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ABSTRACT

The low-energy structures of irradiation-induced defects in materials have been studied extensively over several decades, as these determine
the available modes by which a defect can diffuse or relax, and how the microstructure of an irradiated material evolves as a function of tem-
perature and time. Consequently, many studies concern the relative energies of possible defect structures, and empirical potentials are com-
monly fitted to or evaluated with respect to these. But recently [S. L. Dudarev et al., Nucl. Fusion 58, 126002 (2018)], we have shown that
other parameters of defects not directly related to defect energies, namely, their elastic dipole tensors and relaxation volumes, determine the
stresses, strains, and swelling of reactor components under irradiation. These elastic properties of defects have received comparatively little
attention. In this study, we compute relaxation volumes of irradiation-induced defects in tungsten using empirical potentials and compare
to density functional theory results. Different empirical potentials give different results, but some clear potential-independent trends can be
identified. We show that the relaxation volume of a small defect cluster can be predicted to within 10% from its point-defect count. For
larger defect clusters, we provide empirical fits as a function of defect cluster size. We demonstrate that the relaxation volume associated
with a single primary-damage cascade can be estimated from the primary knock-on atom energy. We conclude that while annihilation of
defects invariably reduces the total relaxation volume of the cascade debris, there is still no conclusive verdict about whether coalescence of
defects reduces or increases the total relaxation volume.

Published under license by AIP Publishing. https://doi.org/10.1063/1.5094852

I. INTRODUCTION

Just as it has been long acknowledged that the effect of radia-
tion on materials is inherently multiscale both in time- and spatial-
dimensions, so it is accepted that to model these effects requires
transfer of high quality data from one model to the next.1 The
form of the data required by a coarse-grained model varies, and a
typical workflow in nuclear materials modeling involves finding
structural information about individual defects from Density
Functional Theory (DFT),2,3 information about the cascade genera-
tion process from Molecular Dynamics (MD),4–6 and about

cascade evolution from object or atomistic Kinetic Monte Carlo
(KMC)7–9 or Cluster Dynamics (CD)10,11 simulations. This has
proved successful for modeling the experimentally observed size
and distribution of irradiation-induced defects formed in pure
single crystalline materials.9,12

Recently, we have shown that it is possible to compute stresses
and strains in reactor components on the macroscopic scale of cen-
timeters and meters from the distribution of irradiation-induced
defects.13 As a source term, this model only requires the spatially
varying density of relaxation volumes of defects and so allows the
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direct simulation of volumetric radiation-induced swelling and the
associated stresses from an atomistic or object-based model. At the
nanoscale, lattice swelling resulting from the accumulation of radia-
tion defects is experimentally measurable using Micro-Laue diffrac-
tion.14,15 Furthermore, X-ray diffraction measurements show that
“negative” lattice strain develops due to the accumulation of vacan-
cies in a material.16 On a macroscopic scale, predicting the stress
state of reactor components arising from irradiation is fundamental
to the successful engineering design of a nuclear fission or fusion
power plant.17–19 One outstanding issue, which this paper is
intended to address, is to have good quality data for the relaxation
volumes of a variety of lattice defects, as while accessible from sim-
ulation for years, reporting this information has been somewhat
neglected in favor of establishing accurate values of formation ener-
gies and low-energy-state structures. For example, a comprehensive
compilation of data on relaxation volumes and relaxation volume
tensors of individual self-interstitial and vacancy point defects
derived from DFT calculations performed for all the bcc metals in
the periodic table has been reported only recently.13,20–22 Data for
the relaxation volumes of point defects available prior to these
studies were derived mostly from experimental measurements and
semiempirical potential calculations23–27 and exhibited a degree of
variability associated with experimental uncertainties or the choice
of interatomic interaction potentials. Accurate ab initio studies of
relaxation volumes of defects mostly involved vacancies in simple
or noble metals.13,25,28–33

Here, we focus our attention on a single material, tungsten.
Tungsten has been chosen as a divertor material for ITER18,34,35 as
it has a high melting point, high thermal conductivity, and high
resistance to sputtering. For our purposes, tungsten is also
well-suited to this preliminary study of relaxation volumes as it is
nearly elastically isotropic36 at low temperatures. This simplifies the
expressions needed for an elastic analysis but is by no means a
requirement of the atomistic techniques used here,20 and the data
we present have no assumption of isotropy. The finite temperature
calculation of the Helmholtz free energy and an anisotropic elastic-
ity analysis are beyond the scope of the current paper. In Sec. II A,
we compute the relaxation volumes of small defect clusters and
compare the results obtained with several embedded atom (EAM)
potentials with those derived from DFT. In Sec. II B, we move on
to larger lattice defect objects. As the number of configurational
degrees of freedom becomes very large, we focus on a standard set
of idealized dislocation loops and voids, which often form a basis
set for object kinetic Monte Carlo (okMC) or Cluster Dynamics
(CD) simulations. In Sec. II C, we introduce the orientation-
dependent anisotropy of the relaxation. In Sec. II D, we consider
interacting groups of defect clusters generated in high-energy colli-
sions simulated by MD. Our goal is to understand the complex-
looking stress fields that arise in irradiated metals (see Fig. 1) in
terms of the simpler stress fields of their constituent parts, which
can then be used to predict volumetric swelling from the output of
existing microstructural evolution codes such as okMC or CD.

Early estimates of formation volumes for point defects in
tungsten were established by Johnson,38 using an empirical poten-
tial. This work found a negative relaxation volume for a vacancy
(�0:21Ω0, where Ω0 is the atomic volume) and a positive relaxa-
tion volume for the interstitial (þ1:13Ω0). DFT calculations by

Kato et al.39 confirmed the relaxation volume for the vacancy as
negative, at �0:34Ω0, a figure which has since been reproduced
several times by independent DFT calculations. The relaxation
volume of a 1

2 h111i interstitial defect was shown to be large and
positive in DFT calculations at þ1:68Ω0

15 in a small 4� 4� 4
supercell, later confirmed by other DFT calculations.20,21

We demonstrate that empirical potentials give varying results
for the relaxation volumes of irradiation defects. This is an expected
result, as these properties of defects were never originally used as
input data during the parameterization of potentials. The relaxation
volumes do, however, show systematic trends across potentials. It is
beyond the scope of this paper to provide a comprehensive com-
parison of empirical potentials, instead our comparison will focus
on three empirical potentials, which should give an indication of
the possible variation.

• The Derlet-Nguyen-Manh-Dudarev (DND) potential40 has been
shown to produce cascade structures that are a good match to
experiment.6,12,41–43

• One of the four potential parameterizations developed by
Marinica et al. (CEA-4),44 which has a good balance between the
predicted point- and extended defect properties. This potential
was developed from the DND and AM0445 potentials with addi-
tional fitting to the forces on atoms in disordered systems.

• A new potential parameterization by some of the authors
(MNB),46 which is a development of the smooth and

FIG. 1. A typical configuration of defects produced by a collision cascade event
in tungsten, initiated by a 150 keV primary knock-on atom (PKA) and simulated
using the method described in Sec. II D. Vacancies (white spheres), and intersti-
tials (red), were identified using a Wigner-Seitz defect analysis.37 The von
Mises stress in a [211] plane intersecting the cascade is also shown. Note that
close to the defects, the stresses can be as high as 100 GPa, comparable to
the shear modulus (μ ¼ 160 GPa). In the study below, we analyze the complex
stress fields of individual defects and clusters of defects formed in cascades,
similar to those shown in this figure.
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highly-transferable Ackland-Thetford potential,47,48 corrected to
give better properties for vacancy-type structures.

We present simple empirical formulas for the relaxation volumes of
defects that might be used for predicting stresses and strains in
engineering components containing these defects.13 As tungsten is
(nearly) elastically isotropic, it suffices to present results in terms of
a single relaxation volume, and the relaxation volume anisotropy
parameter, defined as the ratio of the smallest to largest partial
relaxation volumes. Simple formulas are required to switch between
this representation and the full dipole tensor for the defect.

Finally, in Sec. III, we compare our results with analytical for-
mulas derived using linear elasticity and surface energies, consider
the differences between the empirical potentials used and discuss
routes for making predictions for complex microstructures, and in
Sec. IV, we compare the predictive power of our results to earlier
studies.

II. RELAXATION VOLUME OF DEFECT STRUCTURES

Relaxation volumes can be computed for isolated defects and
relaxed cascade configurations using several methods. As a validat-
ing convergence study, we compare three methods: the stress
method, the cell relaxation method, and the free-surfaces method.

