radio dataset
comprises noisy images with realistic PSFs similar to those of
the MeerKAT telescope, and parametric galaxies with properties
taken from the tiered radio extragalactic continuum simulation
(T-RECS) catalog (Bonaldi et al. 2019).The optical and radio
dataset generation are adapted for machine learning, and theyare
explained in Appendices A.1 and A.2, respectively. Section 2
introduces our new method, and Sect. 3 presents the results of
numerical experiments. We conclude in Sect. 4.

2. Deep-learning deconvolution with a shape
constraint

2.1. Deconvolution problem

When we denote the observed image by y ∈ Rn×n and the PSF by
h ∈ Rn×n, the observational model is

y = h ∗ xT + n, (1)

where xT ∈ Rn×n is the ground-truth image, and n ∈ Rn×n is
additive noise. We can partially restore y by applying the least-
squares method. In this case, the solution oscillates because the
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problem in Eq. (1) is ill conditioned. More generally, it is an
ill-posed problem and can instead be tackled using regulariza-
tion (Bertero & Boccacci 1998). For example, when we note the
circulant matrix corresponding to the convolution operator h as
H ∈ Rn2×n2

, the Tikhonov solution of Eq. (1) is

x̂ =
(
H>H + λΓ>Γ

)−1
H>y, (2)

where Γ ∈ Rn2×n2
is the Tikhonov linear filter, and λ ∈ R+ is the

regularization weight.

2.2. Tikhonet deconvolution

The Tikhonet is a two-step DL approach for solving deconvolu-
tion problems. The first step is to perform deconvolution using
a Tikhonov filter with a quadratic regularization and setting
Γ = Id, leading to a deconvolved image containing correlated
additive noise that is filtered in a second step using a four-scale
XDense U-Net (Sureau et al. 2020). The network is trained to
learn the mapping between the Tikhonov output and the target
image using the mean square error (MSE) as a loss function.
The regularization weight is estimated for each image using a
Stein’s unbiased risk estimate (SURE) risk minimization with
an estimate of the image signal to noise ratio (S/N).

2.3. Shape constraint

The shape information of galaxies is essential in various fields
of astrophysics, such as galaxy evolution and cosmology. The
measure that is used to study the shape of a galaxy is the ellip-
ticity, which is a complex scalar, e = e1 + ie2. The ellipticity of
an image x is given by (Kaiser et al. 1995)

e(x) =
µ2,0(x) − µ0,2(x) + i2µ1,1(x)

µ2,0(x) + µ0,2(x)
, (3)

where µs,t are the image-centered moments of order (s + t),
defined as

µs,t(x) =

n∑
i=1

n∑
j=1

x
[
(i − 1)n + j

]
(i − ic)s ( j − jc)t, (4)

and ic and jc are the coordinates of the centroid of x, such that

ic =

∑n
i=1

∑n
j=1 i · x [

(i − 1)n + j
]∑n

i=1
∑n

j=1 x
[
(i − 1)n + j

] (5)

and

jc =

∑n
i=1

∑n
j=1 j · x [

(i − 1)n + j
]∑n

i=1
∑n

j=1 x
[
(i − 1)n + j

] . (6)

In Nammour et al. (2021), we derived the following
reformulation:

e1 =
〈x, u3〉 〈x, u4〉 − 〈x, u1〉2 + 〈x, u2〉2
〈x, u3〉 〈x, u4〉 − 〈x, u1〉2 − 〈x, u2〉2

(7)

and

e2 =
2 (〈x, u3〉 〈x, u6〉 − 〈x, u1〉 〈x, u2〉)
〈x, u3〉 〈x, u4〉 − 〈x, u1〉2 − 〈x, u2〉2

, (8)

where {u1, . . . , u6} ∈ R6×n×n are constant images, defined for all
i, j in {1, . . . , n} as

u1[(i − 1)n + j] = i, u2[(i − 1)n + j] = j,

u3[(i − 1)n + j] = 1, u4[(i − 1)n + j] = (i2 + j2),

u5[(i − 1)n + j] = (i2 − j2), u6[(i − 1)n + j] = (i j).

