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Abstract: Source detection is a field of study gaining interest due to environmental concerns
about air quality in populated areas. We developed a machine learning framework inspired by
previous works on road traffic estimation, and compared it to a classical variational method
under a unidimensional and stationary problem. We tested source reconstruction with datasets
coming from 12 and 50 sensors with and without noise. Noise was set to follow a gaussian law
with a dependent variance from the maximum measured value of a concentration profile. Both
methods are reasonably robust to noise. The results reveal that the Neural Network used here,
a multilayer perceptron, performs very well compared to the classical 3D-Var method.
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1. INTRODUCTION

To the knowledge of the authors, machine learning is not
much used for Source detection. Hutchinson et al. (2017)
cite several works where Machine Learning methods were
applied, but none of them aims to identify a source of
pollution from a set of geolocalised data set.. Another work
dealt with building of 2D maps of pollutant concentrations
using mobile sensors measurements (Ma et al. (2019)),
but no method on source term estimation was proposed.
Recently machine learning has been applied on inverse
problem dealing with road traffic estimation (Georges
(2020)) and has inspired the present work, where a feed
forward neural network (NN) is used with a few hidden
layers. This study proposes a method to reconstruct a
source of pollution in an urban area. In the case of a uni-
dimensional domain and stationary conditions, one could
imagine the reconstruction of a unique source of pollution
located on a boulevard of a town surrounded by an urban
area. The machine learning approach is compared with a
model-based variational framework (3D-Var) which acts
as a reference.

1.1 Physical model used in machine learning and variational
frameworks

In both frameworks, a stationary physical model was used
to create source and concentration data of pollutants.
In a simple one dimensional model where a stationary
source has emitted long enough to reach stationarity, the
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displacement of pollutants is governed by the following
advection-diffusion law,

c∂xu(x)− b∂2
xxu(x) = q(x) , (1)

with c [m/s], b [m2/s], parameters corresponding to the
wind field and turbulent diffusion respectively, both con-
sidered as scalars. u denotes pollutant concentrations in
g/m3 or in mol/m3 depending on the considered source
rate. q denotes the source with units of concentration per
time and is defined on the physical domain (x in one
dimension). The source profile q used in the experiments
of this work is defined as follows,

q (x) = As ∆s (x− xs) , (2)

with ∆s (x− xs) = exp
(
−σ2

disp (x− xs)
2
)
,

where AS , xs, σ
2
disp [∅, km, km−2] represent the ampli-

tude, the position and the inverse of the variance of a
unique source of pollution. ∆S denotes the function of
dispersion chosen for the source around its centre. The
partial differential equation can be solved in three di-
mensions by a function called gaussian puff if a point-
wise source is considered. In this study, the equation is
solved by finite differences on a domain Ω = x ∈ [0, 1].
Boundaries are chosen as Dirichlet conditions imposing
a null concentration at the edges of x which model the
absence of pollution in the background. The chosen unit
of length is kilometre [km].

The model M is solved with spatial finite differences and
leads to,

u = M(θ)

= A−1(B1q(θ) +B2C),
(3)

where, A and C are the representative matrices of dis-
cretisation and boundary conditions respectively. B1, B2



are matrices that map the discretised source profile q and
the boundary conditions C towards the target system to
inverse.

1.2 Simulations Parameters

As stated at the beginning of section 1, this study aims to
reconstruct a source of pollution in an urban area where
the wind field velocity generally does not exceed ∼ 10m/s
as seen in Wang et al. (2019) and Wang et al. (2020).
The latter studied a technique to assess wind field without
using CFD models in Seoul. The turbulent coefficient is
set to b = 25000m2/s as found in Winiarek et al. (2012)
for the horizontal components of b in a problem of source
identification at a continental scale. In urban scale, this
coefficient is often imposed by the chosen wind turbulence
model with,

b =

(
Dm +

νt
Sct

)
, (4)

where Dm is the molecular diffusion of the pollutant,
vt the turbulent viscosity and Sct the Schmidt Number.
According to Lin et al. (2021) this number is chosen as
a constant in atmospheric study with a value usually set
to Sct = 0.3 whereas vt is determined by the turbulence
model of Navier-Stockes which is written in Kikumoto
(2020) is for a k − ϵ RANS model,

vt = CµkTe where, vt = Cµ
k2

ϵ
and Te =

k

ϵ
. (5)

