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Boron carbide, a lightweight, high temperature material, has various applications as a

structural material and as a neutron absorber. The large solubility range of carbon in

boron, between ≈ 9 % and 20 %, has been theoretically explained by some of us by the

thermodynamical stability of three icosahedral phases at low temperature, with respective

carbon atomic concentrations: 8.7 % (B10.5C, named OPO1), 13.0 % (B6.7C, named OPO2),

whose theoretical Raman spectra are still unknown, and 20 % (B4C), from which the na-

ture of some of the Raman peaks are still debated. We report theoretical and experimental

results of the first order, non-resonant, Raman spectrum of boron carbide. Density func-

tional perturbation theory enables us to obtain the Raman spectra of the OPO1 and OPO2

phases, which are perfectly ordered structures with however a complex crystalline motif of

414 atoms, due to charge compensation effects. Moreover, for the carbon-rich B4C, with

a simpler 15-atom unit cell, we study the influence of the low energy point defects and of

their concentrations on the Raman spectrum, in connection with experiments, thus provid-

ing insights into the sensitivity of experimental spectra to sample preparation, experimental

conditions and setup. In particular, this enables us to propose a new structure at 19.2 %

atomic carbon concentration, B4.2C, that, within the local density approximation of density

functional theory (DFT-LDA), lies very close to the convex hull of boron carbide, on the

carbon-rich side. This new phase, derived from what we name the “3+1” defect complex,

helps in reconciling the experimentally observed Raman spectrum with the theory around

1000 cm−1. Finally, we predict the intensity variations induced by the experimental geom-

etry and quantitavely assess the localisation of bulk and defect vibrational modes and their
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character, with an analysis of “chain” and “icosahedral” modes.

I. INTRODUCTION

Boron carbide is a ceramic material that combines a number of practical applications, interesting

structural peculiarities, shared with other boron based compounds, and prospective applications

which are still far from their realization. Due to its hardness it is largely used for ballistic protection

and for abrasive blast nozzle, due to its wear resistance. The non negligible percentage of the 10B

isotope makes it useful as neutron absorber, a sort of “nuclear functional material” [1], used to

control and/or stop the chain reaction in nuclear power plants. As far as its electronic properties

are concerned, boron carbide is a semiconductor; as such, various functional applications have been

envisaged, for example in the field of thermoelectricity, already decades ago [2] or as catalyst for

photoelectrochemical water splitting [3], but the difficulties in controlling the stoichiometry and

the microstructure have up to now hindered such uses.

The electronic band gap, a crucial quantity for functional applications, is still somewhat contro-

versial, although experiments suggest it is approximately between 2.1 and 2.4 eV [4, 5]. Theoretical

estimates based on usual semilocal density functional theory (DFT) (a method which is known to

typically underestimate band gaps for most materials) for ideal carbon-rich B4C stoichiometry give

larger band gap values (around 2.8–3 eV). For the same structure, denoted (B11C)C-B-C —where

(B11C) stands for 12-atom icosahedra linked through 3-atom C-B-C chains— more accurate the-

oretical estimations obtained with hybrid functionals provide, as expected, even larger values, on

the order of 3.6-3.8 eV [6, 7]. It is then clear that the experimental results are probing electronic

levels of defective structures [8, 9]. As far as the boron-rich phases are concerned, the ideal B13C2

structure based on (B12) icosahedra and C-B-C chains, is metallic in DFT, in clear disagreement

with experiment. Some local arrangements have been proposed with defective chains and boron

interstitials [6, 10], whose electronic structure is compatible with the semiconducting character of

the material.

However, two new phases, B10.5C and B6.7C, denoted OPO1 and OPO2 at respectively 8.7 %

and 13.0 % atomic carbon concentrations, also preserve the semiconducting properties [11]. They

have been shown to be the thermodynamically stable phases in the boron-rich domain, bringing

the theoretical solubility range of carbon in boron close to the experimental one in DFT with the
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generalized gradient approximation (GGA). In the present work, we report the Raman spectra of

the ordered OPO1 and OPO2 phases, and introduce a polymorph of B6.7C, and name this variant

of OPO2 as OPOpanto
2 .

Experimentally, boron carbide is observed to have the rhombohedral R3m symmetry. On the

theoretical side, the OPO1 and OPO2 phases have the lowest formation energy at fixed stoichiom-

etry and define the convex hull of boron carbides in the boron-rich domain. They have the P1

triclinic symmetry and can be represented on average by a R3m structure [11]. The atomic struc-

ture consists of (B12) icosahedra connected by three-atom C-B-C chains, however, because of charge

compensation, replacing one third of the C-B-C chains with either B4 blocks (OPO1) —where 2

of the boron atoms are in a 6g extra interstitial Wyckoff site (EIWS) of the R3m unit-cell [11]—

or with chain-like C-B-C· · ·B blocks ( OPO2) —where the extra B-atom is in a 2c EIWS [11]—

is energetically favorable. The B4 intericosahedral arrangements have been reported in previous

works for other carbon concentrations, both theoretically [6, 12] and experimentally [13]. The

latter experimental report has however not been subsequently confirmed.

Both the OPO1 and OPO2 structures are perfectly ordered with a crystalline motif of 414 atoms,

and some of us have proposed that the 15-atom unit cell with the R3m symmetry observed in x-

ray and neutron experiments is the averaged value of the OPO1 (or OPO2) phase [11]. Such

an average by experiment of an otherwise complex theoretical motif (which has an energy lower

than the averaged structure), has been found for other materials, for instance in Refs. 14 and 15.

In boron carbides, the averaging implies an ordered partial occupation (OPO) of some specific

interstitial Wyckoff crystallographic sites of the 15-atom unit cell, which was part of the reason for

which boron carbide was considered as an ”intrinsically” disordered material [6, 9, 16].

On the carbon-rich side, B4C corresponds to an atomic arrangement based on icosahedra con-

nected by three-atoms C-B-C chains. The carbon-rich structure shows (B11C) icosahedra. This

ideal structure is probably not exactly corresponding to the real crystalline arrangements, but is

the scaffold on which the inclusion of various defects leads to the actual structure of boron carbide

around 20 % atomic carbon concentration.

The attainability of the B4C stoichiometry without carbon segregation is still a subject of de-

bate, the highest carbon concentration experimentally observed being B4.3C, whereas the ideal

(theoretical) B4C structure, (B11C)C-B-C, is quasi-rhombohedral, with a slight monoclinic distor-

tion due to icosahedral carbon, which breaks the inversion symmetry of the R3m space group,

leading to the Cm symmetry.

In the lowest energy configuration of this kind, the icosahedral carbon is one of the polar
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atoms [17], or (B11C
p)C-B-C; this is commonly accepted as the structure which most closely corre-

sponds to experimental realisations of carbon-rich boron carbide, as also confirmed by substantial

agreement of the calculated vibrational modes with the experimental Raman spectrum [17–19].

From now on, when discussing the (B11C)C-B-C structure, we intend (B11C
p)C-B-C.

Several defective structures have been put forward as possibly present in carbon-rich boron

carbide. C-B-B chain variants have been suggested for boron-rich [20] and also for nominal B4C

compositions [21]. Other chain variants were also proposed. In particular, C-�-C arrangements

(corresponding to a boron chain vacancy) and C-C chains (corresponding to a C-C bond formation)

were studied with some detail in the neutral state [22–25], and more recently also in charged

states [7]. Other authors have investigated the interplay of various forms of disorder, including

various antisites and vacancies [10, 26–28].