(9)

All the scalar products in Eqs. (7) and (8) are linear in x. There-
fore, by formulating the shape constraint as a data-fidelity term
in this scalar product space, we obtain

M0(x) =

6∑
i=1

ωi 〈h ∗ x − y, ui〉2, (10)

where {ω1, . . . , ω6} are non-negative scalar weights. Equa-
tion (10) offers a shape constraint whose properties are straight-
forwardly derived. However, the ellipticity measure is extremely
sensitive regarding noise. To add robustness to the shape con-
straint, we considered windowing the observed image, y, to
reduce the noise effect. One approach is to fit a Gaussian window
on y, but this would require an additional preprocessing step in
each observed image. To avoid this step, we chose to use a set
of precomputed windows such that at least one of them fits the
galaxy in the observed image. We considered curvelets to deter-
mine a candidate set because they are a family of linear multi-
scale transforms that is usually designed with specific properties
to efficiently represent objects of interest. This led us to

M(x) =

6∑
i=1

K∑
j=1

ωi j

〈
ψ j (h ∗ x − y) , ui

〉2
, (11)

where {ωi j}i, j are non-negative scalar weights (their compu-
tation is detailed in Nammour et al. (2021)), and

{
ψ j

}
j

are K
-directional and multiscale filters, derived from a curvelet-like
decomposition (Starck et al. 2015; Kutyniok & Labate 2012).
These filters allow capturing the anisotropy of the galaxy image
and are used in the constraint as a set of windows such that at
least one of them reduces the noise in the image and emphasizes
the useful signal. We have also shown that adding such a
constraint to a sparse deconvolution approach reduces both the
shape and pixel errors (Nammour et al. 2021). An alternative
could have been to directly use the ellipticity in the loss function
rather than our shape constraint. However, this would have
raised some serious issues. The ellipticity measurement is very
sensitive to noise, and it would have been necessary to take the
noise propagation on the ellipticity measurements into account.
As the propagated noise would clearly not be Gaussian, this is
far from being trivial. Furthermore, the ellipticity operator is
nonlinear in x, which complicates the gradient computation,
thus rendering optimization much more difficult. In contrast,
our shape constraint is the sum of weighted-squared fully linear
components, and the noise can be well controlled.

2.4. ShapeNet deconvolution

This shape constraint can also be used in a DL deconvolution
framework by extending the Tikhonet method. We propose here
the ShapeNet DL deconvolution, which applies the following
updates to Tikhonet: First, we set Γ to a Laplacian filter instead
of the identity. This is motivated by the fact that images have
generally a decreasing profile in Fourier space and the data qual-
ity at high frequencies is more deteriorated than at low ones.
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Second, the weight of the regularization parameter λ is con-
stant for all images, which adds homogeneity to the filter in the
ShapeNet pipeline and improves the explainability of the task
learned by the XDense U-Net. Third, the loss function used to
train the network contains an additional term, which is the shape
constraint.

The loss function is now expressed as

l(x̃) = ‖x̃ − xT ‖22 + γM(x̃), (12)

where x̃ is the Tikhonov filter output of the observed image,
M is the shape constraint, and γ ∈ R+ is its weight parame-
ter as introduced in Nammour et al. (2021). The choice of the
hyperparameters is detailed in Appendices B.1 and B.2.

3. Numerical experiments and results

In this section, we present the numerical experiments we carried
out in order to assess the methods discussed above. The code was
developed using Python 3.7.5 and TensorFlow 1.15.2,
Keras 2.3.1 (Chollet 2015), AlphaTransform1, Matplotlib
3.1.3 (Hunter 2007), Galaxy2Galaxy, and GalFlow (Lanusse &
Remy 2019). While training the U-Net for the DL methods with
and without a shape constraint, we normalized the pixel values of
the input images by 4× 103 for the optical case and by 2× 103 for
the radio case in order to make their magnitudes close to unity,
so that the activation functions in the neural network could dis-
tinguish the data better. We compared the DL methods to sparse
reconstruction algorithm (SRA) and shape constraint restoration
algorithm (SCORE) (Nammour et al. 2021), and additionally, to
CLEAN for the radio case. SRA is a deconvolution method based
on sparsity and positivity, while SCORE is its extension and uses
an additional shape constraint, as described in Nammour et al.
(2021). The qualitative criteria used for these experiments are
listed below.

– MSE =
∑

k(x[k]−xT [k])2∑
k xT [k]2

– Relative error of the flux density: ∆F =
∣∣∣∣∑k(x[k]−xT [k])∑

k xT [k]

∣∣∣∣
– Mean absolute error of each component of the ellipticity: e1

and e2.
The ellipticity in this case was estimated using the adaptive
moments method (Hirata & Seljak 2003), which consists of fit-
ting an elliptical Gaussian window on the input image and then
deducing the measurement from the window obtained.