1.3 Noise considered on sensors

Many studies consider measurements with a dedicated
measurement sampling function to take into account that a
sensor i, 1 ≤ i ≤ NC (NC denoting the number of sensors)
measures average concentration in its surrounding, leading
to the sensor function for the ith sensor (See Georges
(2019), Hammond et al. (2019), Krysta and Bocquet
(2007)),

Hi : u, xi 7→
∫
Ω

ϕi (x− xi)u (x) dx, 1 ≤ i ≤ NC , (6)

where ϕi : x 7→ ϕ (x− xi) is a sampling function
associated to a sensor i at a position xi. In this work ϕ is
chosen as a Gaussian kernel but studies can also consider
a rectangular function as in Kovalets et al. (2018). The
overall observation operator H which maps the outputs of
the physical model to measurements is thus an operator
which returns,

H : u 7→ [H1(u), . . . ,HNC
(u)] (7)

Gaussian noise is also considered for several experiments
in this paper. This noise measurements is applied to each
of the NC sensors following the expression,

um
i = Hi(u) + ϵobsi with, ϵobsi ∼ N (0, σobs2) , (8)

where ϵobsi is a gaussian noise corresponding to a ith

sensor. Sensor noise is often defined in literature by two
contributions: background noise and relative noise. The
last depends on the magnitude of the measurement. Thus
noise can be written as follows,

ϵobsi = nR + nb, (9)

with nb ∼ N (0, σ2
base) a basal noise which would com-

mand the limit of blank of the sensor (according to the

definitions of Armbruster and Pry (2008)) and nR ∼
N (0, (σrelative ×Hi(u))

2
) the measure-dependant noise.

However this formulation would modify the expression of
the covariance matrix of measurement errors written in
(13) and hence making the problem non quadratic. For
this reason, we apply a constant variance of measurements
as written in (8). Consequently, for each measurement of
a concentration profile us, a constant standard deviation
with σobs

s = 5% × max (H(us)) is chosen. It constitutes
also a conservative hypothesis on the amount of noise for
lower measured values. The basal noise is neglected. The
choice of gaussian errors of measurements is motivated by
Defforge et al. (2021) and Asch et al. (2016) where gaussian
errors are advised to be considered in order to build proven
optimal filters such as the Kalman filter.

2. METHODS

The goal of this source identification study is to recon-
struct the source term written in (2) given measurements.
To carry this study two methods are applied and compared
on the stationary problem described in 1.1: a method based
on a Neural Network model (NN) trained with a synthetic
database and a classical model-based method (3D-Var).

2.1 Machine Learning

Let us name, θ =
[
AS , xs, σ2

disp

]
a vector representing

source parameters. Alternatively, we could also consider
that the source contains as much parameters as grid points
of simulation, i.e. θi = q(i∆x) with 0 ≤ i ≤ Nx −
1, Nx being the total number of discretised points in
the x axis. A multilayer perceptron with one or several
hidden layers is built to learn source parameters given
concentration profiles and wind-field inputs. This type of
architecture was shown to be reliable to approximate an
inverse function as done in Georges (2020) and as proven
by mathematicians (see Hornik et al. (1989)).

We consider three tensors C, c and Θ. C contains n
examples of stationary concentration profiles induced by:
1- n wind coefficients contained in the tensor c (here
a 1D vector) and 2- by a gaussian stationary source of
parameters θk; 1 ≤ k ≤ n. [C, c] and Θ play the
role of X and Y traditionally written in machine-learning
framework, where X is the input tensor which is estimated
by the Neural Network given a target tensor Y :

(X, Y ) ≡ ([C, c],Θ). (10)

To train the model, a given number ntrain ∈ N of
simulations of pollutant dispersion are performed using the
model written in (1) with various wind speeds c and source
parameters θ. To cover all the space of possible training
examples, wind speeds and training source parameters
are generated with a Sobol sequence. Sobol sequence has
the property to be a pseudo-random generator with low
discrepancy so that each training example is not far in
Euclidean distance from another set of parameters (see
Niederreiter (1988)). Its python implementations used
in this work are borrowed from an open-source module
written by Ng (2016).

