

Understanding self-discharge or what's going on inside a lead-acid battery when nothing happens outside

Mikael Cugnet, Florian Gallois, Angel Kirchev, Denys Dutykh

▶ To cite this version:

Mikael Cugnet, Florian Gallois, Angel Kirchev, Denys Dutykh. Understanding self-discharge or what's going on inside a lead-acid battery when nothing happens outside. AABC Europe - 12th International Advanced Automotive Battery Conference, Jun 2022, Mainz, Germany. cea-03715092

HAL Id: cea-03715092 https://cea.hal.science/cea-03715092

Submitted on 6 Jul2022

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Understanding self-discharge

What's going on inside a lead-acid battery when nothing happens outside?

Mikaël Cugnet^{1,2}, Florian Gallois^{1,2,3,4}, Angel Kirchev^{1,2}, and Denys Dutykh⁴

¹Université Grenoble Alpes, INES, F-73375 Le Bourget-du-Lac, France ²CEA, LITEN, Solar Technology Dept, F-73375 Le Bourget-du-Lac, France

³Haulotte Group, F-42420 Lorette, France

⁴Laboratory of Mathematics, UMR 5127, F-73375 Le Bourget-du-Lac, France

 12^{th} International AABC Europe, 13 June 2022, Mainz, Germany

liten ^{c21tech} √ < ↔

Introduction

Self-discharge of lead-acid cells

Modeling self-discharge of a lead-acid cel

Conclusion

Outline

2 Self-discharge of lead-acid cells

- 2 Self-discharge of lead-acid cells
- Modeling self-discharge of a lead-acid cell

- 2 Self-discharge of lead-acid cells
- 3 Modeling self-discharge of a lead-acid cell

1 Introduction

- What is self-discharge?
- Why self-discharge?

2 Self-discharge of lead-acid cells

3 Modeling self-discharge of a lead-acid cell

4 Conclusion

Modeling self-discharge of a lead-acid cell

Conclusion

What is self-discharge?

• Self-discharge is a set of processes that decreases the performance of electrochemical power sources without flow of current through an external circuit.

Modeling self-discharge of a lead-acid cell

Conclusion

What is self-discharge?

- Self-discharge is a set of processes that decreases the performance of electrochemical power sources without flow of current through an external circuit.
- Batteries that are prone to self-discharge exhibit a short shelf life and are thus disfavored in most applications.

Modeling self-discharge of a lead-acid cell

Conclusion

What is self-discharge?

- Self-discharge is a set of processes that decreases the performance of electrochemical power sources without flow of current through an external circuit.
- Batteries that are prone to self-discharge exhibit a short shelf life and are thus disfavored in most applications.
- Self-discharge is more critical for primary batteries than secondary batteries:
 - Primary batteries \Rightarrow short life
 - Secondary batteries \Rightarrow low energy efficiency

Modeling self-discharge of a lead-acid cell

Why self-discharge is so important?

• It may have dramatic consequences for systems that cannot be powered.

Why self-discharge is so important?

- It may have dramatic consequences for systems that cannot be powered.
- It requires excessive charging that may be detrimental to the batteries.

Why self-discharge is so important?

- It may have dramatic consequences for systems that cannot be powered.
- It requires excessive charging that may be detrimental to the batteries.
- It demonstrates that batteries remain active even though they are unused:

$$orall \delta t > 0, \quad rac{\mathrm{d}i}{\mathrm{d}t} \leq 0, \quad i = 0 \quad \Rightarrow \quad u(t + \delta t) < u(t)$$

Why self-discharge is so important?

- It may have dramatic consequences for systems that cannot be powered.
- It requires excessive charging that may be detrimental to the batteries.
- It demonstrates that batteries remain active even though they are unused:

$$\forall \delta t > 0, \quad \frac{\mathrm{d}i}{\mathrm{d}t} \leq 0, \quad i = 0 \quad \Rightarrow \quad u(t + \delta t) < u(t)$$

This feature is neglected in most battery models for simplicity!

liter

Introduction

- 2 Self-discharge of lead-acid cells
 - Specific self-discharge processes
 - Experimental work
 - Reference electrode
 - Working electrode