3.1. Optical experiments

For the optical experiments, we used the CFHT2HST dataset,
whose implementation is detailed in Appendix B.1. For visual
comparison, we show five examples of resolved galaxies in
Fig. 1. First, we observe that the sparse methods tend to make
the reconstructed object more isotropic and smoother, noting that
the fine details present in the ground truth are lost during recon-
struction. This effect is explained by the use of starlets, which
are isotropic wavelets. The DL methods preserve more details
and structures, as seen for the first galaxy. When the shape con-
straint is added, whether going from SRA to SCORE or from
Tikhonet to ShapeNet, there is a better coincidence between the
orientation of the reconstructed galaxies and the ground truth.
We also note that the addition of the shape constraint allows a
better reconstruction of large galaxies. This can be seen for the
Tikhonet results, where galaxies reconstructed without the con-
straint appear to be smaller and less bright than the ground truth
at a significant noise level.
1 https://github.com/dedale-fet/alpha-transform/

Ground Truth

Fig. 1. Examples of extended galaxies reconstructed using the
CFHT2HST dataset.

Table 1. CFHT2HST dataset results.

Methods MSE Flux

SRA 4.33 × 10−1 ± 6.95 × 10−3 2.06 × 100 ± 5.92 × 10−1

SCORE 2.93 × 10−1 ± 3.93 × 10−3 1.83 × 100 ± 5.68 × 10−1

Tikhonet 3.33 × 10−1 ± 4.45 × 10−3 1.25 × 100 ± 4.16 × 10−1

ShapeNet 2.45 × 10−1 ± 3.47 × 10−3 6.49 × 10−1 ± 6.20 × 10−2

Methods e1 e2

SRA 1.28 × 10−1 ± 2.03 × 10−3 1.54 × 10−1 ± 2.41 × 10−3

SCORE 1.18 × 10−1 ± 1.84 × 10−3 1.45 × 10−1 ± 2.20 × 10−3

Tikhonet 1.24 × 10−1 ± 1.89 × 10−3 1.34 × 10−1 ± 2.09 × 10−3

ShapeNet 1.16 × 10−1 ± 1.81 × 10−3 1.27 × 10−1 ± 2.06 × 10−3

Notes. The values indicate the mean error of each quantity, and the
uncertainty corresponds to the standard error of the given value.

To measure the MSE, we carried out a weighting with
the elliptical Gaussian window obtained while estimating the
ground-truth galaxy shape. This weighting reduces the noise
in the ground-truth images, allowing us to reduce the bias in
the estimation of MSE. Quantitatively, we also compared sparse
methods to DL methods by taking SRA and Tikhonet. Our
results corroborate those of Sureau et al. (2020), that is, in almost
all measurements listed in Table 1 and shown in Fig. 2, Tikhonet
average errors are lower than those obtained with SRA. We note
that for both methods, sparsity and neural network, adding the
shape constraint reduces the errors. In Table 1, the ShapeNet
reconstructions again have lower errors than those obtained with
Tikhonet, with reductions of 26%, 48%, 6%, and 5% for MSE,
flux, e1, and e2, respectively. Thus, we show that the addition of
the shape constraint improves the performance of the methods
considered with respect to all the quality criteria studied, which
corroborates the results in Nammour et al. (2021). In conclusion,
the experiments carried out on the CFHT2HST dataset show
that adding the shape constraint in a DL framework significantly
reduces the reconstruction errors.

3.2. Radio experiments

So far, DL deconvolution methods have only been tested on opti-
cal data. In this section, we extend the results of Sureau et al.
(2020) by first investigating how DL techniques perform for
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Fig. 2. Mean errors of reconstruction as a function of magnitude for the
CFHT2HST dataset, where the error bars correspond to the standard
error of the given value.

radio galaxy deconvolution, and we then add a shape constraint
during the neural network training. For the radio experiments,
we used the MeerKAT3600 dataset, whose implementation is
detailed in Appendix B.2. In Fig. 3 we show examples of galax-
ies where the peak signal to noise ratio (PSNR) is greater than 3,
so that we can distinguish galaxies from noise in observations.
The CLEAN and sparse-recovered images are both smoother
than the corresponding ground truths, and the orientation of the
reconstructed galaxies is strongly biased by that of the PSF.
Deep-learning methods better preserve details such as shape,
size, and orientation. Deep-learning methods are able to detect
galaxies even when the PSNR is extremely low (as shown in the
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Fig. 3. Examples of galaxies with PSNR greater than 3, reconstructed
from the MeerKAT3600 dataset.