• The stress method. The atom positions are relaxed in a periodic
supercell, with the vectors defining the supercell repeat fixed.
The stress is computed on each atom and summed to give a
single tensor for the cell. The relaxation of a body free from
surface tractions due to the defect is predicted from this stress
using linear elasticity theory. The lattice vectors of the simulation
cell never need to be updated.

• The cell relaxation method. As with the stress method, the atoms
are relaxed in a periodic supercell, and the stress is computed.
From this a strain is computed, but in contrast to the stress
method this is then applied to the supercell, changing its shape
and volume. The vectors defining the supercell repeat are
updated, and the relaxation process is repeated until conver-
gence, where the macroscopic stress vanishes. This iterative
process of relaxing first the atoms and then the cell differentiates
this method from the stress method. We note here that there is
no a priori reason why the minimum energy structure of a defect
with one set of lattice vectors is the same as the minimum with a
different set.

• The free surface method. A large sphere of atoms is constructed
and relaxed, producing a body with explicitly free surfaces.49

Then, a single defect is constructed inside the sphere, and the
entire structure is relaxed again. The volume of a (distorted)
spheroid after relaxation is more difficult to compute than with a
periodic supercell, as it is not clear where the surface should be
drawn. However, the volume enclosed by the convex hull of the
atoms Vhull is easy to compute using qhull.50 From this, we can
estimate that the volume of the sphere is Vspheroid ¼ Vhull

(Rþ r)3=R3, where R is the maximum radius of atom positions
on the convex hull, and r ¼ a0=4 is one quarter the lattice
parameter, which is half the distance between {100} planes in a
bcc crystal.51 We include this nonstandard (and suboptimal)
brute-force method as a validation that the linear elasticity

approach followed in this work truly predicts the relaxation
volume in a body with explicitly free surfaces.

In this work, we do not consider the method of Kanzaki forces52,53

or the method of matching displacements54,55 for estimating relaxa-
tion volumes using the harmonic region of the crystal only.

To compute the stress due to a defect, and hence the strain in
an elastic medium, we compute the dipole tensor as the integrated
stress over the cell,21,56,57

Pij ¼ �
ð
V
σ ij rð Þd3r: (1)

In an atomistic simulation where the energy is more easily
accessible than the stress, we can compute this quantity as the
derivative of total energy with respect to a homogeneous body
strain,

Pij ; � @E
@ϵ0ij

: (2)

The dipole tensor may also be expressed in terms of a sym-
metric dual tensor, Ωkl , characterizing the volumetric relaxation of
the defect and defined by the equation13,20

Pij ; CijklΩkl , (3)

where Cijkl are the elements of the fourth-rank tensor of elastic con-
stants. From this dual tensor, we can find the relaxation volume
Ωrel of the defect characterizing the volumetric relaxation of an
elastic body free from surface tractions,56

Ωrel ¼ TrΩ ;
X3
i¼1

Ω(i), (4)

where Ω(i) are the three eigenvalues of the tensor Ωkl , correspond-
ing to the three partial relaxation volumes. Hence, we can find the
elastic relaxation volume of the defect using a constant-volume cal-
culation, if the elastic constants and dipole tensor of the defect are
computed.

For an empirical potential, Pij can be computed simply and
analytically. For the embedded-atom form, we compute the energy
as a sum over pairwise and many-body contributions:
E ¼Pa Va þ F ρa½ �, where Va ¼ 1

2

P
b V(rab) is a pairwise interac-

tion, ρa ¼
P

b f(rab) models the embedding electron density, and
F ρ½ � is the many-body embedding energy. The dipole tensor is

Pij ¼ �
X
a,b

1
2
@V
@r

����
rab

þ @F
@ρ

����
ρa

@f

@r

����
rab

 !
rab,irab,j
rab

, (5)

where rab is the separation between atoms a and b and rab,i is its ith
Cartesian coordinate. This is a simple sum over atoms and their
neighbors, using the same first derivatives as a force calculation
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and so is trivially implemented in any MD or atomistic MS code.
The (fourth-rank) elastic constant tensor can be computed analyti-
cally from the second derivative of energy with respect to strain.47

The computed elastic constants are given in Table I.
A plot showing the convergence of the numerical procedure

for computing the relaxation volume of a 19-interstitial loop with
system size is shown in Fig. 2. Extrapolating to infinite system size
suggests that all three methods converge to the same result, though
at any given finite system size there will be an error, typically
scaling as inverse system size 1=n (voids relaxed with explicitly free
surfaces being an exception, converging as the inverse radius of the
free sphere 1=R). This 1=n convergence was also observed recently
by Varvenne & Clouet,55 who attributed this leading error term to
the interaction between periodic images. Some indicative data are
also given in Table II, proving that the stress method with large
supercells is suitable for the structures considered in this work.
Relaxation volumes computed with the EAM potentials in this
paper are computed using the dipole tensor method at a converged
supercell size. Relaxation volumes computed with DFT were com-
puted using the full cell relaxation method.

A. Small defect structures

In this section, we compute the elastic properties of small
defect clusters. For sufficiently small clusters, we can perform a
fairly comprehensive survey of possible structures and so find the
bounds of the variation of the relaxation volumes. The question of
which are the most significant set of small clusters to use is rather
more difficult. Generally, for a cluster containing N point defects,
we might expect to find only a small number of structures within a
few millielectronvolts of the ground state. At low temperatures,
these are the only ones which need to be considered in equilibrium.
But radiation damage is an inherently nonequilibrium process. The
system can generally reduce its internal energy by coalescing clus-
ters, and the true equilibrium is only found when nearly all defects
have recombined or diffused to sinks. The structures that may

actually be found at some time after the cooling of a displacement
cascade could therefore be, briefly at least, rather exotic.

Randomly generated interstitial clusters were generated by
placing N additional atoms into an otherwise perfect crystal, then
relaxing. The extra atoms were placed at random into
[l, m, n]a0=4 crystal positions, with 0 � lmn , 4, with the con-
straint that an atom was not placed if another was already within
a distance a0=2. All extra atoms were placed in a central block of
2� 2� 2 unit cells. The relaxation volumes as a function of for-
mation energy and cluster size are presented in Fig. 3. We have
not put results from CEA4 on this scatter plot. CEA4 has a good
deal of structure in its potential, which allows for a very large
number of metastable high energy defect clusters to form. In
Fig. 3, this would appear as an almost structureless cloud, and we
conclude our method of randomly generating interstitial clusters
is not suited to this potential.

DFT calculations of small interstitial clusters were performed
for this work using the VASP ab initio simulation code, using
the Projector Augmented Wave (PAW) method60–62 with semicore
electrons included through the use of pseudopotentials. It is impor-
tant to emphasize that the inclusion of semicore electrons in the
valence states has a significant effect on the predicted formation
energies of self-interstitial atom (SIA) defects for all the bcc transi-
tion metals2,63,64 and play an important role on the quality of inter-
atomic potential in predicting nonequilibrium properties in
tungsten from cascade simulations.65 Exchange-correlation effects
were described using the Perdew-Burke-Ernzerhof generalized gra-
dient approximation.66 A kinetic energy cutoff of 400 eV was used,
with a 3� 3� 3 Monkhorst-Pack grid for electron density k-points
employed in the case with supercell (8� 8� 8) calculations
(1024þ N atoms, with N up to 22 atoms) for the 1

2 h111i and h100i
interstitial defects. The set of interstitial defect clusters used was the
same as in Ref. 67, with the difference that in the earlier work, the
energies reported were in the constant-volume approximation,
employing the cell size correction by Varvenne et al.,57 whereas
here the full cell relaxation method was used. A systematic study of
fully-relaxed defect formation volumes for the h110i self-interstitial

TABLE I. The lattice constant a0 (in angstrom) and elastic constants (in eV=A
� 3
) of bcc tungsten, from Ref. 15. The surface energies γhkl of bcc tungsten for the [hkl] surface

are given in eV=A
� 2
. The principal surface stresses shkl for the [hkl] surface (two nonzero eigenvalues of sij ¼ γδ ij þ @γ=@ϵij ) of bcc tungsten are given in eV=A

� 2
. The

average surface energy γ computed using Eq. (A4), and the average surface stress s using the mean of the principal eigenvalues in Eq. (A4). Experimental elastic constants
are from Ref. 58, and surface energy are from Ref. 59.