Modeling self-discharge of a lead-acid cell

Conclusion

Electrochemical reactions at each electrode

Hydrolysis of water, corrosion of the grid, and recombination of water

Positive electrode

Cathodic:
$$PbO_2 + H_2SO_4 + 2H^+ + 2e^- \rightleftharpoons PbSO_4 + 2H_2O$$
 (discharge)
Anodic:
$$\begin{cases} H_2O \rightleftharpoons \frac{1}{2}O_2 + 2H^+ + 2e^- \text{ (oxygen evolution)}\\ Pb + H_2O \rightleftharpoons PbO + 2H^+ + 2e^- \text{ (grid corrosion)} \end{cases}$$

liten

Modeling self-discharge of a lead-acid cell

Conclusion

Electrochemical reactions at each electrode

Hydrolysis of water, corrosion of the grid, and recombination of water

Positive electrode

Cathodic:
$$PbO_2 + H_2SO_4 + 2H^+ + 2e^- \rightleftharpoons PbSO_4 + 2H_2O$$
 (discharge)
Anodic:
$$\begin{cases} H_2O \rightleftharpoons \frac{1}{2}O_2 + 2H^+ + 2e^- & \text{(oxygen evolution)} \\ Pb + H_2O \rightleftharpoons PbO + 2H^+ + 2e^- & \text{(grid corrosion)} \end{cases}$$

Negative electrode

Anodic:
$$Pb + H_2SO_4 \rightleftharpoons PbSO_4 + 2H^+ + 2e^-$$
 (discharge)
Cathodic: $\begin{cases} 2H^+ + 2e^- \rightleftharpoons H_2 & (hydrogen evolution) \\ \frac{1}{2}O_2 + 2H^+ + 2e^- \rightleftharpoons H_2O & (oxygen reduction) \end{cases}$

7 / 28

liten

Modeling self-discharge of a lead-acid cell

Conclusion

Redox shuttle process

Insufficiently purified water or leaching impurities from cell components

Impurities, e.g. Fe^{2+}/Fe^{3+} , lead to discharging of the cell by means of a so-called redox shuttle process:

Positive electrode

 $\mathrm{PbO}_2 + \mathrm{H}_2\mathrm{SO}_4 + 2\,\mathrm{H}^+ + 2\,\mathrm{Fe}^{2+} \rightleftharpoons \mathrm{PbSO}_4 + 2\,\mathrm{H}_2\mathrm{O} + 2\,\mathrm{Fe}^{3+}$

Negative electrode

 $\mathrm{Pb} + \mathrm{H_2SO_4} + 2\,\mathrm{Fe}^{3+} \rightleftharpoons \mathrm{PbSO_4} + 2\,\mathrm{H^+} + 2\,\mathrm{Fe}^{2+}$

This process continues as long as the electrode potentials allow the oxidation and reduction of ions. The redox shuttle ions themselves are not consumed.

liter

Modeling self-discharge of a lead-acid cell 0000000 Conclusion

Redox shuttle process

Insufficiently purified water or leaching impurities from cell components

Impurities, e.g. Fe^{2+}/Fe^{3+} , lead to discharging of the cell by means of a so-called redox shuttle process:

Positive electrode

 $\mathrm{PbO}_2 + \mathrm{H}_2\mathrm{SO}_4 + 2\,\mathrm{H}^+ + 2\,\mathrm{Fe}^{2+} \rightleftharpoons \mathrm{PbSO}_4 + 2\,\mathrm{H}_2\mathrm{O} + 2\,\mathrm{Fe}^{3+}$

Negative electrode

 $\mathrm{Pb} + \mathrm{H}_2\mathrm{SO}_4 + 2\,\mathrm{Fe}^{3+} \rightleftharpoons \mathrm{Pb}\mathrm{SO}_4 + 2\,\mathrm{H}^+ + 2\,\mathrm{Fe}^{2+}$

This process continues as long as the electrode potentials allow the oxidation and reduction of ions. The redox shuttle ions themselves are not consumed.

Fig. 3. Hydrogen evolution in sulfuric acid at various metal surfaces in a semilogarithmic plot vs. electrode potential (polarization). The origin of the horizontal scale is the equilibrium potential of the hydrogen electrode.

D. Berndt, J. Power Sources 95 (2001) 2-12

Modeling self-discharge of a lead-acid cell

Some other self-discharge processes

Reactions between positive active material and separator

Lead dioxide has a very high oxidation potential and can discharge in contact with separators:

 $PbO_2 + H_2SO_4 + separator \Rightarrow PbSO_4 + 2H_2O + damaged separator + CO_2$

The degradation of the separator must be avoided by proper choice of materials and designs.

Some other self-discharge processes

Reactions between positive active material and separator

Lead dioxide has a very high oxidation potential and can discharge in contact with separators:

 $PbO_2 + H_2SO_4 + separator \Rightarrow PbSO_4 + 2H_2O + damaged separator + CO_2$

The degradation of the separator must be avoided by proper choice of materials and designs.

Ohmic Leakage Currents / Short Circuits

- New lead-acid batteries do not exhibit such self-discharge phenomena.
- Short circuits (e.g., formation of dendrites through the separator) can develop after long use and soon lead to cell failure, as they enable a discharging process inside the cell.
- A conductive layer of dirt on the cell container may bridge the battery terminals, but discharging caused by such fault currents can be reversed by the charging process.