Table 2. MeerKAT3600 dataset results.

Methods MSE Flux

CLEAN 3.91 × 10−1 ± 3.51 × 10−3 5.02 × 10−1 ± 3.47 × 10−3

SRA 2.81 × 10−1 ± 1.16 × 10−2 3.31 × 10−1 ± 9.30 × 10−3

SCORE 2.69 × 10−1 ± 1.08 × 10−2 2.39 × 10−1 ± 7.15 × 10−3

Tikhonet 5.21 × 10−2 ± 1.47 × 10−3 1.58 × 10−1 ± 2.14 × 10−3

ShapeNet 4.33 × 10−2 ± 1.17 × 10−3 1.47 × 10−1 ± 2.48 × 10−3

Methods e1 e2

CLEAN 1.30 × 10−1 ± 1.76 × 10−3 1.27 × 10−1 ± 1.70 × 10−3

SRA 1.20 × 10−1 ± 1.87 × 10−3 1.26 × 10−1 ± 2.07 × 10−3

SCORE 1.14 × 10−1 ± 1.78 × 10−3 1.21 × 10−1 ± 2.01 × 10−3

Tikhonet 7.44 × 10−2 ± 1.44 × 10−3 7.88 × 10−2 ± 1.53 × 10−3

ShapeNet 7.34 × 10−2 ± 1.41 × 10−3 7.70 × 10−2 ± 1.48 × 10−3

Notes. The values indicate the mean error of each quantity, and the
uncertainty corresponds to the standard error of the given value.

last column of Fig. 3). Furthermore, the shape constraint helps
to noticeably improve the results for galaxies with PSNR greater
than 10 as shown in Fig. 4.

Similar to the optical case, adding the shape constraint to
both sparse and DL methods improves their performance in
the radio case as well. In more detail, Table 2 shows that the
ShapeNet reconstructions have lower errors than those obtained
with Tikhonet, with reductions of 17%, 7%, 1%, and 2% for
MSE, flux, e1, and e2, respectively.

We finally conclude that the sparsity and DL methods per-
form better than CLEAN, adding the shape constraint brings a
gain in all the quality criteria considered, and DL offers a bet-
ter performance than sparsity. Finally, ShapeNet outperforms all
other methods discussed above.
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Fig. 4. Mean errors of reconstruction as a function of PSNR for the
MeerKAT3600 dataset.

4. Conclusion

We have introduced ShapeNet, a new problem-specific approach,
based on optimization and DL, to solve the galaxy deconvolu-
tion problem. We developed and generated two realistic datasets
that we adapted for our numerical experiments, in particular,
the training step in DL. Our work extends the results of Sureau
et al. (2020) by first investigating how DL techniques behave
for radio-interferometry galaxy image deconvolution, and then
adding a shape constraint during the neural network training.
Our experiments have shown that the Tikhonet and ShapeNet

DL deconvolution methods allow us to better reconstruct radio-
interferometry image reconstructions. We have shown that the
shape constraint improves the performance of galaxy deconvo-
lution for optical and radio-interferometry images for different
criteria, such as the pixel error, the flux, and the ellipticity. In
practice, this method can be used with a source-extraction algo-
rithm to restore wide-field images containing multiple galaxies.

We will evaluate our method on real data. ShapeNet might be
improved by replacing the U-Net by a more competitive denoiser
such as the deep iterative down-up CNN for image denoising
(DIDN) (Yu et al. 2019) or Laine et al. (2019) method. Addition-
ally, ShapeNet might also be improved by adding filters to extract
feature maps before the deconvolution step in a similar fashion
to Dong et al. (2021). We are currently investigating the addition
of the shape constraint to an ameliorated version of the ADMM-
net method presented in Sureau et al. (2020). The amelioration
concerns the properties of the neural network that are discussed
in Pesquet et al. (2021). On a wider scope, our deconvolution
method can also be applied to other fields that will be addressed
by the square kilometre array (SKA). An efficient deconvolution
method that is accessible to the community enables reconstruct-
ing a better estimate of the sky with fewer data than classical
methods. This is key for optimizing the observing time and the
number of required data to achieve a given image reconstruction
fidelity. In the upcoming surveys involving SKA1-MID, the use
of DL methods that are specific to the behavior of an instrument
during an observation will be critical to limit the deluge of data
produced by the new generation of radio interferometers.
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Appendix A: Generating the datasets

For DL, a huge and realistic dataset is required to obtain relevant
results. The codes we used to generate our datasets are written
in Python 3.6, use GalSim (Rowe et al. 2015), TensorFlow
1.15.2, and are publicly available on GitHub (see Appendix C).
The noise is added on the go and is adjusted according to the
application.