Method a0 c11 c12 c44 γh110i γh100i γh211i γh111i γ

DFT 3.186 3.229 1.224 0.888 0.200 0.245 0.215 0.219 0.229
MNB 3.165 2 3.222 1.263 0.998 0.218 0.239 0.241 0.257 0.234
DND 3.165 2 3.3881 1.304 1.031 0.150 0.187 0.185 0.161 0.174
CEA4 3.143 39 3.265 1.262 1.004 0.157 0.183 0.187 0.201 0.177
Expt 3.165 2 3.324 1.279 1.018 0.229

Method sh110i sh100i sh211i sh111i s

DFT 0.375 0.253 0.296 0.286 0.465 0.434 0.313 0.313 0.360
MNB 0.330 0.215 0.229 0.229 0.263 0.252 0.215 0.214 0.253
DND 0.150 �0.008 0.291 0.275 0.144 0.044 0.179 0.022 0.129
CEA4 0.125 0.018 0.210 0.210 0.075 0.056 0.064 0.063 0.100
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clusters within the underlying three-dimensional C15 Laves phase
structure68 was also performed. The small C15 interstitial clusters
in the bcc lattice of iron are known to be highly stable in a compar-
ison with 1

2 h111i self-interstitial defect clusters due to magnetic

effects. Here, we include them for completeness, as their formation
energy compared to interstitial loops may be affected by the
applied strain.69

Randomly generated vacancy clusters were produced by
removing atoms on a random path through an otherwise perfect
crystal. The path was allowed to move in h111i and h100i direc-
tions and allowed to overlap itself. A path of length L steps leads to
�L vacancies placed in a loose cluster. These vacancy clusters were
then relaxed and the lowest energy structures were passed to DFT
for a comparison calculation. It is important to emphasize that in
the present DFT calculations for both SIA and vacancy clusters, the

FIG. 2. Above: Example convergence study for relaxation volume of the 19 inter-
stitial cluster computed using three methods. All three methods converge to very
similar values, with a system size error inversely proportional to the number of
atoms in the simulation cell n. Best fit lines are indicated to guide the eye.
Calculations were performed with the MNB potential. Other potentials and other
defects show qualitatively similar results. Below: Geometry used for free-surface
calculations. An unsupported free sphere of atoms was constructed and relaxed,
then a single defect was generated in the center, and the atoms relaxed again.
The volume before and after the defect was placed was computed using qhull.50

One half of the sphere is shown,37 together with high-energy atoms of the defect.
Atoms are colored by excess potential energy from 0 eV (blue) to 2 eV (red).
Atoms with energy under 0.1 eV are not shown. In this image, a 55 interstitial loop
is embedded in a sphere of 180 000 atoms and relaxed with the MNB potential.

TABLE II. Relaxation volumes for vacancy defects (monovacancy and 15, 65, and
259 vacancy spheres) and interstitial defects (1=2h111i dumbbell and 19, 55, and
199 h111i interstitial loops). The volumes are expressed in units of atomic volume,
computed using the MNB potential. The cell relaxation and stress method calcula-
tions used a 48� 48� 48 unit cell supercell. The free surfaces method used a
sphere with an initial radius of 28 unit cells. It is clear that the stress method does
indeed reproduce the relaxation volume of the defect in a body with traction free
surfaces at large system size and so is an acceptable faster alternative to the full
cell relaxation calculation.

Cell relaxation Stress method Free surfaces

1v −0.367 −0.368 −0.350
15vsph −3.599 −3.625 −3.731
65vsph −9.658 −9.760 −10.351
259vsph −21.634 −21.806 −24.291
1ih111i 1.399 1.400 1.415
19ih111i 22.045 22.062 22.222
55ih111i 60.325 60.250 60.705

FIG. 3. Relaxation volumes of randomly generated interstitial defect clusters for
different numbers of interstitial atoms in the defect, N. DFT values for energies
and relaxation volumes from Ref. 13 are shown with filled circles. Crosses: the
values computed with MNB potential; open circles are the values computed
using the DND potential. Shaded ellipses are drawn to guide the eye to the
regions covered by data generated using the relevant potentials. Note that the
DND potential tends to predict a higher formation energy and lower relaxation
volume of a defect cluster than the MNB potential.
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full cell relaxation method has been adopted to investigate the
relaxation volume of defect structures. Details of the DFT calcula-
tions can be found in Ref. 46. Results are shown in Fig. 4.

The slab model including a 18 Å vacuum layer between the
top and bottom surfaces has been employed for calculations of W
(100), W(110), W(111), and W(211) surface energies, where 15, 15,
24, and 24 atomic layers were used, respectively, to ensure DFT
convergence.

Two trends are immediately apparent in Figs. 3 and 4. Firstly,
we see that larger clusters have a lower formation energy per point

defect. This is just an illustration of the reduction in energy due to
coalescence of individual point defects into a cluster of defects, but
we also can see that the magnitude of the relaxation volume
reduces with cluster size. By coalescing, the volume strain on the
lattice required to accommodate small defects is reduced.

The second trend we see is that the distribution of relaxation
volumes is small, of order +0:1 atomic volume per point defect,
despite the random nature of the defect cluster generation.

A visually striking consequence of this is that the scatter plots
for different potentials do not significantly overlap, but this is of
limited physical significance as the offset for each potential is a con-
sequence of its fitting, and the fitting did not consider relaxation
volume.

The true physical significance of this result is that even if the
exact structure of a defect cluster is not known, its relaxation
volume can often be estimated from the number of point defects
that it contains. The accuracy in the estimate of the relaxation
volume may be rather low, as the different potentials given different
offsets, but this lack of accuracy will itself be small compared to the
current accuracy in modeling the time-dependent evolution of
cascades.

Tabulated values of the relaxation volumes of low-energy
small defect clusters are given in Table III.

B. Lowest energy defect structures

Having considered randomly generated defect clusters, we
now turn our attention to larger low-energy defects.
Experimentally, both the h100i and 1

2 h111i interstitial and vacancy-
type loops are observed in ion-irradiated ultrahigh purity tungsten
foil in TEM.9,70 We will consider these four loop types as idealized,
planar, circular, and prismatic loops, and they might be the basis
set for time-evolution in object kMC or CD. To these objects, we
add the spherical voids. It may be that, especially at larger sizes, the
facetted voids, or hexagonal prismatic loops, have slightly lower
energy.71,72 For our purposes, it is not necessary to guarantee that
we have the true ground state of a defect cluster as we are attempt-
ing to find trends that govern the variation in the relaxation

FIG. 4. Relaxation volumes of randomly generated vacancy defect clusters for
different numbers of vacant sites in the defect, N. DFT values for energies are
from Ref. 46, the relaxation volumes were computed in this study and are
shown with filled circles. Crosses: the values computed with MNB potential;
open circles with DND potential. Shaded ellipses are drawn to guide the eye to
the regions covered by the potentials. Note that the DND potential tends to
predict a lower formation energy and smaller magnitude relaxation volume than
the MNB potential. The CEA potential predicts the smallest relaxation volume.
The MNB potential data have a high degree of overlap with the DFT relaxation
volume data.

TABLE III. The relaxation volumes (Ωrel=Ω0) of the lowest energy vacancy and interstitial clusters containing N point defects, 1 � N � 7. These relaxation volumes were
computed using full relaxation of the simulation cell and atom positions.

Ωrel=Ω0

Method Character N ¼ 1 2 3 4 5 6 7

DFT Vacancy −0.32 −0.84 −1.21 −1.28 −1.48 −1.53 −1.69
MNB Vacancy −0.36 −0.85 −1.29 −1.60 −1.88 −2.27 −1.96
DND Vacancy −0.11 −0.17 −0.51 −0.58 −0.68 −0.96 −1.10
CEA4 Vacancy −0.18 −0.22 −0.28 −0.32 −0.35 −0.45 −0.46
DFT ih111i 1.57 3.00 4.34 5.73 7.06 8.35 9.56
MNB ih111i 1.40 2.65 3.92 5.08 6.25 7.39 8.63
DND ih111i 1.31 2.41 3.48 3.85 4.53 5.76 6.45
CEA4 ih111i 1.25 2.38 4.57 4.80 6.06 7.36 6.97
DFT ih100i 1.77 3.39 4.91 6.25 7.77 9.00 10.70
DFT i C15 3.92 6.59 8.19 9.37 11.00
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volume, independent of the choice of interatomic interaction
potential.

We construct the prismatic loops and spherical voids using
the procedure proposed in Ref. 73. Formation energies and relaxa-
tion volumes for the interstitial defects are presented in Fig. 5 and
for vacancy defects in Fig. 6. The formation energies are included
here as a comparison to previous studies and to provide a complete
empirically parameterized data set for future multiscale modeling
studies. We find that our answers agree with the results given in
Refs. 72 and 73 to order of the symbol size.