The influence of chain variants, carbon/boron substitution and, more generally, disorder on

the Raman spectrum of boron carbide has already been studied by means of first principles ap-

proaches [29–32]. However, such structural variations were studied as global modifications of the

15-atom unit-cell of (B11C)C-B-C, not as point defects at relatively low concentrations. For exam-

ple, the Raman spectrum of the (B11C)C-C phase was studied in detail [29], and various possible

chain and icosahedral variants were subsequently investigated [30–32]. The phases which contain

chain variants are found to yield entirely different spectra, because they correspond to globally dif-

ferent phases, in general with much higher formation energy with respect to that of (B11C)C-B-C;

such phases are drastically different from the (B11C)C-B-C phase with point defects at relatively

low concentration. It is reasonable to use the spectra of such phases as building blocks of a reconsti-

tuted spectrum of a boron carbide sample only if they are present as sufficiently large crystallites;

it is, however, less justified if the chain variants (or icosahedral ones) occur as diluted point de-

fects. In spite of these efforts [30–32] some of the features observed in the experimental spectrum,

like the one that we show in Figure 1, are not fully understood. The main peak in Raman spec-

tra of boron carbide, located at 1080-1100 cm−1, is not resolved experimentally, while theoretical

calculations show that it originates from two distinct peaks. The shoulder just below, at approx-

imately 1000 cm−1 in the experimental spectrum, is explained by none of the considered variants

theoretically proposed [31]. The presence of the low frequency doublet around 300 cm−1 (Fig. 1)

strongly depends on the direction of polarization of the incident light and on pressure [33, 34]; an

unambiguous theoretical interpretation of this doublet is still missing.

In the present paper we adopt an approach which is slightly different with respect to previous

theoretical works devoted to the Raman spectrum of boron carbide: we consider point defects at
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FIG. 1. Typical experimental Raman spectrum of carbon-rich boron carbide compared to the theoretical

first order Raman spectrum of the (B11C)C-B-C structure. The experimental one presented here has been

obtained on a sample with small grains and is thus randomized over light polarization directions, as the

theoretical one, with an incident laser with wavelength of 633 nm. The frequencies of the main experimental

peaks are reported.

relatively low concentrations and we investigate their influence on the Raman spectrum of boron

carbide. In section II we describe the theoretical tools and experimental settings used to obtain

the results.

Before discussing the results on point defects, in section III A we discuss the influence of the
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experimental geometry and introduce, in section III B, a general measure of mode localisation. The

discussion on geometrical effects is complemented by some experimental results on large grains of

boron carbide with varying orientations.

Section III C is devoted to our findings concerning the influence of point defects on the Raman

spectrum of carbon-rich boron carbide. They were obtained thanks to direct calculations of the first

order, non-resonant, Raman spectrum for reasonably sized supercells and through an embedding

procedure recently described [35]. We conclude this section by presenting the Raman spectrum of

defect complexes and of the ordered boron-rich phases recently discovered [11] and discuss their

relationship with the previously presented point defects.

II. METHODS AND TECHNICAL DETAILS

A. Theoretical methods

The calculation of first order Raman spectra are performed in the framework of density func-

tional perturbation theory (DFPT) and they rely on the Placzek approximation [36]. We used

the local density approximation (LDA), with a plane wave basis set and norm conserving pseu-

dopotentials. A cutoff of 80 Rydberg was used for all calculations presented here. Most direct

defect calculations were performed in a 2×2×2 supercell of the trigonal 15-atom unit cell (120

atoms) of the (B11C)C-B-C structure, with a 3×3×3 Γ-centered k-point mesh for the sampling of

the supercell Brillouin Zone (BZ) (only 2×2×2 for formation energies reported in Section III C 1

k-point mesh). Total energy calculations were performed at the equilibrium volume of the unde-

fected B4C crystal. We stress that this may, in some cases, lead to spurious negative frequencies in

the vibrational spectrum. However, as we are not specifically interested in low frequency phonons

here, we prefer to avoid the risk linked to the arbitrariness of volume relaxations in charged defect

calculations [37]. In some cases, for comparison, we nevertheless performed zero pressure calcula-

tions of the Raman spectrum (an example is shown in the Supplemental Material [38]). The OPOs

structures have been fully relaxed to a pressure smaller than 1 kbar. For all configurations the

threshold for the relaxation of atomic position has been fixed to 10−3 Ryd/Bohr. All DFT and

DFPT calculations were performed with the Quantum-Espresso package [39, 40].

Extrapolation of the Raman spectrum of point defects in the (B11C)C-B-C structure to larger

supercells, i.e. smaller defect concentrations, was dealt with using a recently devised procedure [35]

that enables us to embed the force constant matrix into that corresponding to a larger bulk su-
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percell. In some cases, for the purpose of comparison with the embedding method, we performed

direct calculations of Raman spectra for 3×3×3 supercells containing more than 400 atoms. For

simple point defects the size of the supercell used for the direct calculation (120 atoms) is found

to be sufficient, except in cases where the Placzek approximation is not any more justified (see the

case of a boron interstitial in charge +1, which we discuss later).

The localisation of phonon modes has been quantified by the variance σ(ν) of the norm of the

atomic displacements (
∥∥ui(ν)

∥∥, i=1,Nat) of the considered vibrational mode ν:

σ(ν) =

Nat∑
i=1

√uix(ν)2 + uiy(ν)2 + uiz(ν)2 − 1

Nat

Nat∑
j=1

√
ujx(ν)

2
+ ujy(ν)

2
+ ujz(ν)

2

2

; (1)

this stems from the consideration that the more a vibrational mode is localised, the larger will

be the difference between the displacement of the most involved atoms with respect to the less

involved ones; we have to keep in mind that phonon eigenvectors are normalized.

Especially when phonon modes are localised we are interested in knowing the character (chain

or icosahedral) of vibrational modes. We have defined it by assigning a character to each atom

(chain or icosahedron) and weighting different atom contributions according to the norm of their

displacement. Thus the character of a mode ν is defined as:

Ch(ν) =
1

N

Nat∑
j=1

ch(j) ∗
∥∥uj(ν)

∥∥ , (2)

where the sum runs over all Nat atoms in the cell and ch(j) and uj(ν) are, respectively the

character and the displacement of atom j within the vibrational mode ν. The character of each

atom is defined through the distance of the neighbors. Defining short bonds as those between 2.6

and 3.0 Å and long bonds as those between 3.0 and 3.5 Å, we define chain atoms as those having

at least one short bond and at most three long bonds and assign them ch(j) = −1; icosahedral

atoms have at most one short bond and at least 5 long bonds, and have ch(j) = 1. Atoms not

falling in those two categories are attributed an hybrid character, and we assign them ch(j) = 0

(this is for example the case for boron interstitials).

While plotting calculated spectra we have to assume a certain broadening of Raman lines;

experimentally this can come from the resolution of the measuring apparatus as well as from the

intrinsic linewidth which depends on the lifetime of the excitations. As the latter broadening is

not straightforward to calculate, we simply apply a Lorentzian broadening of width 10 cm −1 to

our calculated spectra, which ends up mixing the chain/icosahedral characters of nearby modes;

for the sake of visualisation, we enhance the specific character of these mixed modes by a function
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of the form:

Xν =
αCh(ν)

α|Ch(ν)|+ 1
(3)

where ν is the mode label and α an arbitrary enhancement factor. In the following we use α =100

for the 15-atom unit cell and α/n3 for n × n × n supercells. Large unit-cells as those of OPOs

structures were treated as supercells of equivalent size.