Training data are generated from ntrain wind and source
parameters ck and θk , 1 ≤ k ≤ ntrain, with ck ∈ [−10, 10]



m/s and θk ∈ [1e− 2 , 2] × [0.1, 0.9] × [50, 104]. The
sources of pollution are considered to be defined by a bell
curve of amplitude AS such as a source is defined by,

qk (x) = θk (1) exp
(
−θk (3)

2
(x− θk (2))

2
)
, 1 ≤ k ≤ ntrain

(11)

The target tensor corresponds to Θk = [θk(1), θk(2), θk(3)],
1 ≤ k ≤ nsamples, with nsamples the number of training or
validation examples. Source parameters need to be scaled
to the same order of magnitude. To carry this we build the
following, adimensional training parameters,

θ̃(j) =
θ(j)−min(Θ(j))

max(Θ(j)
1 ≤ j ≤ 3, (12)

for each set of the ntrain parameters used for the training.
Thus the model returns an estimation of the adimensional
parameters as an output. A rescaling is applied to the out-
put estimate using min(Θ(j)) and max(Θ(j)) the scaling
parameters used in training, such that a scaled estimation
of source parameters is performed on the validation set. To
avoid learning biases, the rescaling still uses the extrema of
parameters from training to rescale validation examples.

2.2 Variational methods

Variational methods rely on the minimisation of a cost
function using a known model of transport of pollutants.
These kinds of methods are widely used and considered
as a standard way to estimate parameters given some
measurement especially with the use of adjoint estimation
(Georges (2019), Nguyen (2016)). Here we propose to
apply a variational method to a stationary problem where
u can be expressed as an explicit function of θ, thus
avoiding the use of the adjoint. The 3D-Var cost function
is chosen. A regularisation term (Tikhonov and Arsenin
(1977)) is provided by an initial guess such that the entire
cost function is written,

J (θ) =
1

2
(θ − θb)TB−1(θ − θb)

+
1

2
(F(θ)− um)TR−1(F(θ)− um)

(13)

with,

u = M(θ)

= A−1(B1q(θ) +B2C),
(14)

the concentration profile written by the physical model M
written in (1). And with,

F(θ) = H ◦M(θ), (15)

a forward operator which is a composition of the observa-
tion operator H with M where H maps the concentrations
returned by the model on the whole domain to the space of
the measurements. Matrices B and R respectively contain
the covariance errors of initialisation and the covariance
errors of measurements. We assume here that these errors
are uncorrelated so that B and R are diagonal– and with
an equal variance. σb and σobs are the standard deviations
associated with initial guess and observations. To proceed
gradient descent, the following gradient is given to the cost
function,

∇J (θ) = B−1
(
θ − θb

)
+(∫

Ω

NC∑
i=1

ϕ (x− xi)A
−1B1∇q(θ)dx

)T

R−1 (F(θ)− um) .

(16)
The optimisation of the cost function to find the optimal
set of source parameters θ∗ is carried out by a quasi-
Newton descent using the L-BFGS-B algorithm.

3. CASE STUDY : SOURCE IDENTIFICATION IN A
STREET

Source detection gains an increasing interest for the esti-
mation sources of pollution in urban areas (e.g. Defforge
et al. (2021), Kovalets et al. (2018)). The approach pro-
posed here could consider an emissive vehicle stopped on a
boulevard with its motor turned on and where stationarity
has been reached.

3.1 Parameters

Database is built by building the set of parameters,{
pk =

[
ASk, xSk, σ

2
dispk

, ck

]
; 1 ≤ k ≤ ntrain

}
, (17)

with
[
AS , xS , σ

2
disp, ck

]
∈ [1e− 2, 4]×[0.1, 0.9]×[50, 2000]×

[−10e− 3, 10e− 3] generated by Sobol sequence, with the
units

[
∅, km, km−2, km/s

]
respectively. The validation set

is created in the same manner with ntest samples, choosing[
AS , xS , σ

2
disp, c

]
∈ [5e− 2, 3] × [0.1, 0.9] × [70, 1500] ×

[−10e− 3, 10e− 3]. Source position is purposely generated
so that xS ∈ [0.1, 0.9] to avoid to generate sources which
would be located too close from domain boundaries leading
to a non-physical solution of our dispersion model written
in (1). We remind that every scaling parameter involved
in (12) is based on training only. Our database contains
ntrain = 15000 training samples, whilst validation is ap-
plied on ntest = 200 samples. As a metric of performance,
the relative root-square error (RRSE) is chosen, defined
by,

RRSE =
∥q̂ − qT ∥2
∥qT ∥2

, (18)

where (qT , q̂) ∈ RNx
2

are respectively the real source
profile and its estimate. To be fair with variational method,
a fair initialisation is given with a vector,

θbk = [0, argmax(um
k ), 0] , 1 ≤ k ≤ ntest; (19)

so that the initial guessed source position is located at the
highest measured concentration.