We can see from Fig. 5 that the relaxation volume of a large
interstitial loop tends to limN!1 Ωrel=Ω0 ¼ N , where Ω0 is the
atomic volume. This result confirms that the volume per atom in
an edge dislocation, which is a semi-infinite plane of atoms embed-
ded in a crystal lattice, must be Ω0. What is more surprising is the
slow rate at which the result converges to this answer. Though the
vertical scale in Fig. 5 is chosen to exaggerate the effect, neverthe-
less, it can be that loops need to be well over 100 point defects,
perhaps even over 1000 before this limit can truly be said to be
reached. To give the reader an idea of the spatial scale involved, a
circular 1

2 h111i dislocation loop containing 1000 interstitials has
the diameter of 8.5 nm. A second interesting feature of Fig. 5 is that
the relaxation volume is not necessarily a monotonic function of
the number of interstitial atoms N .

FIG. 5. Formation energy and relaxation volume of low-energy interstitial defect
clusters. All clusters and loops are of circular shape. DFT values for formation
energies are extrapolated with lines fitted to E f ¼ a0

ffiffiffi
N

p
lnN þ a1

ffiffiffi
N

p þ a2
(see Table IV). DFT values for relaxation volumes are extrapolated with lines
fitted to Ωrel=Ω0j j ¼ N þ b0

ffiffiffi
N

p
lnN þ b1

ffiffiffi
N

p þ b2 (see Table V). Note that
the energies for ideal interstitial defects computed with the potentials are very
similar, but the relaxation volumes differ considerably with the DND potential typ-
ically predicting smaller values and CEA4 larger.

FIG. 6. Formation energy and relaxation volumes of low-energy vacancy defect
clusters. The loops were generated with circular shapes, and the voids as
spheres. DFT computed energies of the low-energy vacancy clusters from
Ref. 46, with an extrapolated line fitted to E f ¼ a0N2=3 þ a1. DFT computed
relaxation volumes for the same structures in Ref. 46 fitted to
Ωrel=Ω0 ¼ b0N2=3 þ b1.
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A regression analysis of the relaxation volume as a function of
size for interstitial loops suggests that an excellent fit can be found
for the empirical form

Ωrel=Ω0 ¼ N þ b0
ffiffiffiffi
N

p
lnN þ b1

ffiffiffiffi
N

p
þ b2: (6)

We fit this using least squares fitting to (Ωrel=Ω0 � N)=
ffiffiffiffi
N

p
and find error bar estimates using bootstrapping.74 Fits for the
relaxation volumes and formation energies are given in Tables IV
and V, respectively. Formation energies have been fitted to E f =

ffiffiffiffi
N

p
using the same least squares method.

In Fig. 6, we see that the relaxation volume of a large vacancy
loop tends to limN!1 Ωrel=Ω0 ¼ �N and again may be nonmono-
tonic. At small cluster sizes N , 30, however, it is not clear if there

should be a single function describing the relation between the
relaxation volume and point defect count N . Small vacancy loops
are unstable with respect to their transformation to open platelets73

and subsequently to spherical voids, particularly for the DND and
CEA-4 potentials, so the smallest relaxed vacancy clusters may not
be strictly classified as “loops.” We have omitted small vacancy
clusters that show significantly different elastic properties to large
loops.

A regression analysis of relaxation volume and formation
energy of the C15 structures computed using DFT are tabulated in
Table VI. The formation energy is fitted to E f ¼ a0Nþ
a1N2=3 þ a2, indicating that the energy is driven by both volume
and surface energy terms. The relaxation volume is well fitted by
this same form, Ωrel=Ω0 ¼ b0N þ b1N2=3 þ b2. It is not required
that the relaxation volume per C15 interstitial tends to

TABLE IV. Linear regression fits for the formation energy (in electronvolts) of interstitial and vacancy loops fitted to the form E f ¼ a0
ffiffiffi
N

p
lnN þ a1

ffiffiffi
N

p þ a2. The DFT values
shown are from this study using the cell relaxation method. Note that the fits should only be considered accurate in the ranges covered by the points in Figs. 5 and 6.

Method Structure a0 a1 a2

DFT ih111i 4.838 ± 0.039 6.18 ± 0.17 3.62 ± 0.23
DFT ih100i 6.021 ± 0.032 4.76 ± 0.13 8.23 ± 0.17
MNB ih111i 3.394 ± 0.007 7.081 ± 0.052 1.80 ± 0.16
MNB ih100i 4.773 ± 0.018 1.10 ± 0.13 9.76 ± 0.36
MNB vh111i 4.155 ± 0.016 −0.01 ± 0.12 6.03 ± 0.38
MNB vh100i 5.588 ± 0.034 −2.27 ± 0.25 3.20 ± 0.84
DND ih111i 3.456 ± 0.025 10.11 ± 0.17 −0.74 ± 0.50
DND ih100i 1.479 ± 0.036 15.87 ± 0.25 −3.32 ± 0.69
DND vh111i 4.684 ± 0.079 5.05 ± 0.60 2.82 ± 2.5
DND vh100i 4.01 ± 0.28 15.0 ± 1.8 −64.6 ± 4.9
CEA4 ih111i 2.706 ± 0.033 21.55 ± 0.23 −11.31 ± 0.71
CEA4 ih100i 7.149 ± 0.080 −3.33 ± 0.53 16.12 ± 1.6
CEA4 vh111i 4.675 ± 0.075 3.08 ± 0.54 15.17 ± 1.9
CEA4 vh100i 1.99 ± 0.22 31.4 ± 1.7 −126.3 ± 6.7

TABLE V. Linear regression fits for the relaxation volume (Ωrel=Ω0) of interstitial and vacancy loops fitted to the form Ωrel=Ω0 ¼ +N þ b0
ffiffiffi
N

p
lnN þ b1

ffiffiffi
N

p þ b2, where
the positive and negative signs are for interstitial and vacancy loops, respectively. Note that the fits should only be considered accurate in the ranges covered by the points in
Figs. 5 and 6.

Method Structure b0 b1 b2

DFT ih111i −1.983 ± 0.007 2.614 ± 0.026 −3.195 ± 0.035
DFT ih100i −1.977 ± 0.003 2.698 ± 0.011 −3.330 ± 0.015
MNB ih111i 0.008 ± 0.002 0.738 ± 0.010 −0.179 ± 0.021
MNB ih100i −0.420 ± 0.007 0.622 ± 0.048 2.13 ± 0.16
MNB vh111i 0.253 ± 0.002 −0.480 ± 0.008
MNB vh100i −0.155 ± 0.003 1.053 ± 0.015
DND ih111i −0.061 ± 0.016 −1.566 ± 0.096 2.95 ± 0.23
DND ih100i −1.348 ± 0.006 3.534 ± 0.032
DND vh111i 0.112 ± 0.009 −5.462 ± 0.055 25.07 ± 0.26
DND vh100i 0.377 ± 0.081 −6.83 ± 0.49 39.43 ± 1.22
CEA4 ih111i −0.050 ± 0.018 7.44 ± 0.12 −22.20 ± 0.32
CEA4 ih100i 0.845 ± 0.027 −0.94 ± 0.17 1.60 ± 0.44
CEA4 vh111i 0.384 ± 0.015 −0.19 ± 0.10 2.08 ± 0.33
CEA4 vh100i 0.554 ± 0.041 −0.14 ± 0.32 13.9 ± 1.2
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limN!1 Ωrel=Ω0 ¼ N , as the structure is not bcc. We note that the
C15 structures are higher energy than the 1

2 h111i interstitial dislo-
cation loops. Our fitting suggests that at larger defect sizes C15 will
be less stable than dislocation loops.

A regression analysis of relaxation volume and formation
energy of voids are tabulated in Table VII. A regression analysis
of the relaxation volume of a void as a function of void size
suggests that an excellent fit can be found for the form
Ωrel=Ω0 ¼ b0N2=3 þ b1, for N . 5. The two-thirds power implies
that the elastic relaxation of a void is driven by the minimization of
the surface energy of the void, and the resulting elastic contraction
of the material around it. Results for the relaxation volumes are
given in Table VII, and the DFT fit is shown in Fig. 6. The MNB
potential predictions are in excellent agreement with the DFT
results for the relaxation volume. The relaxation volumes of the
lowest energy vacancy clusters for 1 � N � 7 are given in Table III.
We analyze the relaxation volume of the void using linear elasticity
theory in Sec. III B. The formation energy in Table VII is fitted to
E f ¼ a0N2=3 þ a1, indicating that the energy is driven by surface
energy alone.