The intensity in the Placzek approximation depends on temperature through the occupation of

the phonon modes according to the Bose statistics. It is the only temperature dependence that

we consider here, plotting all spectra at T=300 K. In particular, we neglect the effect of thermal

expansion on the position of the phonon modes.

Defects formation energies were calculated using the usual approach as in our previous work

on vacancies [7], for charged defects only the monopole Madelung correction was added, to remove

spurious interaction between periodic images. The reference carbon chemical potential for carbon-

rich conditions is the energy per atom of graphite, while for boron-rich conditions the reference is

α-boron.

B. Experimental methods

Turning to the experimental procedures, the spectrum in Fig. 1 was obtained on a sample with a

density of 2.42 g/cm3, i.e., 96% of the commonly reported nominal density of B4C of 2.52 g/cm3[19].

Grain sizes were between 0.3 and 0.8 µm; the sample was sintered from HD20 powder.

For the large grain spectra shown in the following (section III A), pure B4C pellets (B+C

>99 %, free carbon <0.5 weight %) with density close to 98 % of the nominal density were

prepared by hot pressing process. The grain size was measured to be between 10 and 50 µm.

Raman characterizations were performed, in both cases, with a Renishaw Invia Reflex high-confocal

spectrometer equipped with 633 nm of He-Ne excitation laser and a 1800 groove/mm grating

coupled with a Leica microscope (x50). Raman spectra of large grain samples were carried out for

a spectral acquisition between 400 and 1200 cm−1. Acquisition times are typically 20s. The Raman

spectrometer was calibrated with silicon single crystals. Raman spectra were collected every 1 µm

along a line crossing a grain boundary in order to produce a spatial map of the collected intensities.

The spatial resolution of the Raman system is 1 µm. The standard setup, which was used, collects

the spectra in the backscattering geometry.

The excitation laser has a power of 7 mW. We have checked the sample heating by performing
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several tests at various laser powers (from 0.15 to 7 mW) on the same grain. For these analysis

conditions, neither surface evolution nor sample oxidation are observed. In addition, with similar

analysis conditions, we do not observe any defect annealing due to the laser heating in other B4C

samples either damaged by ion irradiation or amorphised.

III. RESULTS AND DISCUSSION

A. Geometry and Raman intensity

Simulated Raman spectra of crystalline solids imply most frequently averaging over the relative

direction of the polarization of the incident and scattered light beams. Such an approach, inherited

from Raman spectra of molecules in the gas phase [41], is perfectly suited to represent the Raman

spectrum of polycrystalline solids, where grains are randomly oriented with respect to the exper-

imental apparatus. In crystals, however, it can be useful to select specific geometries in order to

enhance or suppress some specific Raman lines, through the symmetry of the crystal lattice. Recent

comparisons of experimental and calculated spectra for silicon carbide polytypes [42] provide an

example of how to exploit this opportunity. Here we focus on the (B11C
p)C-B-C structure to show

how the geometry of the experimental settings can influence the acquired Raman spectrum.

The geometry of an acquired spectrum is commonly labeled using the Porto notation; to give

an example, the notation Z(Y X)Z means that the light impinges on the sample along the Z

direction and is collected in the backscattering geometry along the same cartesian axis (reversed

direction, Z). The polarizations are indicated in parentheses: the polarization of the incident beam

is along the Y axis, while the detector selects the light polarized along X for the scattered beam.

Supposing all possible polarizations are analysed for the scattered beam (always perpendicular to

the propagation direction of the light beam), then we would have Z(Y X+Y Y )Z. This is a typical

setting for Raman measurements in the backscattering geometry.

In general, however, the incident beam is not necessarily aligned with a crystallographic di-

rection; this typically happens when doing topography on samples containing large grains whose

orientation is not known. In this case the incident light beam impinges onto the grain along a

direction which is identified by two angles, the azimuthal angle θ w.r.t. the Z crystallographic axis

and a polar angle φ between the X-axis and the projection of the incident direction on the XY

crystallographic plane; for the boron carbide structure we fix the Z axis as the 〈111〉 direction of

the trigonal reference system and the cartesian XY plane coincides with the 〈111〉 plane of the
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FIG. 2. Maps of the computed Raman intensity vs polar angle φ for various choices of the azimuthal angle

θ. θ and φ indentify the geometrical relationship between the incident light polarization and the crystal

lattice orientation. θ is given in degrees.

non-cartesian crystal reference system. For given θ and φ we can predict the Raman spectrum in

the backscattering geometry, which in general corresponds to an arrangement Aθ,φ(BC+CC)Aθ,φ,

where directions B and C are perpendicular to A and to each other. φ maps of calculated Raman

spectra obtained for various possible values of the azimuthal angle θ are shown in Fig. 2.

From these maps it is clear that the choice of the incident light beam direction with respect to

the crystallographic axis has a crucial influence on the presence and intensity of several features of

the spectrum. To further stress this points we show spectra simulated for a few azimuthal angles

(θ=0◦, 30◦, 60◦, 90◦) and a few choices of the polar angle φ in Fig. 3. Here we show for comparison

also the calculated spectrum that we expect for a fully random orientation of the grains.

Figures 2 and 3 predict the modifications occuring to the Raman spectrum when modifying the
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FIG. 3. Comparison of simulated spectra for selected values of the azimuthal (θ) and polar (φ) angles.

The spectrum corresponding to a polycrystalline sample with randomly oriented grains, shown here for

comparison (yellow curves), is reduced by a factor of ten.

geometrical settings of an experiment on a single crystal of (B11C)C-B-C, and how different they are

with respect to a random spectrum, i.e., a spectrum obtained on powder or polycrystalline sample.

Let us consider now collecting a Raman spectrum on a sample whose grains size is comparable

to the measuring spot : the outcome will not necessarily look like a random spectrum; clearly, if

the spectrum is acquired on a few large grains and, in particular, if it is acquired on one single

grain, the outcome will depend on the grain orientation w.r.t. the propagation direction of the

incident light beam. In particular the intensity of the two lines slightly below and slightly above

500 cm−1, which are attributed respectively to the rotation of the chain and to the libration of the

icosahedra [30, 43], is gradually suppressed with the increase of the azimuthal angle. Moreover,

the strong lines around 1100 cm−1, which are attributed to two A1g modes of symmetric streching,

respectively the stretching of the intericosahedral bonds and the streching of the chain, decrease in
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intensity when the light beam impinges along the 〈111〉 direction of the trigonal crystal structure

(θ = 0).

The discussion of the previous paragraph helps us to understand the experimental results which

we have obtained on a sample having large grains, whose size (several microns) is much larger than

the laser spot used for the Raman measurement.

In Fig. 4b we show a spatially resolved experimental Raman spectrum clearly showing relevant

modifications occuring when crossing the grain boundary (see the Raman collection path in Fig. 4a).

In particular, the first peak, at 480 cm−1, attributed to the rotation of the chains [30, 43],

disappears when passing from grain 1 to grain 2 (see panels b and c of Fig. 4). Other less striking,

though visible, modifications of the spectrum occur: slightly more pronounced contributions in the

region 950-1000 cm−1, as well as at 700 cm−1, attributed to two icosahedral vibration modes [30].