The best neural network architecture has been chosen after
having performed some experiments. Hence the chosen
Neural Network contains 2 dense hidden layers of 50
neurons each, whose tanh is the activation function. The
optimisation is carried out using the L-BFGS-B algorithm.
L2 regularisation is set at a low value : 10−12. The machine
learning framework is built using keras and tensorflow
libraries.

Some estimates returned by the neural network and by the
variational method are not physical because on one hand,
the learning of source parameters in the Neural Network is
not strongly constrained by the source model, on the other



hand, the variational method can stop gradient descent on
local minima. We will exclude these few examples from our
results.

3.2 Comparison without noise

Experiment with 12 sensors Simulations are performed
without noise to compare how the machine learning frame-
work performs next to the variational method. Several
non-physical estimates returned by the neural network and
bad estimates from the variational method are excluded:
16 out of 200, leading to the study of 184 estimates.

On these examples, the neural network is able to estimate
a source with an RRSE in the same order of magnitude
than with the standard 3D-Var, with a mean RRSE and a
standard deviation of µNN

RRSE = 0.22 and σNN
RRSE = 0.12

and µvar
RRSE = 0.31 and σvar

RRSE = 0.21 using neural
network and variational method respectively. Overall the
Neural Network performs slightly better.

The root squared errors obtained from machine learning
and variational framework shew to follow a log-normal
law confirmed by the use of a Kolmogorov-Smirnov test
(p − value = 0.39 > 0.05 and 0.44 > 0.05 respectively).
The distributions of RRSE are shown in Fig. 2.

The machine learning framework method is data-driven
and thus does not contain any physical model whereas vari-
ational framework relies on the knowledge of the physics
and on a good guess. The guess written in (19) specifies
the position of the sensor which measures the maximum
concentration. We notice that the RRSE metric is sensitive
to a slightly error of estimated position. For example in
the case of the 65th sample of validation illustrated in
Fig. 1, the neural network estimates well the amplitude
and the dispersion, but a slight error of position leads to an
RRSENN = 0.16 against RRSEvar = 0.04 for the neural
network and the variational framework respectively. We
will get back to the metric choice at the end of the paper.

Overall, without noise and applied to 12 sensors in total
(10 regularly spaced in the domain and 2 which measure
the boundary conditions), the machine learning framework
performs slightly better than the variational framework
regarding the Relative Root Square Error. The neural
network gave sometimes non-physical estimates such as
negative sources or non-Gaussian sources. Fig. 3 show that
the performance of the two methods are close.

Experiment with 50 sensors: Simulations with 50 sensors
are carried out to observe a sensitivity of the estimations
towards measurement density. Several non-physical esti-
mates returned by the neural network or by the variational
framework are excluded of the network: 9 out of 200 (but
not the same as with 12 sensors), leading to the study
of 191 estimates. Both methods return similar results as
previously, with mean and standard deviation of µNN

RRSE =
0.13 and σNN

RRSE = 0.08 compared to µvar
RRSE = 0.24 and

σvar
RRSE = 0.15 for neural network and variational frame-

works respectively. This means that the error decreased
by about a half for the NN and by one third for 3D-
Var comparing to the use of 12 sensors. Again the Neural
Network performs better than 3D-Var. As with 12 sensors
RRSE distributions shew to follow log-normal law with a

Fig. 1. Example of source reconstruction : left, with a
neural network; right, with a variational method

Kolmogorov-Smirnov test (p − value = 0.19 > 0.05 for
the NN and p − value = 0.90 > 0.05 for 3D-Var). Over-
all, source reconstruction using 50 noiseless sensors (48
regularly spaced in the domain and 2 which measure the
boundary conditions) achieves 30 to 50% improvements
compared to the case with 12 noiseless sensors. Fig. 3
shows that the performance of the neural network is clearly
better than the variational framework, its distribution
being narrower and closer to 0 on RRSE axis. On the other
hand, both methods improve with the use of 50 sensors
instead of 12.