C. The anisotropy of the elastic relaxation

In Eq. (4), we expressed the total relaxation volume as the
sum of the three partial relaxation volumes. These three partial
volumes, plus the corresponding eigenvectors, completely specify
the tensor Ωkl , and hence the dipole tensor through Eq. (3).

For cubic crystals, it is straightforward to invert the matrix
equations and recover the dipole tensor. For the perfect defect
cluster shapes considered in Sec. II B, one eigenvector describes
both the Burgers vector and normal of the loops, and so this task
can be accomplished simply and analytically.

For a b ¼ 1
2 [111] loop with the {111} habit plane (as is

the lowest energy case in tungsten), the dipole tensor has the

general form

P1
2[111]

¼
a b b
b a b
b b a

0
@

1
A, (7)

where a and b are numerical parameters with units of energy. The
dipole tensor for other symmetry related 1

2 h111i loops is found by
taking negative signs in the off-diagonal elements as appropriate.
In a cubic crystal, we can readily find the elastic compliance tensor
(S ; C�1). Its representation as a matrix in the Voigt notation has
the simple form

S ¼

c11þc12
d

�c12
d

�c12
d 0 0 0

�c12
d

c11þc12
d

�c12
d 0 0 0

�c12
d

�c12
d

c11þc12
d 0 0 0

0 0 0 1
c44

0 0

0 0 0 0 1
c44

0

0 0 0 0 0 1
c44

0
BBBBBBBBB@

1
CCCCCCCCCA
, (8)

with d ¼ c211 þ c11c12 � 2c212, and hence, using Eq. (3) for tensor
Ωkl , we find the partial relaxation volumes

Ω(1) ¼ Ω(2) ¼ a
c11 þ 2c12

� b
c44

,

Ω(3) ¼ a
c11 þ 2c12

þ 2
b
c44

:

(9)

We can define a single dimensionless measure of the anisot-
ropy of relaxation for the structures considered here as a ratio of

TABLE VI. Linear regression fits for the formation energy (in electronvolts) and relaxation volume Ωrel=Ω0 of interstitial clusters in the C15 structure. Relaxation volume are
fitted to Ωrel=Ω0 ¼ b0N þ b1N2=3 þ b2. The structures taken were those used in Ref. 67, using the cell relaxation method, with sizes 2 � N � 22. Energies are fitted to
E f ¼ a0N þ a1N2=3 þ a2, as suggested by Ref. 67, indicating terms dependent on volume and surface area.

Method a0 a1 a2 b0 b1 b2

DFT 2:37+ 0:06 7:39+ 0:20 4:92+ 0:29 1:22+ 0:01 0:39+ 0:03 0:87+ 0:04

TABLE VII. Linear regression fits for the formation energy (in electronvolts) and relaxation volume Ωrel=Ω0 of vacancy clusters and voids. The energy is fitted to the form
Ef ¼ a0N23 þ a1, indicating a domination by surface energy. The relaxation volume is fitted to the form Ωrel=Ω0 ¼ b0N2=3 þ b1, indicating this too is driven by surface
energy. The DFT data use the lowest energy structures for 1 � N � 10; the EAM data use the lowest energy structures for 6 � N � 10 and spherical voids for
15 � N � 1067.

Method a0 a1 b0 b1

DFT 7.18 ± 0.05 −7.72 ± 0.16 −0.49 ± 0.04 −0.23 ± 0.13
MNB 7.35 ± 0.06 −7.4 ± 3.0 −0.50 ± 0.01 −0.77 ± 0.40
DND 5.25 ± 0.05 −1.9 ± 2.3 −0.31 ± 0.02 0.3 ± 1.1
CEA4 5.56 ± 0.06 −3.2 ± 2.8 −0.122 ± 0.003 0.10 ± 0.12
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the smallest to largest (magnitude) partial relaxation volumes,

α ;
Ω(1)

Ω(3) : (10)

The value α ¼ 1 indicates that all the three partial relaxation
volumes are equal, as should be the case for a spherical void.
A value in the interval 0 , α , 1 indicates that the principal lattice
relaxation is along the Burgers vector, but there are also smaller
relaxations in the two orthogonal directions with the same sign
(i.e., compressive or tensile) as the principal relaxation. The value
α ¼ 0 indicates that the only lattice relaxation is along the Burgers
vector. A value α , 0 indicates that the principal lattice relaxation
is along the Burgers vector, but there are also smaller relaxations in
the two orthogonal directions with the opposite sign (i.e., compres-
sive or tensile) as the principal relaxation.

For a 1
2 h111i loop, the anisotropy parameter is

α1
2h111i ¼

c44a� (c11 þ 2c12)b
c44aþ 2(c11 þ 2c12)b

: (11)

Given the value of α and the total relaxation volume Ωrel , we
can reconstruct the dipole tensor for a 1

2 [111] loop as

P11 ¼ P22 ¼ P33 ¼ a ¼ c11 þ 2c12
3

Ωrel ,

P12 ¼ P23 ¼ P31 ¼ b ¼ c44(α � 1)
3(1þ 2α)

Ωrel:
(12)

The same process can be followed for a [001] loop, for which
the dipole tensor is

P[001] ¼
a 0 0
0 a 0
0 0 a0

0
@

1
A: (13)

This gives partial relaxation volumes

Ω(1) ¼ Ω(2) ¼ c11a
d

� c12a0

d
,

Ω(3) ¼ � 2c12a
d

þ (c11 þ c12)a0

d

(14)

and the anisotropy coefficient

αh100i ¼ c11a� c12a0

�2c12aþ (c11 þ c12)a0
: (15)

The parameter d is defined above. Given α and the total relax-
ation volume Ωrel , we can also reconstruct the dipole tensor for a

[001] loop as

P11 ¼ P22 ¼ a ¼ d
c12(α � 1)þ c11α

(c211 þ c11c12 þ 2c212)(1þ 2α)
Ωrel ,

P33 ¼ a0 ¼ d
c11 þ 2c12α

(c211 þ c11c12 þ 2c212)(1þ 2α)
Ωrel ,

P12 ¼ P23 ¼ P31 ¼ 0:

(16)

For spherical voids, the coefficient αsphere ¼ 1. The dipole
tensor for a spherical void can be reconstructed as20

P11 ¼ P22 ¼ P33 ¼ c11 þ 2c12
3

Ωrel ¼ KΩrel ,

P12 ¼ P23 ¼ P31 ¼ 0,
(17)

where K is the bulk modulus.

FIG. 7. The relaxation volume anisotropy α, as defined by the ratio of the small-
est to the largest partial relaxation volume [see Eq. (10)], for idealized circular
prismatic loops.
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We choose to present a parameterization required to fully
reconstruct the dipole tensor as the pair of values {Ωrel , α}. The
latter is plotted in Fig. 7. Fits to this data are given in Table VIII.

D. Cascade simulations

The final set of configurations we consider are taken from the
MD cascade simulations dataset provided for the IAEA
Visualization Challenge.75 The simulations were evolved using a
stiffened DND potential76 until a simulated time 40 ps. The simula-
tion cell was initially a perfect crystal, with damping applied to
atoms with kinetic energy over 10 eV77 and with an additional ther-
mostat at the boundaries of the supercell.78 One atom was given an
initial energy of 50–150 keV, representing a primary knock-on
event, and the final temperature was under 1 K. A full description
of the methodology is detailed in Refs. 6 and 41. The cascade confi-
gurations were relaxed at constant volume using the procedure
detailed in Ref. 13 with different EAM potentials, and the relaxa-
tion volume was computed using the stress method.

The results for the energy and relaxation volume as a function
of the number of Frenkel pairs produced are shown in Fig. 8. We
see that there is a slight tendency for a lower energy per Frenkel
pair for the largest cascades. This may indicate that the largest cas-
cades (in terms of Frenkel pairs produced) are associated with the
largest dislocation loops, and the largest loops have the lowest for-
mation energy per point defect. The relaxation volume shows a
clear correlation with the Frenkel pair count, but for individual cas-
cades, there can be considerable variation. This is consistent with
the preceding results, if the defect clusters are weakly interacting, as
the relaxation volume should be determined by the degree of clus-
tering rather than the total number of defects. On the basis of these
simulations, it is reasonable to give a single relaxation volume per
cascade. We find from the relaxed cascades

Ωrel=Ω0 ¼ b0NFP , (18)

with b0 ¼ 0:77+ 0:01 for MNB and b0 ¼ 0:50+ 0:02 for DND.