The identification of the grain boundary, although not striking from the micrograph in Fig. 4a,

was clearly observed during acquisition and is confirmed by the shape of the open intergranular

porosities (dark regions): the two largest ones are identified as triple points, which suggests the

location of the grain boundary connecting them. Further hints can be obtained from the Raman

spatial maps in the Supplemental Material [38], Figure S4.

The present analysis may shed some light on a longstanding controversy on the Raman spectrum

of boron carbide [44] which was recently revived [45]. According to Refs. 44 and 45 the usually

accepted Raman spectrum of boron carbide [46], which is also mostly in agreement with theoretical

spectra for the (B11C)C-B-C structure [29, 30] and with our polarization averaged spectrum, would

stem essentially from boron carbide surface and not from the bulk, due to absorption of commonly

used laser frequencies in the first 100 nm or so. It is true that, although a clear understanding of the

band gap of boron carbide is still a matter of active study [6, 10, 12], laser wavelenghts of 514 nm

or 532 nm correspond to energies slightly higher than measured values of the band gap; however,

for another carbide with similar band gap (cubic silicon carbide), in spite of some baseline due

to fluorescence, the measured spectra can definitely be identified with the bulk spectrum [42, 47].

A more detailed study of the influence of the incident laser wavelength [48] shows that, although

modifications occur, in particular concerning the relative intensity of the main peak at 1090 cm−1

and the low frequency features around 300 cm −1, the main features of the spectrum are maintained,

including the doublet at 480/535 cm−1, respectively attributed to the pseudo-rotation of the chains

and to the libration of the icosahedra [30]; the latter is, in contrast, virtually absent from the

spectrum labeled “bulk spectrum” in Ref. 45. Concerning this doublet, we showed here that it is

well present even with a subbandgap exciting frequency, as in [48], and we predict how it disappears
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FIG. 4. Experimental Raman spectra of boron carbide across a grain boundary. a) Micrograph showing

the Raman collection line and the grain boundary. b) Spatial map of the spectrum along the line shown in

panel a). c) Comparison of the spectra of grains 1 and 2.

in specific grain orientations, as already remarked qualitatively from experiment [46]. Even the

intensity of the main peaks around 1100 cm−1 varies strikingly according to the grain orientation,

so that, unless a large enough number of grains is probed, the acquired spectrum is clearly not an

averaged one.

B. Mode localisation and character

There is another point we shall discuss about the Raman spectrum of the (B11C)C-B-C struc-

ture before coping with the influence of point defects: it is the question of mode localisation and

character. In order to link the features of a measured Raman spectra to specific atomic modifica-

tions it is customary to identify some signals in the spectrum as icosahedral or chain vibrations.

For example, the region of the spectrum above 600 cm−1, and in particular the main peak at
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∼ 1080 cm−1, has been attributed to vibrations in the icosahedral units [46, 48] or to the symmet-

ric chain strectching [30], while the doublet around 500 cm−1 is associated to the chain rotation,

for the lowest peak, and to the icosahedral libration for the highest one [17, 43]. From theoretical

calculation of Raman spectra, one can look at the displacement patterns of the modes having the

largest Raman cross section and check which are the atoms with the largest displacements [30].

Although a qualitative inspection of displacement patterns can already provide useful information

on the chain or icosahedral character of the mode, it is not easily applicable to large supercells

containing defects. Therefore, in the present work, we use the quantitative approach described in

section II. Equation 2 allows us to assess the character of specific features of the spectrum, ac-

cording to the contribution of all the modes contributing to a Raman peak, and with the presence

of defects. Moreover, in particular when coping with point defects, we also would like to assess

whether modes responsible of (or contributing to) specific Raman peaks are more or less localised.

We have thus used the variance (equation 1) of the atomic displacements (see section II) to quantify

mode localisation.

In panel a) of Fig. 5 we show the calculated random spectrum of the (B11C)C-B-C structure

where the color of the line indicates the character (chain/icosahedral) of the involved modes. In

Fig. 5b we show the localisation of all modes (including those that are not Raman active) as a

function of frequency. Their character is indicated by their color, with the same scale as in Fig. 5a.

We see that, although well localised modes with chain character are clearly present below 400

cm−1, they are not Raman active (see also the comparison with the phonon density of states in

Fig. 5c). The lowest peak of the doublet around 500 cm−1, has indeed a character which is less

clearly icosahedral than the highest one, but still not clearly identified as a chain mode with the

present analysis tool, while a direct analysis enables us to attribute it to the chain rotation [30].

Conversely, the second of the two main peaks —unresolved by experiment— above 1000 cm−1 has

a clear chain character, while the first peak is even more clearly an icosahedral mode. The mode

characters are in agreement with those inferred from the analysis of the calculated eigenvectors of

the modes with the highest Raman activity [30].

C. Point defects and their influence on the Raman spectrum

In this section we present our results on the influence of point defects on the Raman spectrum

of boron carbide. Some theoretical studies devoted to predicting how alternative structures may

modify the Raman spectrum of the reference (B11C)C-B-C have been performed [29, 30, 32],
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FIG. 5. Theoretical bulk spectrum of carbon-rich boron carbide, B4C in the 15-atom ground state structure

(B11Cp)C-B-C. a) the calculated first order Raman spectrum (broadening: 10 cm−1) with chain/icosahedron

character enhanced by a factor α = 100 following equation 3. b) the localisation of each mode (irrespective

of its Raman activity) given by equation 2 as a function of frequency (all Γ-point modes correponding to a

2×2×2 supercell are included). c) The normalized phonon density of states, obtained with three different

q-points grids in the BZ, for comparison. The infrared active mode at 1641 cm−1 is the antisymmetric chain

stretching. Its Raman intensity is approx. 1/100 of the intensity of the largest peak and for this reason it

is not shown on panel a).
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however, there are two aspects that were up to now overlooked: the point defect character of

such structural modification and their actual concentration. Concerning this last point, although

point defects can be present in concentrations larger than equilibrium ones, due, e.g., to the

kinetics of material synthesis, it seems reasonable to consider first those defects whose equilibrium

concentration is the highest one. To approach this issue from a point defect perspective we first

give an introductory note on point defects in boron carbide.

1. Stability of simple defects in (B11C)C-B-C

It is generally accepted that defects are unavoidable in boron carbide and their kind and distri-

bution modifies, and at least partially controls, the stoichiometric ratio between boron and carbon

after a high temperature synthesis [19, 49, 50]. Several works, with a first principles approach

or empirical potentials, investigated the energetics of several structural variations of boron car-

bide [6, 7, 10, 23, 24, 28, 51–54]. Most of them coped with modifications in the 15-atom unit

cell, other investigated larger structures, and thus more complex arrangements and/or lower defect

concentrations; however, apart from our previous study of the negatively charged vacancy [30] and

our recent complete work on vacancies [7], all of them are limited to charge neutral defects. To the

best of our knowledge no systematic theoretical study of the stability of point defects and their

possible charge states in semiconducting boron carbide exists.