Appendix A.1: Optical dataset

We developed the CFHT2HST dataset such that the target
images are HST-like and the input images are CFHT-like. The
dataset consists of the following:

– Target galaxy , also called ground-truth galaxy. This galaxy
is obtained by convolving a real HST galaxy image from the
COSMOS catalog (Mandelbaum et al. 2012) with the target
PSF to reach a determined target resolution.

– Target PSF . The role of this PSF is to limit the resolution of
the target galaxy to obtain a realistic simulation of an image
observed by a telescope. The target PSF is unique because
its variations are negligible with respect to the input PSF.

– Input galaxy. The image is obtained by convolving the image
from the COSMOS catalog with the input PSF, and adding
noise with a constant standard deviation for all images. The
value of the standard deviation is computed by taking the
conditions of observation and the properties of the CFHT
telescope2 into account.

– Input PSF. This PSF is used to obtain the input galaxy. It
was generated using a Kolmogorov model (Racine 1996).

The characteristics of this dataset are given in Table A.1.

Pixel scale 0.187′′
Image dimensions 64 × 64
No. of objects 51 000
Noise standard deviation 23.59

Table A.1: Characteristics of the CFHT2HST dataset.

Appendix A.2: Radio dataset

To our knowledge, no public radio dataset of this magnitude
that is suitable for our working environment is available. We
therefore developed our own dataset, which is composed of
over 50,000 images with realistic PSFs similar to those of the
MeerKAT telescope (a precursor to the SKA) at a central fre-
quency of 3600 MHz, and parametric galaxies with realistic
properties taken from the T-RECS catalog (Bonaldi et al. 2019).
The key point to note here is that the noise is masked by the
PSF in Fourier space. The noise level is measured in terms of
the PSNR, and is defined as the ratio of the maximum useful
signal to the standard deviation of the noise (a commonly used
convention in radio astronomy).

The generated dataset contains pairs of galaxies and PSFs,
the characteristics of which are listed in Table A.2. We use sim-
ulated realizations of observational PSFs from the MeerKAT
telescope for typical observation times of 2 hours. The PSF is
completely determined by i) the observation wavelength, ii) the
integration time of the observation, and iii) the distribution of

2 https://github.com/CosmoStat/ShapeDeconv/blob/
master/data/CFHT/HST2CFHT.ipynb

the antennas as seen from the source during the observation.
To simulate a variety of realistic cases, we generated integrated
PSF realizations over 2 hours for random source directions.
A longer observation time allows accumulating more varied
samples in the Fourier plane, which decreases artifacts due to
incompleteness of the sample mask.

Common Characteristics
Pixel Scale 0.58"

Central Frequency 3600 MHz
Image Dimensions 128 X 128

No. of objects 51000
Galaxy PSF

Type SFG Type MeerKAT
Profile Exponential No. of Antennas 64

Min. size 6.5 pixels Observation Time 2 hours
Max. size 80 pixels Time Step 300 seconds

Table A.2: Characteristics of the simulated MeerKAT3600dataset.

Appendix B: Implementation

Appendix B.1: Optical dataset

For the optical experiments, we considered the CFHT2HST
dataset presented in Appendix A.1. In the same spirit as the
experiments carried out in (Sureau et al. 2020), the goal is to
reconstruct high-resolution images from low-resolution images,
with each resolution corresponding to a telescope. In our case,
the high-resolution images correspond to real images from the
HST telescope, and the low-resolution images correspond to
simulated images at the resolution of the CFHT obtained by
degrading the HST images. These are considered the ground
truths, and the CFHT images are the observed images. To mea-
sure the quality of the signal in the image, we used the absolute
magnitude. The noise level added to the latter is constant back-
ground noise, which was calculated from the parameters of the
telescope 3. Therefore, the absolute magnitude up to a multi-
plicative constant is the opposite of the logarithm of the S/N.
We considered four classes of magnitudes, each with an aver-
age of 20.79, 22.16, 22.83, and 23.30, and each containing an
equal number of samples. The dataset contains point-like galax-
ies, which are very small and hard to resolve by the telescope.
Because measuring the shape of these galaxies is problematic,
we removed galaxies from our analysis for which the shape mea-
surement on the ground-truth image had failed. In each class of
magnitudes, we then had about 500 galaxies. The studied meth-
ods are SRA and SCORE for sparse methods and Tikhonet and
ShapeNet for DL. In these last two, the U-net we used contains
four scales and was trained over ten epochs composed of 625
steps each, and the batches had a size of 128 each. For the choice
of the shape constraint weight in the ShapeNet method, we per-
formed a linear search and found the value γ = 0.5. In the case
of SCORE, the weight was set to γ = 1 based on our previous
findings in Nammour et al. (2021). In addition, the convolution
kernel used in SCORE was obtained by performing a division
in Fourier space of the transform of the input PSF by the output
one. We then performed a partial deconvolution.