Finally, we can establish the predictive quality of the tabulated
data presented here by using Tables III, V, and VII to estimate the
relaxation volume of a cascade configuration. After the initial
Wigner-Seitz analysis of the cascade configuration, clusters of inter-
stitials and vacancies were grouped where pairs of like-character
point defects were separated by nearest- or next-nearest neighbors.
As many clusters are too small to perform a Dislocation eXtraction
Algorithm (DXA) analysis,79 we assume that all the interstitial
loops are of 1

2 h111i type. The relaxation volume for each defect is
then looked up, and the total volume summed. The result is dis-
played in Fig. 9. While there is some scatter for MNB potential,
and possibly additional relaxation within the cascade for the DND
potential, it is clear that the simple empirical fits for mesoscale
defect relaxation volume give a reasonable estimate of the cascade
relaxation volume. This is an important result for the transferability
of our approach. It indicates that even in the extreme case of high-
energy defects formed close together in a cascade, the interaction
between defects has a small effect on their relaxation volumes, and
so elastically at least the defects can be treated as
quasi-independent. This, therefore, demonstrates that the relaxation
volume is a “good” phase field for multiscale modeling, in the
sense that it is additive with respect to the concentration of defects
in the underlying microstructure.

III. DISCUSSION OF RESULTS

A. A comparison with isotropic linear elasticity

In Sec. II C, we defined the anisotropy parameter in the
partial relaxation volumes of idealized loop defects considered in
Sec. II B. The expected values of the anisotropy parameter can be
computed using linear elasticity as follows. The dipole tensor for a
dislocation loop with normal n̂, Burgers vector b, and area A in
isotropic elasticity is given by20,80

Pij ¼ A μ bin j þ b jni
� �þ λbknkδij

� �
, (19)

where μ ¼ (c11 � c12)=2 and λ ¼ c12 are the shear modulus and
Lamé constant. Einstein summation over repeated indices is

TABLE VIII. The dimensionless relaxation volume anisotropy parameter α, as defined by the ratio of the smallest to the largest partial relaxation volume [see Eq. (10)], for
idealized circular prismatic loops, fitted to α ¼ α0 þ α1 lnN=

ffiffiffi
N

p þ α2=
ffiffiffi
N

p þ α3=N. The constant term α0 is derived using linear elasticity [Eqs. (11) and (15)], using the
computed values for elastic constants (see Table I).

Method Structure α0 α1 α2 α3

CEA4 vh100i 0 0.091 ± 0.023 −3.01 ± 0.16 36.8 ± 0.51
MNB ih111i −0.195 −0.144 ± 0.001 0.189 ± 0.006 −0.212 ± 0.018
MNB ih100i 0 0.196 ± 0.007 2.320 ± 0.050 −2.47 ± 0.14
MNB vh111i −0.195 0.020 ± 0.003 0.514 ± 0.017 −0.331 ± 0.044
MNB vh100i 0 0.567 ± 0.041 −3.16 ± 0.25 19.78 ± 0.66
DND ih111i −0.203 −0.255 ± 0.004 0.270 ± 0.030 −0.216 ± 0.089
DND ih100i 5.826 ± 0.075 −19.51 ± 0.47 17.6 ± 1.1
DND vh111i −0.203 −0.226 ± 0.004 0.557 ± 0.029 3.67 ± 0.11
DND vh100i 0 −0.254 ± 0.064 5.50 ± 0.36 −0.9 ± 1.3
CEA4 ih111i −0.199 −0.128 ± 0.004 0.036 ± 0.028 −0.069 ± 0.081
CEA4 ih100i 0 0.157 ± 0.033 4.57 ± 0.21 −4.63 ± 0.56
CEA4 vh111i −0.199 −0.028 ± 0.002 0.103 ± 0.012 −0.961 ± 0.030
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assumed. If the normal and Burgers vector are parallel, as is the
case here, this expression simplifies to

Pij ¼ +NΩ0 2μnin j þ λδij
� �

, (20)

where the sign is positive for the interstitial loop and negative for a
vacancy loop. For the 1

2 [111] loop, this reduces further to

P11 ¼ P22 ¼ P33 ¼ +KNΩ0,

P12 ¼ P23 ¼ P31 ¼ +
2μ
3
NΩ0,

(21)

and so, substituting into Eq. (9), we can identify the relaxation

volume for a 1
2 h111i loop in isotropic linear elasticity as

Ωrel ¼ +NΩ0 and its anisotropy as α ¼ (� c11 þ c12 þ c44)=
(2c11 � 2c12 þ c44) ¼ �1=5. This negative value is significant, as it
indicates that for a 1

2 h111i interstitial loop the lattice expansion is
negative in directions orthogonal to the Burgers vector. Values of α
computed using computed elastic constants are given in Table VIII.
Note that all the potentials give α � �0:2.

Similarly, for a 1
2 [001] loop, we find P11 ¼ P22 ¼ +λNΩ0,

P33 ¼ +(2μþ λ)NΩ0, and P12 ¼ P23 ¼ P31 ¼ 0, and so the relaxa-
tion volume computed for a h100i loop in isotropic linear elasticity
is also Ωrel ¼ +NΩ0 but its anisotropy is α ¼ 0.

B. Relaxation volume of a vacancy cluster

In this subsection, we derive an analytical formula for the relax-
ation volume of a mesoscopic spherical vacancy cluster, treating the
problem in the linear elasticity approximation. The approach that we
adopt here broadly follows the analysis by Wolfer and Ashkin.81

The elastic displacement field around a spherical vacancy
cluster, taken in the isotropic elasticity approximation, is

u(r) ¼ C
r2
nþ Drn, (22)

where C and D are constant factors that we will derive from boun-
dary conditions and n ¼ r=r. The strain and stress fields associated
with the spherical vacancy cluster are13,81

ϵij(r) ¼ C
r2

δij � 3nin j
� �þ Dδij,

σ ij(r) ¼ 2μ
C
r2

δij � 3nin j
� �þ 3KDδij,

(23)

where, as above, μ is the shear modulus of the material and K is
the bulk modulus.

FIG. 8. Formation energy and relaxation volumes of defect clusters generated
by MD cascade simulations. Filled symbols: computed with MNB potential; open
circles with DND potential. The formation energy of the cascades computed
with the two potentials is very similar, but MNB tends to produce a larger relaxa-
tion volume. Note that the cascade configurations were generated with the DND
potential, then relaxed with both MNB and DND. Note the wide range of number
of Frenkel pairs generated in a single cascade, a characteristic of the stochastic
process of loop generation,6 has recently been confirmed experimentally.43

FIG. 9. A comparison of the relaxation volume computed using a full relaxation
of the cascade (x-axis) to the relaxation volume predicted using the tabulated
fits to the data (Tables III, V, and VII). The diagonal line indicates a 1:1 match—
i.e., a perfect reproduction of the relaxation volume.

Journal of
Applied Physics ARTICLE scitation.org/journal/jap

J. Appl. Phys. 126, 075112 (2019); doi: 10.1063/1.5094852 126, 075112-12

Published under license by AIP Publishing.

https://aip.scitation.org/journal/jap


We now find the relaxation volume of a spherical vacancy
cluster of radius a embedded in a concentric spherical isotropic
elastic medium of radius R. Boundary conditions for surface trac-
tions at the surface of the vacancy cluster (r ¼ a) and at the outer
surface (r ¼ R) have the form

σ ijn j

��
r¼a ¼ �4μ

C
r3
ni þ 3KDni

����
r¼a

¼ �pa þ 2s
a
,

σ ijn j

��
r¼R

¼ �4μ
C
r3
ni þ 3KDni

����
r¼R

¼ �pR � 2s
R
,

(24)

where pa is the pressure of gas accumulated inside the vacancy
cluster (for example, helium or hydrogen), pR the external pressure,
and s is the orientation-average surface stress. The surface stress sij
is a tensor quantity related to the surface energy by the
Shuttleworth relation sij ¼ γδij þ @γ=@ϵij, which can be readily
computed in atomistic simulation as sij ¼ (1=A)@(Aγ)=@ϵij, see
Ref. 82. This will have two nonzero eigenvalues which may be com-
puted for each surface orientation. Here, we assume an orientation
average, s, will give a good approximation for the total relaxation
volume. From the boundary conditions, we find

C ¼
a3R3 pa � 2s

a

� 	
� pR þ 2s

R

� 	� 	
4μ R3 � a3ð Þ ,

D ¼
a3 pa � 2s

a

� 	
� R3 pR þ 2s

R

� 	
3K R3 � a3ð Þ ,

(25)

which in the limit of zero external pressure (pR ¼ 0), and R � a
simplify to

lim
pR¼0,R�a

C ¼ a3

4μ
pa � 2s

a

� 	
,

lim
pR¼0,R�a

D ¼ 0:

Substituting the coefficients [Eq. (25)] back into Eq. (22) gives
the magnitude of the displacement at the outer surface u(R), and
hence, the change in volume

Ωrel ¼ 4π
3
(Rþ u(R))3 � 4π

3
R3:

After some rearrangement, we find

Ωrel ¼ �4πR3

3(3K)3
pR þ 2s

R

� 	

� pR þ 2s
R

� 	2

�9K pR þ 2s
R

� 	
þ 27K2

 !