We performed recently such a systematic study [7, 38] and, although the main goal of this

paper is to discuss the Raman signature of defects, we need to summarize here our results on

the stability and charge states of point defects, as they have not yet been published in their

entirety. The main results are summarized in Table I. Further details are given in the Supplemental

Material [38]. Simple point defects in B4C boron carbide can be divided in three categories:

vacancies, interstitials, and antisites. The labelling of sites of the 15-atom (B11C)C-B-C unit cell

are shown in figure 6

Concerning vacancies, for which we published a complete report recently [7], we know that the

boron chain vacancy is by far the more stable one [7, 22–25, 30], with a formation energy smaller

than 2 eV, while the formation energy of carbon chain-end vacancies is around 3 eV. Icosahedral

vacancies not only have a much higher formation energy, but they are very unstable, because the

barrier to convert them into chain vacancies is very low or vanishing, which means that, even under

irradiation, they are transient species, thus virtually absent. Chain vacancies are neutral in p-type

boron carbide and negatively charged when the material is intrinsic or n-type [7]. The charge
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TABLE I. Simple defects and a few defect complexes in B4C boron carbide, with the calculated fixed volume

formation energies and Fermi level at the valence band top, µe=0), for a few charge states (-1/+1 means one

added/removed electron); in this column m indicates an odd number of electrons (metallic configuration).

The last column gives, when applicable, the figure number where the corresponding calculated Raman

spectrum is shown. EIWS stands for “Extra-Interstitial Wickoff Site”. See Figure 6 for the labelling of

atomic sites in the 15-atom unit cell.

Defect type structure EC−rich
f (µe=0) EB−rich

f (µe=0) charge state Raman Fig. #

[eV] [eV]

vacancies boron chain VB1 (C-�-C) 1.62 1.77 0 m –

boron chain VB1 (C-C) 2.16 2.31 -1 7a

carbon chain VC2 2.81 2.66 0 –

carbon chain VC1 2.96 2.81 0 –

carbon chain VC1 3.82 3.67 -1 m –

carbon chain VC2 3.94 3.79 -1 m –

antisites carbon icosahedral CB4 0.04 0.77 +1 8a

carbon icosahedral CB5 0.28 1.02 +1 –

carbon icosahedral CB2 0.31 0.43 +1 –

carbon icosahedral CB6 0.41 1.14 +1 –

carbon icosahedral CB7 0.82 1.55 +1 –

carbon icosahedral CB3 0.84 1.57 +1 8c

carbon icosahedral CB1 0.94 1.68 +1 –

carbon icosahedral CB8 0.95 1.68 +1 –

boron icosahedral BC3 (≡ B12) 1.24 0.52 -1 8e

boron interstitials EIWS 2c, icos. B side IB 2.36 2.21 +3 9c

EIWS 2c, icos. B side IB 4.39 4.24 +1 9a

EIWS 2c, icos. C side I∗B 2.90 2.75 +3 –

EIWS 2c, icos. C side I∗B 3.26 3.11 +1 –

EIWS 6g, C〈BB〉C 2.60 2.45 +3 9g

EIWS 6g, C〈BB〉C 3.73 3.59 +1 9e

carbon interstitials EIWS 6g, C〈CB〉C 2.82 3.40 +2 –

EIWS 2c, icos. B side I∗C 4.84 5.43 +2 m –

EIWS 2c, icos. C side I∗C 4.83 5.41 +1 –

defect complexes bipolar defect: C+
B3+B−

C3 0.24 0.24 0 10a

V−
B1+C+

B4 complex 1.48 2.36 0 –

B〈BB〉B chain (or BC1+BC2+IB) 4.70 3.00 +1 11a

B〈BB〉B chain (or BC1+BC2+IB) 3.89 2.19 +3 11c

3+1 defect: I3+B +3B−
C3 2.39 -0.07 0 12
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FIG. 6. The labelling of the atomic sites of the 15-atom (B11C)C-B-C unit cell (in blue). The two arrows

indicate the approximate position of the 2c and 6g EIWS (extra interstitial Wyckoff sites) of the R3m

rhombohedral space group. Among icosahedral atoms, equatorial borons B5-B8 are bound to neighboring

C-B-C chains, while polar atoms B2-B4 and C3 bind to neighboring icosahedra.

transition level is approximately 0.5 eV above the valence band for the boron chain vacancy and

1 eV for carbon ones. A remarkable fact is that the structure of the boron chain vacancy changes

upon electron capture, forming a C-C bond [7, 30], similar to what happens under pressure [23].

Antisites have been widely studied in the framework both of chain variants [23, 51, 52] and also

including icosahedral substitutions [10, 28, 54], but always in the neutral state. Our results show,

conversely, that carbon antisites are almost always in a positive charge state, while boron ones

are mostly negative. The most stable antisite, formed when a carbon atom substitutes a polar

boron atom on the opposite side (but not antipodal) with respect to the icosahedral carbon, is

a negative-U defect, with a +1/-1 charge transition level close to the bottom of the conduction

band; its formation energy almost vanishes under extreme p doping. This antisite is named in the

following CB4 while the antipodal one is called CB3 (see page 2 of the Supplemental Material [38]

for details).

The most stable boron antisite is, as could be expected, the icosahedral one; it is neutral only
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in strongly p-type boron carbide, otherwise it is negatively charged. Its formation energy vanishes

when the Fermi level is smaller than 1.5 eV above the valence band top.

Interstitial defects have not been considered on their own, up to now, in boron carbide, to the

best of our knowledge, but they have been studied as components of large crystalline motifs [6, 10]

recently shown to provide the ground states for boron-rich boron carbides [11]. Such structures,

which eventually explained the semiconducting character of boron-rich boron carbide, show, when

averaged in a 15-atom rhombohedral structure, ordered partial occupation (OPO) of some specific

interstitial Wyckoff crystallographic sites [11] and can be seen as an ordered combination of boron

interstitials —of at least two kinds— and boron antisites. Our study of interstitials in the (B11C)C-

B-C structures show that both boron and carbon interstitials can assume a variety of charge states

going from +3 to -2. They have relatively high formation energies; the most favorable cases

are boron interstitials in +3 charge state in strong p conditions, where their formation energy is

between 2 and 3 eV. Interstitial boron occurs either at the 2c or at the 6g Wyckoff sites of the

rhombohedral R3m space group. The former, which has two variants —either close to the carbon

side of the icosahedron or to the boron side (see Table I)—, is labeled IB in this work. The

latter, which relaxes in a pantograph-like structure, is called C〈BB〉C (for the structures see figure

S1 in the Supplemental Material [38] and also Table II of Ref. 11). Similarly, B4 blocks occur in

a pantograph structure in the mentioned OPO1 structure [11] and are thus referred to as B〈BB〉B

(see Table I).

The results show that boron and carbon antisites are the defects with lowest formation energies

and, given their charge states, they induce p self-doping in B4C, pinning the Fermi level close to

the valence band top. More details on the results on point defects that we have just summarized

are in the Supplemental Material [38].

2. From charge-compensated defect complexes to complex (meta)stable boron-rich phases

Concerning possible association of defects, at least one low formation energy defect complex

has already been studied, the bipolar defect [23, 55]. It is formed by a (B12) icosahedron plus a

(B10C2) one. This stoichiometric defect has a formation energy as low as 0.24 eV in the neutral

state; we highlight here the possible role of charge compensation, because we can consider it, in

the light of our results, as formed by a positive carbon antisite and a negative boron one, each on

a different icosahedron. Seen as such, in the light of our calculated formation energies for the two

isolated defects, we can conclude that the bipolar defect, which is an antisite pair, is stabilized by
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a strong Coulomb binding energy between the two antisite defects.

In the same spirit we have calculated the formation energy of a few other neutral defect as-

sociations. One is the complex formed by a negative vacancy and a positive carbon antisite —a

(B10C2) icosahedron—; the formation energy is definitely higher than the bipolar defect (1.5 eV in

C-rich conditions) but still with a sizeable binding energy.