3 For more details on generation of the observed galaxies and cal-
culation of the noise level see: https://github.com/CosmoStat/
ShapeDeconv/blob/master/data/CFHT/HST2CFHT.ipynb
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Appendix B.2: Radio dataset

For the radio experiments, we used the MeerKAT3600 dataset
presented in Appendix A.2. Unlike in the optical case, ground-
truth radio images are realistic, but are not real. They are sim-
ulated images using the T-RECS catalog (Bonaldi et al. 2019),
and their resolution is not limited by the telescope dirty beam.
However, observations were simulated so that they were simi-
lar to those of the MeerKAT telescope. To do this, we used the
realistic simulation code that we developed using galaxy2galaxy
4. The noise level used for these experiments was constant and
was chosen so as to obtain a variety of levels of S/N in order to
have a broad assessment of the different methods we examined.
We used PSNR to quantify the signal quality. We considered
four PSNR classes each with an average of 4.38, 6.92, 9.99, and
16.74, containing an equal number of samples. The methods we
compared are CLEAN isotropic, SRA, SCORE, Tikhonet, and
ShapeNet. We only considered CLEAN isotropic in our compar-
isons (and denote it as CLEAN) because it is an improvement
of the original CLEAN algorithm and allows a fairer compari-
son with other methods. The dataset contains observations with
a very low PSNR that extends below 3, which corresponds to
the signal detection threshold for CLEAN. In the subset cho-
sen to perform numerical experiments, 72 out of 3072 galaxies
were removed because their PSNR was below the threshold. In
the end, we had 750 galaxies per class of PSNR. For the DL,
the U-Net we used contains four scales and was trained for ten
epochs, with 3125 steps per epoch and a batch size of 32. For
the choice of weighting for the shape constraint, we found the
value γ = 0, 5 for ShapeNet and γ = 2 for SCORE using a linear
search. The value of the regularization weight for the Tikhonov
filter we used is 9×10−3 and was also found using a linear search
(link to the notebook5: ) Moreover, for these experiments, we
also modified the initialization of the sparse methods, SRA and
SCORE, by replacing the constant image by a Tikhonov filtering
applied to the observation.

Appendix C: Reproducible research

For the sake of reproducible research, all the codes and the data
used for this article have been made publicly available online.
GitHub pages are indicated with the hyperlink icon and other
web pages with .

1. The branch of the GitHub repository for
– optical dataset generation using galaxy2galaxy6: ,
– radio dataset generation using galaxy2galaxy7: ,

2. Scripts for building and training Tikhonet and ShapeNet8: ,
3. Evaluating the trained network for different shape constraint

parameters9:

4 For more details on simulating realistic MeerKAT images with
the T-RECS catalog, see: https://github.com/CosmoStat/
ShapeDeconv/blob/master/data/T-RECS/Generate%20Radio%
20ground%20truth%20from%20T-RECS.ipynb
5 https://github.com/CosmoStat/ShapeDeconv/
blob/master/notebooks/Tikhonov_filter/
WienerParameterSearch.ipynb
6 https://github.com/fadinammour/galaxy2galaxy/tree/
cfht2hst_prblm
7 https://github.com/fadinammour/galaxy2galaxy/tree/
radio_data
8 https://github.com/CosmoStat/ShapeDeconv/blob/
master/scripts/tikhonet
9 https://github.com/CosmoStat/ShapeDeconv/blob/
master/notebooks/UNET_Evaluation/radio/unet_eval_64_
multiple_gamma_shape_investigation.ipynb

4. Link to the trained network weights10:

10 https://doi.org/10.5281/zenodo.5552714
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