� πa3

μ(3K)3
pR þ 2s

R

� 	
� pa � 2s

a

� 	� 	

� pR þ 2s
R
� 3K

� 	2

3K þ 4μð Þ: (26)

The first term is the response of the outer surface to the exter-
nal pressure and its surface energy, independent of the presence of
the void in the interior. The second term is the relaxation volume
due to the void,

Ωrel ¼ � πa3

μ(3K)3
pR þ 2s

R

� 	
� pa � 2s

a

� 	� 	

� pR þ 2s
R
� 3K

� 	2

3K þ 4μð Þ: (27)

In the limits pR ¼ 0 and R � a, this simplifies to an expres-
sion for the relaxation volume of a spherical void in an elastic
medium, which is filled with gas at pressure pa,

lim
pR¼0,R�a

Ωrel ¼ πa3 pa � 2s=að Þ(3K þ 4μ)
3Kμ

¼ 3πa3

μ

1� ν

1þ ν

� 	
pa � 2s

a

� 	
, (28)

where ν ¼ c12=(c11 þ c12) ¼ λ=(2λþ 2μ) is Poisson’s ratio.
If the internal pressure in the vacancy cluster is zero (pa ¼ 0),

or in other words, if there in no helium or hydrogen gas inside the
vacancy cluster, the relaxation volume is negative and is propor-
tional to the surface area of the cluster

Ωrel ≃ �6π
1� ν

1þ ν

� 	
sa2

μ
: (29)

The radius of a spherical void can be related to the number of
vacancies N it contains

NΩ0 ¼ 4πa3

3
,

where Ω0 ¼ a30=2 is the volume per atom for a bcc metal, given the
lattice constant a0, so we could also write

Ωrel ≃ � 243π
8

� 	1=3 1� ν

1þ ν

� 	
s a20
μ

N2=3: (30)

From this equation, it follows that the relaxation volume “per
vacancy” in a vacancy cluster (a void containing no gas) is negative
and varies as the average surface stress and as the inverse third
power of the number of vacancies contained in the cluster

Ωrel

NΩ0
� �s N�1=3: (31)

As a result, the relaxation volume of a void “per vacancy” van-
ishes in the macroscopic limit N � 1.

We can compare the relaxation volumes computed using
atomistic relaxations to the predictions from the above surface
energy model, by substituting the elastic constants and
spherically-averaged surface energies γ and stresses s, as computed
in the Appendix and tabulated in Table I. If we use a similar
surface model for the formation energy, we find the formation
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energy per vacancy varies as the average surface energy and the
inverse third power of the number of vacancies that it contains

E f ≃ 4πγa2

≃ 9πð Þ1=3 γa20 N2=3,

E f =N � γ N�1=3:

(32)

The comparison is shown in Table IX. We conclude that the
relaxation volume and formation energy of voids in tungsten are
well reproduced by a simple surface model.

C. A comparison of the empirical potentials used

It is instructive to consider why two potentials which give very
similar energies of formation for lattice defects nevertheless give
quite different elastic properties. As shown in Eq. (5), the dipole
tensor depends on the first derivative of the potential, and for the
pairwise part V(rab) at least this is straightforward to analyze. The
MNB potential descends from the smooth Ackland-Thetford
form,47,48 whereas the DND potential is based on a piecewise
cubic-spline form. This latter form has a continuous second deriva-
tive, but discontinuous third, leading to cusps in the second deriva-
tive. In the case of the DND potential, this second derivative
swings from large positive to negative values. This, in turn, means
that small changes in relative atom positions lead to large changes
in the forces on the atoms. The MNB potential, by contrast, has a
fairly flat first derivative. The CEA-4 potential,44 which is also a
cubic-spline form, but included fitting to forces during its construc-
tion, shares this flat first derivative for near equilibrium atom sepa-
rations, but with more structure for greatly distorted structures.
This is illustrated in Fig. 10.

D. Estimating the relaxation volume per collision
cascade

In Sec. II D, we found that the relaxation volume per cascade
is proportional to the number of Frenkel pairs contained. We can
make an estimate for the relaxation volume per cascade if we make
the assumption that the lattice defects are isolated and idealized.
Sand et al.6 suggest that clusters should be produced in cascades

with a frequency given by the power-law

f (N) ¼ A=Ns, (33)

and Ref. 85 gives exponents for large clusters for interstitial-type
and vacancy clusters in bulk tungsten cascade simulations as
sI ¼ 1:6 and sV ¼ 2:0, respectively. The expected relaxation
volume per Frenkel pair is then,

Ωrel=NFP ¼
XNmax

N¼1

qI(N)ΩI(N)þ qV (N)ΩV (N), (34)

with qI=V (N) being the weighting for an interstitial/vacancy cluster
containing N point defects,

qI(N) ¼ N�SIPNmax
N¼1 N

1�SI
, qV (N) ¼ N�SVPNmax

N¼1 N
1�SV

: (35)

Note that
PNmax

N¼1 NqI(N) ¼PNmax
N¼1 NqV (N) ¼ 1. We use a

limit, Nmax, for the number of point defects in a single defect, as an
infinite sized defect cannot be produced in a single subcascade.41,86

As a first order approximation, we can write the relaxation
volumes of interstitial/vacancy clusters using their leading
terms, ΩI(N)=Ω0 � N þ b(I)0

ffiffiffiffi
N

p
logN þ b(I)1

ffiffiffiffi
N

p
and ΩV (N)=Ω0

� b(V)
0 N2=3. Then, we can write down the relaxation volume per

TABLE IX. The leading order constant for the relaxation volumes and formation
energies (electronvolts) in the limit of a large spherical void found by fitting to simu-
lation data, as given in Table VII and using a simple model using surface properties
only [Eqs. (30) and (32)].

Ωrel=Ω0=N2=3 E f =N2=3

Fit to
simulation

data

Surface
stress
model

Fit to
simulation

data

Surface
energy
model

DFT �0:49 �0:66 7.18 7.08
MNB �0:50 �0:41 7.35 7.14
DND �0:31 �0:20 5.25 5.31
CEA4 �0:12 �0:16 5.56 5.33

FIG. 10. The first derivative of the pairwise part of selected empirical potentials, in
the effective gauge47,83 where ρeq ¼ 1, F[0] ¼ F[1] ¼ 0. The MNB potential is
descended from the smooth Ackland-Thetford form,47,48 whereas the DND potential
is a piecewise cubic-spline which did not consider the first derivative during fitting.
Vertical lines are drawn at first and second nearest neighbor positions. Note that the
DND potential is not unstable at short separation, as might be inferred from this
plot, as it is stabilized by its many-body part. In MD simulations, the Ziegler-
Biersack-Littmark (ZBL) correction is also generally applied at short range.76,84 The
Ackland-Thetford pairwise potential is very similar to the MNB.
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Frenkel pair for the cascade as

Ωrel=Ω0=NFP ¼ 1þ b(I)0 wI,0 þ b(I)1 wI,1 þ b(V)0 wV , (36)

where

wI,0 ¼
PNmax

N¼1 ln(N)N1=2�sIPNmax
N¼1 N

1�sI
,

wI,1 ¼
PNmax

N¼1 N
1=2�sIPNmax

N¼1 N
1�sI

,

wV ¼
PNmax

N¼1 N
2=3�sVPNmax

N¼1 N
1�sV

:

The coefficients wI,0, wI,1, wV , which determine the relative
importance of interstitial and vacancy contributions to the relaxa-
tion volume, are plotted in Fig. 11. For the tungsten cascades, we
consider Nmax � 1000, sI ¼ 1:6, and sV ¼ 2:0, and so
wI,0 ≃ 0:40, wI,1 ≃ 0:15, and wV ≃ 0:44. We find in this work
b(I)0 ¼ 0:008, b(I)1 ¼ 0:738, and b(V)0 ¼ �0:50 for the MNB potential
(see Tables V and VII), and so expect Ωrel=Ω0=NFP � 0:89.