Developing further the idea of charge compensation, and by analogy with the OPOs structures,

we considered a defect complex which turned out to be the ground state structure at low tempera-

ture at 19.2 % atomic carbon concentration within DFT-LDA [56]. It is formed by the combination

of a boron interstitial in the 2c Wyckoff position of the rhombohedral 15-atom unit cell, and three

boron icosahedral antisites (i.e., three B12 icosahedra) surrounding it; such a defect has a very low

formation energy within DFT-LDA, placing the structure with one defect in a 3×3×3 (B11C)C-

B-C supercell (a 406-atom motif) on the convex hull at 19.2 % carbon concentration and thus

enhancing the known convex hull of boron carbide structures [11], in the limit of low temperature.

The formation enthalpy of this structure is reported in Table S1 of the Supplemental Material [38]

(see also figure S2 for the convex hull). We dub the defect complex as “3+1” (Table I) and the new

phase as “(3+1)@27”, in reference to the three antisites and one interstitial out of 27 unit-cells.

The “(3+1)@27” phase can be built by embedding simple defects of the (B11C)C-B-C structure

into a large crystal motif of 406 atoms, a size similar to that of that of the OPOs structures

(414 atoms). A comparison of the energetics and stoichiometry of these phases can be found in

Table S1 of the Supplemental Material [38]. The large motifs of these perfectly ordered ground

state phases is caused by the need of charge compensation. Analogues could be the so-called

ordered vacancy compounds (OVC) of the copper poor region of the phase diagram of ternary

semiconductors like CuInSe2 or CuInS2 or their alloys [57]. In that case, the Coulomb interaction

between periodically arranged defect complexes formed by two copper vacancies and an indium

antisite lowers the energy giving phases like CuIn5Se8. Here the OPOs are formed by a peculiar

arrangement of boron interstitials of the 15-atom rhombohedral unit-cell (plus a few other chain

variants) associated to a careful packing of B−
12 icosahedra that enables charge compensation. In

the case of OPO2 it is easy to identify the charge compensation: for each boron interstitial (in

the 15-atom description) I+3
B , the structure has 3 B−

12 icosahedra.The same kind of compensation

mechanism occurs for the “(3+1)@27” phase, where, however, only three icosahedra are B−
12 out

of 27, the others being B11C.
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3. Complex motif stable phases from a point defect viewpoint

It is precisely playing with the idea of associating defects in such a way to provide local charge

compensation that we devised the ”3+1” structure and, probably, further phases with large unit

cells could be found in the stoichiometry range between the ’“(3+1)@27” and more boron-rich

phases like the OPOs.

The “3+1” defect complex is thus formed by four elementary defects, one interstitial and three

antisite atoms. This defect, at concentration higher than in the “(3+1)@27” phase (in the 2×2×2

supercell of the 15-atom unit cell, with three B−
12 out of eight icosahedra, or “(3+1)@8”), gives a

structure which is only slightly above the convex hull (See Supplemental Material [38], Tables S1

and S2, and Figure S2).

For this reason, although the OPOs structures are very different from the “(3+1)@27” phase, in

that they contain many more boron interstitials and not a single B11C icosahedron, we dare look

at them as combinations of boron interstitials and antisites of the (B11C)C-B-C 15-atom unit cell.

For example the OPO2 would consist of B4C with 9 boron interstitials and 27 icosahedral boron

antisites, for a total of 36 point defects. For the OPO1 we can also count the number of defects;

we consider each B〈BB〉B block as constitued by two chain boron antisites and a boron interstitial.

Then the OPO1 phase, whose icosahedra are all B12, has one third of B4 blocks, which means

having 27 icosahedral boron antisites, 18 boron chain antisites and 9 boron interstitials for a total

of 54 defects. In both OPOs structures, the crystalline motif contains 414 atoms. A structure with

such a large number of point defects might seem to defy the very definition of point defects; it is

nevertheless tempting to remark that the formation energy per defect is remarkably very similar

in the OPOs and the ”3+1” structures (0.4-0.6 eV per elementary defect, see the Supplemental

Material for further analysis [38], Table S2).

The same holds also for a variant of the OPO2 structure, where boron interstitials atoms, instead

of occupying 2c Wyckoff positions, are inserted near to the chain boron atom (Wyckoff position

6g of the rhombohedral unit-cell), forming thus a C〈BB〉C pantograph-like structure. Within the

LDA approximation this structure (OPOpanto
2 ) is slightly more stable than the reported OPO2

structure, at variance with gradient corrected functionals (see the Supplemental Material [38] for

a comparison LDA-GGA, Table S1 and Figure S2).

To further elaborate on charge compensation, now in general and not between charged point

defects, the B4C and OPO2 (or OPOpanto
2 ) phases (with respectively 15 and 414 atoms per unit-cell)

are stable because the extra electrons in the chains compensate the electron-deficient icosahedra
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by filling the bands that correspond to bonding orbitals: one C-B-C chain compensate one B11C

icosahedron in B4C, and two C-B-C plus one C-B-C· · ·B (C〈BB〉C) chains compensate three B12

icosahedra for OPO2 (OPOpanto
2 ) [11]. The additional electrons of C-B-C· · ·B chains can complete

the filling of bonding orbitals. Note that the OPO2 and OPOpanto
2 unit-cells have to be large

enough (27 icosahedra) to avoid neighboring chain variants (see Fig. 9 of Ref. 11).

If we compare the band structures of (B11C)C-B-C and (B12)=C-B-C (both with 15 atoms unit

cells) we see that they are almost superposables [58], with the difference that the last occupied band

of (B12)C-B-C is half-filled, making it metallic. In the OPO2 structure, as in the ‘”(3+1)@27”,

each C-B-C· · ·B blocks provides three additional electrons, which can fill the half filled top of the

valence band for each of the three B12 icosahedra and recover the semiconducting character of the

material.

4. Raman spectra of simple defects in (B11C)C-B-C

In our study of the Raman spectrum we consider defects whose formation energy is sufficiently

low or defects that can be identified as building blocks of the stable phases discussed in sec-

tion III C 2. We namely calculated the Raman spectrum of the following single defects: the neg-

ative chain-boron vacancy, the boron interstitial in 2c Wyckoff position (IB, in charge states +1

and +3), the boron interstitial forming a sort of pantograph C〈BB〉C structure (by analogy with

the B〈BB〉B block for OPO1 in [11]), in charge states +1 and +3, two icosahedral carbon antisites

in charge state +1 —(B10C2) in antipodal and quasi-antipodal configurations, here dubbed CB3

and CB4—, the icosahedral boron antisite in negative charge state —(B12) icosahedron—; we also

consider the neutral bipolar defect, which is in fact an antisite pair (a boron antisite, giving a B12

icosahedron, and a carbon one, a B10C2 icosahedron), the B〈BB〉B blocks (which can be seen as

two chain boron antisites plus a boron interstitial, see Table S2 [38]), and the “3+1” defect.

We investigated a limited number of charge states according to two guidelines: the first is to

cope with defects that, due to their formation energies, are more likely to be present, especially

in p-type boron carbide; the second guideline is, in fact, a constraint, because first order, non-

resonant, Raman spectrum is only meaningful for a system with a band gap, which means that

the last occupied Kohn-Sham orbital should have an even number of electrons. We neglect here

the case in which a sufficiently large spin splitting would produce an insulating configuration with

an odd number of electrons, for which, by the way, the calculation of the Raman spectrum would

not be straightforward. Furthermore, according to our calculated charge transition levels (see
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a) b)

FIG. 7. a) Theoretical Raman spectrum of the negatively-charged boron chain vacancy, at various defect

concentrations. b) mode localisation compared to undefected bulk B4C.