3.3 Comparison with noise

In this experience, a gaussian noise ns is applied to each
sample s of data-set of concentration profiles after having
applied a characteristic sensor function as described in 1.3,
with ns following the law :

ns ∼ N (0, σobs = 5%×max(H(us)),

1 ≤ s ≤ ntest or ntrain.
(20)

Thus the gaussian noise of a set of measurement has a
constant variance, which depends of the maximum of the
noiseless-measured concentration profile. This hypothesis
is reasonably conservative because the lower measured
values of a concentration profile will be relatively noisier
than its maximum value.

To be fair with variational method, the initial guess error
was modified from σb = 1× 106 to σb = 5× 104 to to help
to make the problem more convex.

Experiment with 12 sensors: Simulations are performed
with noise in the same manner as previously. Several non-
physical estimates returned by the NN or 3D-Var are
excluded of the results: 9 out of 200. Leading to the study
of 191 estimates. Both methods are close in the presence of
noise with mean and standard deviation of µNN

RRSE = 0.48
and σNN

RRSE = 0.26 using the NN and µvar
RRSE = 0.52

and σvar
RRSE = 0.23 using 3D-Var. Fig. 4 shows that

the distribution of Relative Root Squared Errors of both
methods are close to each other.



Fig. 2. Compared distribution of Relative Root Squared
Error for obtained by Variational and Neural Network
Estimates. No noise, 12 sensors

Fig. 3. Compared Distribution of Relative Root Squared
Errors obtained by Variational and Neural Network
Estimates. No noise, 50 sensors

Experiment with 50 sensors: With 50 sensors, 48 reg-
ularly spaced and two measured concentration values at
boundaries, the results improve compared to the use of
12 sensors. This lead to mean and standard deviation
metrics of µNN

RRSE = 0.40 and σNN = 0.21 using NN and
µRRSE = 0.45 and µvar

RRSE = 0.22 using 3D-Var. Thus
µvar
NN and µvar

RRSE decreased by 17 and 13 % respectively
with the use of 50 sensors instead of 12. Hence the Neural
Network performs slightly better the variational frame-
work. However it can be seen in Fig. 5 that the distribution
of errors are still fairly close between the two methods.
Again error distributions were proven to follow log-normal
law.

4. CONCLUSION

With the use of few and noisy sensors, both methods are
close even if the NN returns more often accurate sources es-

Fig. 4. Compared Distribution of Relative Root Squared
Errors obtained by Variational and Neural Network
Estimates. Noise, 12 sensors

Fig. 5. Compared Distribution of Relative Root Squared
Errors obtained by Variational and Neural Network
Estimates. Noise, 50 sensors

timates. However, the machine learning framework showed
greater improvement than the variational framework when
increasing sensor density. We have shown that the machine
learning approach is able to reconstruct sources even in the
presence of noisy measurements. Sensor noise decreases
severely the performance of Source Term Estimation for
both methods. Overall, the performance of the Neural
Network is as good or superior to the variational approach
as demonstrated by table 1. These results revealed that
machine learning approaches are promising for source de-
tection in the context of urban air pollution. Future work
will consider another metric such as Wasserstein distance
to evaluate the performance of source reconstruction. In-
deed, Wasserstein distance is more adapted to compare
distributions than RRSE. The former is far less punish-
ing with slight errors of source position than the latter.
Nevertheless, the behavior of error distribution for NN
and 3D-Var remain similar across all the cases adressed
in this study using RRSE or either Wasserstein metric.



It would be interesting to develop this approach for real
world cases in urban area. Indeed, once trained, a neural
network model could be useful to monitor online urban
pollution given an urban network of sensors. We could
also imagine a framework where a neural network could
provide a proper initial guess to a variational method such
as 3D-Var or 4D-Var.

Table 1. Measured mean and standard devia-
tion of Relative Root Square Error of valida-

tion samples for each case of study

Case NN 3D-Var

N N° sensors noise mean std mean std

184 12 no 0.22 0.12 0.31 0.21
191 50 no 0.13 0.08 0.24 0.15
191 12 yes 0.48 0.26 0.52 0.23
191 50 yes 0.40 0.21 0.45 0.22
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