We could get a slightly better estimate for the total cascade
relaxation volume by using the ΩI=V (N) given by the values for the
smallest clusters in Table III, the full expressions given by the fits
in Table VII, and Table V for larger clusters. This gives the values
Ωrel=Ω0=NFP ¼ 0:87 for MNB. For DND and CEA4, the prefactor
is 0:80 and 1:31, respectively. Though not a perfect match to the
observed total relaxation volumes computed in Sec. II D, this

simple calculation returns that MNB has a larger relaxation volume
than DND and that both have a scaling factor a little under unity.

IV. IMPLICATIONS FOR MODELING
MICROSTRUCTURAL EVOLUTION UNDER
IRRADIATION

We noted earlier that, in agreement with the analysis per-
formed in Refs. 26 and 27, the fact that the relaxation volume of a
self-interstitial atom defect is positive and fairly large, whereas the
relaxation volume of a vacancy is negative and relatively small, rep-
resents the fundamental reason why metals expand and swell under
irradiation. The dynamics of accumulation of defects, involving
their recombination and coalescence, gives rise to a fairly complex
picture of microstructural evolution, where internal stresses and
strains as well as the volume of a reactor component exposed to
irradiation vary as functions of time. For example, some volumetric
expansion occurs effectively instantaneously as a result of the gen-
eration of defects in collision cascades,87–90 see Fig. 1, due to the
fact that the total (positive) relaxation volume of all the self-
interstitial defects produced in a cascade is greater than the (nega-
tive) relaxation volume of all the vacancies. This is confirmed by
the analysis given in Sec. III D above, which also shows that no
notion of diffusion-mediated microstructural evolution is required
to arrive at the conclusion that the production of defects in cas-
cades gives rise to swelling.

Using the equations for relaxation volumes of defect clusters
given above, it is possible to evaluate the degree of volumetric
expansion of a material even in the limit where the voids formed
under irradiation are too small to be visible in an electron micro-
scope. Also, the formulas for defect relaxation volumes are directly
applicable for computing the volumetric expansion of an evolving
microstructure simulated using object kinetic Monte Carlo.9,91,92

In the mesoscopic limit, the relaxation volumes of dislocation
loops, of either self-interstitial and vacancy nature, can be evaluated
as line integrals over the loop perimeters,20,93

Ωrel ¼ � 1
2

þ
Γ
b � (r� dl),

dΩrel

dt
¼ �

þ
Γ
b � (v � dl),

(37)

where r and v are the position and velocity of a point on a disloca-
tion line, and the choice of the sign before the integral depends on
the Burgers vector convention.20 Equation (37), together with the
formula for the relaxation volume of a void or a gas bubble (28),
enables evaluating volumetric swelling in the limit where radiation
defect objects are mesoscopic or even macroscopic. In this limit,
the degree of volumetric swelling may be assessed by analyzing the
relaxation volume of dislocation loops, which are often readily seen
in electron microscope images, rather than the void component of
microstructure.

The treatment of the dynamics of diffusion-mediated evolu-
tion of microstructure is beyond the scope of this paper, although
it would be appropriate to note that Eq. (37) for the rate of varia-
tion of relaxation volume of dislocations provides a link between
diffusion-mediated models for microstructural evolution81,94–96 and

FIG. 11. Relaxation volume coefficients for cascades characterized by power-
laws for the size-frequency distributions of interstitial loops and vacancy clusters,
with power-law indices sI and sV . The relaxation volumes per point defect for a
cascade can be written as Ωrel=Ω0=NFP ¼ 1þ b(I)0 wI,0 þ b(I)1 wI,1 þ b(V)0 wV .
Vertical lines indicate the power indices measured using MD for 150 keV PKA
cascades in tungsten.85
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the stress and strain based treatment of radiation-induced volumet-
ric swelling of a material given above in this paper.

V. CONCLUSIONS

In this paper, we have computed the relaxation volumes of a
broad variety of lattice defects in tungsten, using three empirical
potentials and density functional theory. We have presented the
data in a number of scatter plots but have also presented tabulated
data for empirical fits to the results. It is hoped that the data in this
form is readily applicable to a range of coarse-grained models,
which involve either the elastic interactions between defects or the
stresses and strains induced by the defect population.

We have found that there is some considerable variation in
the absolute values of relaxation volumes of defects compared
across the EAM potentials we have considered. This is because the
elastic properties of defects were never considered in the parameter
fitting. We were, however, able to identify some cross-potential
trends. The relaxation volume per point defect varies according the
specific configuration of the defect cluster, but for small defect clus-
ters (N , 10) is likely to remain in the range +10%. This means
that knowing the point defect content of a cluster and its character
(vacancy- or interstitial-type) is sufficient to predict the relaxation
volume of a cluster. Larger defect clusters (N . 10) are most stable
as dislocation loops, categorized by a Burgers vector, or in the case
of vacancies are more stable as voids (N , 6� 105 for MNB or
N , 3� 106 for CEA4,72 and we find N , 8� 106 for DND).
1
2 h111i and h100i dislocation loops and voids are sufficiently dis-
similar to require their own representation of relaxation volume as
a function of defect size, to predict their elastic properties.

We showed in Sec. II D that the relaxation volume of a
cascade is proportional to the number of Frenkel pairs it contains,
with a positive coefficient around unity. The structure in the relaxa-
tion volume per point defect is to some extent averaged out by the
range of sizes of defects produced in a cascade. The expected
number of Frenkel pairs per cascade is itself proportional to the
PKA energy, according to the Norgett-Robinson-Torrens (NRT)
formula,97 a result broadly confirmed by the MD simulation,4,98

though the constant of proportionality is now widely held to be
somewhat smaller than that given by the NRT model. The recent
arc-dpa model99,100 predicts the number of Frenkel pairs per cas-
cades produced in a defect-free material at low energy to be slightly
above the line of proportionality seen at high energy, but we can
still say that as a rule-of-thumb, the relaxation volume per cascade
increases roughly linearly with the PKA energy. As the defect
microstructure evolves, annihilation between vacancy-type and
interstitial-type will reduce the total relaxation volume. This is a
much more significant effect than deviations in proportionality of
the total volume of initial defects to the PKA energy, but it will
nevertheless preserve approximately the linear dependence of relax-
ation volume with Frenkel pair count. Coalescence of small defect
clusters will have a smaller effect on the linear dependence of the
relaxation volume with Frenkel pair count. As we have found a
potential-dependent nonmonotonic variation of the relaxation
volume of individual dislocation loops with point defect count N , it
is not clear at this point whether coalescence will increase or
decrease the relaxation volume. DFT calculations of the dipole

tensors of large loops may be able to answer this question in
the future.
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APPENDIX: AVERAGE SURFACE ENERGY

In this appendix, we find the average surface energy suitable
for a spherical void, given calculated values of the surface energy
on facets. As we are working with cubic crystals, we expand the
surface energy in cubic harmonics

Ymn(x, y, z) ¼ x4 þ y4 þ z4
� �m

x2y2z2
� �n

, (A1)

where x, y, z are direction cosines so that the surface energy at a
general direction is interpolated as

g(x, y, z) ¼
X
mn

amnYmn(x, y, z): (A2)

We can fit available surface data to the lowest orders of Ymn. It
is most common in the literature to see data for h110i, h100i,
h211i, and h111i planes, in which case it suffices to take
0 � m, n � 1. Writing the surface energy for the h110i plane as
γh110i, and similarly for the others, we find

a00 ¼ �γh100i þ 2γh110i,

a10 ¼ 2(γh100i � γh110i),

a01 ¼ 27(γh100i þ 3γh111i � 4γh211i),

a11 ¼ �54(γh100i þ 3γh111i � 6γh211i þ 2γh110i):

(A3)

The spherically-averaged surface energy, γ, can be found by
integrating over the surface of the sphere

γ ¼ 1
4π

ðπ
θ¼0

ð2π
f¼0

g(sinθ cosf, sinθ sinf, cosθ) sinθ dθ df

¼ a00 þ a01
105

þ 3a10
5

þ a11
231

¼ 1
385

86γh100i þ 128γh110i þ 27γh111i þ 144γh211i

 �

:

(A4)

It should be noted that two assumptions are made here, firstly,
that voids are unfaceted, and secondly, that the surface energy
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varies smoothly with the orientation of the facet, so this interpola-
tion should not be applied uncritically to other cases. However, this
simple expression does give a single value for surface energy suit-
able for use in our analytical calculations of void relaxation
volumes.
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