Supplemental Material [38]), for most defects, odd number of electron configurations are excluded

by the negative-U behavior, or are stable only within a very narrow Fermi-level range; some of

them are shown in Table I and labeled by m, for metallic, in the charge state column. For the

sake of illustration we nevertheless consider, for interstitial defects, both +1 and +3 charge states,

although singly charged interstitials have relatively high formation energies.

In figures 7, 8, 9, 10 we present the random Raman spectra obtained for supercells of B4C con-

taining various types of point defects: a singly negative boron chain vacancy (Fig.7), singly positive

boron antisites in positions B3 and B4 and singly negative icosahedral carbon antisite (Fig.8), +3

and +1 boron interstitials (Fig. 9) and the bipolar defect (Fig. 10). For all the mentioned defects

we show the spectrum corresponding to various defect concentrations and a localisation chart.

We performed a direct DFPT calculation for each of the defects, inserted in a 2×2×2 supercell

(120 atoms) of the (B11C)C-B-C 15-atom unit cell; this corresponds to a defect concentration of

0.83 atomic %; the spectra attributed to lower defect concentrations were obtained through an

extrapolation procedure recently developed [35]. The localisation chart shows the localisation of

vibrational modes (Raman active or not) for the supercell with the defect and for the perfect bulk

B4C.

When analysing Raman spectra of materials containing defects, in particular irradiated materi-

als, one question frequently arises concerning the features of the Raman spectrum that appear only

when defects are present: do they correspond to vibrational modes specifically associated to the

defect, or are they vibrational modes already present in the density of states of the undefected crys-

tal which became Raman active due to loss of symmetries? Saying that a mode is a “defect mode”
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implies that, first, this mode is not present in the undefected crystal and, second, its displacement

pattern clearly involves almost exclusively the first shells of neighbours of the defect.

Let us consider first the region of the spectrum encompassing only a few dozens of cm−1 around

1000 cm−1, which is still not fully understood in boron carbide. Several defects introduce (or

activate), at least at the highest investigated defect concentration of 0.83 at%, some features in the

Raman spectrum which are not present in the spectrum of the perfect (B11C)C-B-C structure. In

the case of the boron chain vacancy (Fig. 7b), some of the modes in that region are slightly more

localised than the bulk modes in the same region, which are however present, and the localisation of

these supposedly defect modes, with moderate icosahedral caracter, are nevertheless less localised

than most bulk chain modes.

Carbon icosahedral antisites CB3 and CB4 (Fig. 8) both present small peaks at 0.83 at%,

which disappear already at 0.25 at%. For boron interstitials (Fig. 9) the peak is slightly more

pronounced, but in all cases the mode localisation in the same region is comparable to the one seen

for the vacancy. The spectrum of the bipolar defect (Fig. 10a) does not present any remarkable

feature in this region, although the mode localisation is slightly enhanced, as for the other defects.

A further defect complex was investigated, the B〈BB〉B block, which can be interpreted as

a combination of two chain boron antisites and one boron interstitial. Such a structure is an

important component of the OPO1 boron-rich phase. We calculated it in charge states +1 and

+3, as their charge transition level is located only 0.6 eV above the top of the valence band. In

both cases (see Fig. 11 panels a and c) a clear hump in the Raman spectrum is present around

1000 cm−1 at the highest concentration, but rapidly disappears as the defect concentration lowers.

We conclude then that probably several defects contribute to the experimentally observed shoul-

der around 980-1000 cm−1, but no specific defect mode can be clearly identified as responsible for

this feature.

We should spend a word concerning the spectrum of the singly positive boron interstitial I+1
B

(Fig. 9a), whose intensity strongly evolves with its concentration: this should probably be inter-

preted as a breakdown of the Placzek approximation, which requires that the energy of vibrational

modes are much lower than the band gap of the system. As the +1/+2 charge transition level is

relatively close to the +1/-2 transition level (see Supplemental Material [38]), this condition is not

satisfied any longer, especially in the smallest supercell (largest defect concentration) where some

slight dispersion of electronic defect levels can be expected. The large peak below 300 cm−1 re-

minds of peaks that arise in the experimental spectrum only in specific conditions, and do certainly

deserve further investigation in the future.
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Several defects present weakly Raman active modes between 1200 cm−1 and 1400 cm−1, where

no bulk modes are present, but they virtually disappear as soon as the defect concentration lowers

below 0.25 at%.

At higher frequencies, some defects present one or more peaks slighly below 1500 cm−1 and up to

1600 cm−1. Such features, frequently attributed to free carbon [34], might in fact be caracteristics

of boron carbide itself when Raman selection rules are lifted. This infrared mode is the most

intense one, characteristic of the antisymmetric chain stretching, in the undefected (B11C)C-B-C

structure (see Fig. 5b). Indeed, it seems to be activated, and sometimes shifted, due to the presence

of defects.

The two main theoretical peaks close to 1070 cm−1 and 1110 cm−1 are not resolved experimen-

tally, despite the fact that the resolution of today’s Raman spectrometers should be sufficient to

resolve them. The reason of this can be related to the lifetime of one or both peaks (or of the

weaker intermediate peak around 1085 cm−1), or it may be associated to the presence of defects.

The vacancy and the pantograph interstitial ( C〈BB〉C+3) look like possible candidates, if their con-

centration is large enough, but given their formation energy, their presence would imply high defect

supersaturation.

5. Raman spectra of ground-state and metastable complex phases

In this subsection we consider the “3+1” neutral complex and the OPO1 and OPO2 [6, 11]

structures.

Let us consider now the Raman spectrum of boron carbide containing “3+1” defects; we ob-

tained it with a direct DFPT calculation both for the 2×2×2 (121 atoms) and 3×3×3 (406 atoms)

supercells. The latter identifies the “(3+1)@27” ordered phase sitting on the convex hull, as dis-

cussed in section III C 2. The results are shown in Fig. 12. For the new phase —built as an ordered

arrangement of “3+1” defects, one every 27 (B11C)C-B-C unit cells— the spectrum is quite close

to the one of perfect B4C. The icosahedral character of the doublet around 500 cm−1 seems to

be lost, which is an indication that the eigenvectors of the concerned modes now have significant

contribution from the boron interstitial displacement and/or nearby chains.

When the concentration of the “3+1” defect reaches 0.83 at.% (one every 8 unit cells), the

modifications are more pronounced, although the spectrum of B4C is still clearly recognizable (top

curve in Fig. 12). We note in particular a rise in the intensities in the region just below, and up

to, 1000 cm−1; The largest doublet around 1100 cm−1 is also partly merged, two features that
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are observed in experiments. This fact is even more evident when taking into account geometrical

effects, as shown in angular maps presented in the Supplemental Material [38], Figure S3.

What we simulate here is, of course, still a periodic arrangement of “3+1” defect complexes,

due to periodic boundary conditions; as such it is not fully comparable to what would be an

experimental situation where a given concentration of randomly distributed defects is present. Even

from the point of view of the free energy, we remind that a random distribution of “3+1” defects

would be stabilized by configurational entropy at finite temperature, at least, and to a less extent by

the vibrational one[11], which are both neglected here. The calculated spectra is nevertheless a hint

that this defect complex, as other point defects mentioned before, might contribute to the shoulder

at 1000 cm−1 and to the merging of the two strongest peaks in the spectrum, especially considering

its low formation energy in, even moderately, boron-rich conditions. This defect complex, both

from the point of view of energetics at the DFT-LDA level and of its Raman spectrum, appears to

be one of the missing concentrations, in the phase diagram between the carbon-rich (B11C)C-B-C

structure and the boron-rich OPOs phases.

Finally, let us consider the spectrum calculated for the two OPO structures. The calculated

Raman spectrum for their 414 atoms unit cells is shown in Fig. 13. The color scale for the

localisation of the modes is exactly the same as in the previous figure (Fig. 12) for the “(3+1)@27”

phase. The different mode localisation is striking, because here the chain or icosahedral character

of the modes is almost completely washed out. This is probably an effect of the large number of

boron atoms that correspond to interstitials of the 15-atom unit cell. They are neither icosahedral

nor chain atoms in the description and our analysis tool only involved icosahedral and chains atoms.

For the OPOs structures it would certainly be useful to devise an extended classification of the

atoms constituting the structure, in particular to include the case of the C-B-C· · ·B blocks of the

OPO2.

The Raman active regions are much more extended than for bulk B4C. Although some of the

main features of the B4C spectrum are still recognisable, the modifications are much deeper than in

the spectra containing one defect at relatively low concentration. While the OPO2 spectrum clearly

shows fairly intense features in the 900-1000 cm−1 region, the OPO1 lacks such contribution. One

might deduce that the experimental shoulder in that region is more likely due to boron interstitials

in the Wyckoff position 2c, or maybe C〈BB〉C pantograph blocks, than to B〈BB〉B structures present

in the OPO1 phase; however, as we have shown in Fig. 11a,c, the B〈BB〉B defect complex, at a

concentration close to 1 at% (corresponding to 19.2% carbon), clearly shows such a contribution;

the fact that this region is not Raman active in the calculated spectrum of the OPO1 must then
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have a more complex explanation.

To conclude we recall the already mentioned low frequency broad doublet occurring around

300 cm−1. Although some of the point defects studied, and some of the complex phases, show

peaks below 400 cm−1, in particular when boron interstitials are present (see Figs. 9a,c,e,g, 11c,

12, and 13a,b) we cannot propose any solid identification on the basis of our calculations. Given the

sensitivity of such features to the excitation frequency and power one could imagine that resonant

effects should be taken into account [33, 34], which are not included in the present approach.

Possibly, a combination of defects and resonant effects involving their electronic energy levels

located in the band gap should be investigated in more detail.

IV. SUMMARY AND CONCLUSIONS

In this paper we addressed several aspects of the first order Raman spectrum of boron carbide in

particular in connection with the influence of point defects on the Raman spectrum, mainly, but not

exclusively, from a theoretical perspective. First, the analysis of the Raman spectrum of the well

known (B11C)C-B-C structure, accepted as the most stable structure for the stoichiometric ratio

B4C, shows that the intensity of some peaks is strongly dependent on the experimental geometry.

A comparison of an experimental spectrum collected along a line connecting two grains of different

orientation, confirms this fact.

Second, we propose to combine a consistent definition of the localisation of vibrational modes

and a labelling of atoms (chain, icosahedral or neither of them) to deepen the analysis of the active

Raman peaks. Our results confirm some previous labelling of modes and provide further insight

into the localisation of bulk and defect modes.

Third, we study the most probable point defects of carbon-rich boron carbide and their influence

on the Raman spectrum. After summarizing the results of a systematic study of defect energetics,

we analyse the spectra of defect containing supercells corresponding to relatively low concentrations

and we extrapolate to even lower concentrations thanks to our embedding tool. Several defects

show a contribution in the region of the up to now unexplained shoulder near 1000 cm−1, confirming

previous speculations that this feature could be induced by defects. However, our results show that

it is not a single defect that can be considered responsible for such a feature, but rather a variety

of point defects. Moreover, the corresponding activated peaks do not seem to be specifically defect

modes, because they seem to involve a significant displacement of several atoms, i.e., they show a

fairly collective character.
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The fourth and last contribution of this work, is to analyse the Raman spectra of ground state

phases, and of the metastable ones, and notably of the Ordered Partial Occupations (OPO) struc-

tures we have recently proposed as ground state structures in the boron-rich domain. Furthermore,

we propose that the ground state at 19.2 % atomic carbon concentration is given, in DFT-LDA,

by the phase with 406 atoms unit-cell containing the defect complex that we dub “3+1”. The

latter, formed by a boron interstitial atom and three (B12) icosahedra, reveals a stabilization by

the Coulomb interaction between the constituent defects. The insertion of this structure in an

otherwise bulk environment leads to a very stable atomic configuration, reasonably representing

boron carbide in the large region of stoichiometry between the OPO2 structure (boron-rich) and

the B4C stoichiometry (carbon-rich). Convincingly, the analysis of the Raman spectrum of the

“3+1” defect shows a contribution to the 1000 cm−1 shoulder and to the merging of the two main

peaks at higher frequency, another aspect of experimental spectra.
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a) b)

c) d)

e) f)

FIG. 8. Theoretical Raman spectrum of two negatively-charged carbon antisites (panels a and c) and one

positively-charged boron antisite (panel e), at various defect concentrations, and their mode localisation

(panels b, d, f) compared to undefected bulk B4C.
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a)
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c) d)

e) f)

g) h)

FIG. 9. Theoretical Raman spectrum of two types of boron interstitials in charge states +1 and +3, at various

defect concentrations (panels a,c,e,g), and mode localisation (panels b, d, f, h) compared to undefected bulk

B4C. The huge Raman activity of the boron interstitial in the Wyckoff position 2c with charge +1 (panel

a) is due to the small Fermi level range of stability of this defect, which questions the reliability of the

underlying approximations of the present calculation (first order non-resonant Raman spectrum in the

Placzek approximation).



34

a) b)

FIG. 10. a) Theoretical Raman spectrum of the neutral bipolar complex, at various defect concentrations,

and b) mode localisation of this defect compared to undefected bulk B4C.
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a) b)

c) d)

FIG. 11. Theoretical Raman spectrum of the B〈BB〉B blocks in charge states +1 (a) and +3 (c), at various

defect concentrations, and mode localisation of this defect complex compared to undefected bulk B4C (panels

b and d). The charge transition level between these two charge states is at approximately 0.6 eV above the

valence band top.
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FIG. 12. The Raman spectrum B4C containing or not a ”3+1” defect complex. The three spectra were ob-

tained with a direct DFPT calculation. Those labelled B4.8C and B4.2C refer respectively to cells containing

406 and 121 atoms, built by inserting in B4C a ”3+1” defect complex. The former structure, with 19.2%

atomic carbon concentration, lies on the convex hull in DFT-LDA and thus defines a stable phase at that

stoichiometry. The corresponding spectrum is the one in the middle. The one at the top, corresponding to

a higher concentration of the ”3+1” defect complex, is shown for comparison.
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FIG. 13. Raman spectrum calculated for the two boron-rich phases called OPO1 (a) and OPO2 (b) and

for the OPO2 variant named OPOpanto
2 (c) featuring the C〈BB〉C pantograph structure instead of 2c boron

interstitials. The unit-cells of these phases all contain 414 atoms.