A D > A D > A D > A D

Modeling self-discharge of a lead-acid cell

Conclusion

Self-discharge in practice Example of a flooded lead-acid battery for traction applications

Modeling self-discharge of a lead-acid cell

Self-discharge in practice Tear-down of an individual electrochemical cell

• Number and dimensions of positive and negative electrodes

Modeling self-discharge of a lead-acid cell

Self-discharge in practice Tear-down of an individual electrochemical cell

- Number and dimensions of positive and negative electrodes
- Number and dimensions of separators

Modeling self-discharge of a lead-acid cell

Self-discharge in practice Tear-down of an individual electrochemical cell

- Number and dimensions of positive and negative electrodes
- Number and dimensions of separators
- Weight of each electrode (still soaked with electrolyte)

liten

Modeling self-discharge of a lead-acid cell

Self-discharge in practice Tear-down of an individual electrochemical cell

- Number and dimensions of positive and negative electrodes
- Number and dimensions of separators
- Weight of each electrode (still soaked with electrolyte)
- Weight of each electrode (after drying to remove electrolyte)

liten

Self-discharge of lead-acid cells ○○○○○●○○○○○ Modeling self-discharge of a lead-acid cell

Self-discharge in practice Tear-down of an individual electrochemical cell

- Number and dimensions of positive and negative electrodes
- Number and dimensions of separators
- Weight of each electrode (still soaked with electrolyte)
- Weight of each electrode (after drying to remove electrolyte)
- Weight of each grid (after removing active materials)

liter

Self-discharge of lead-acid cells ○○○○○●○○○○○ Modeling self-discharge of a lead-acid cell

Self-discharge in practice Tear-down of an individual electrochemical cell

- Number and dimensions of positive and negative electrodes
- Number and dimensions of separators
- Weight of each electrode (still soaked with electrolyte)
- Weight of each electrode (after drying to remove electrolyte)
- Weight of each grid (after removing active materials)
- Estimation of the total volume of electrolyte in the cell

liter

Modeling self-discharge of a lead-acid cell

Conclusion

Reference electrode

Study of each electrochemical reaction with the silver-silver sulfate reference electrode

To measure the potential of an individual working electrode, you must combine it with a reference electrode to form a galvanic cell.

Modeling self-discharge of a lead-acid cell

Reference electrode

Study of each electrochemical reaction with the silver-silver sulfate reference electrode

To measure the potential of an individual working electrode, you must combine it with a reference electrode to form a galvanic cell.

Positive electrode as working electrode

$$\begin{aligned} \mathrm{PbO}_2 + \mathrm{H}_2\mathrm{SO}_4 + 2\,\mathrm{H}^+ + 2\,\mathrm{e}^- &\rightleftharpoons \mathrm{PbSO}_4 + 2\,\mathrm{H}_2\mathrm{O} \\ 2\,\mathrm{Ag} + \mathrm{H}_2\mathrm{SO}_4 &\rightleftharpoons \mathrm{Ag}_2\mathrm{SO}_4 + 2\,\mathrm{H}^+ + 2\,\mathrm{e}^- \end{aligned}$$

Modeling self-discharge of a lead-acid cell

Conclusion

Reference electrode

Study of each electrochemical reaction with the silver-silver sulfate reference electrode

To measure the potential of an individual working electrode, you must combine it with a reference electrode to form a galvanic cell.

Positive electrode as working electrode

$$\begin{aligned} \mathrm{PbO}_2 + \mathrm{H}_2\mathrm{SO}_4 + 2\,\mathrm{H}^+ + 2\,\mathrm{e}^- &\rightleftharpoons \mathrm{PbSO}_4 + 2\,\mathrm{H}_2\mathrm{O} \\ 2\,\mathrm{Ag} + \mathrm{H}_2\mathrm{SO}_4 &\rightleftharpoons \mathrm{Ag}_2\mathrm{SO}_4 + 2\,\mathrm{H}^+ + 2\,\mathrm{e} \end{aligned}$$

Negative electrode as working electrode

$$Pb + H_2SO_4 \rightleftharpoons PbSO_4 + 2H^+ + 2e^-$$
$$Ag_2SO_4 + 2H^+ + 2e^- \rightleftharpoons 2Ag + H_2SO_4$$

Modeling self-discharge of a lead-acid cell

Conclusion

Reference electrode

Impact of the reference electrode on the Butler-Volmer model of the negative electrode

The current density of charge transfer is described by the Butler-Volmer equation:

$$i = i_0 \left\{ \exp\left[(1 - \alpha) \frac{2F}{RT^{\circ}} \left(\Delta \phi - \Delta \phi^0 \right) \right] - \exp\left[-\alpha \frac{2F}{RT^{\circ}} \left(\Delta \phi - \Delta \phi^0 \right) \right] \right\}$$

with the exchange current density

$$\dot{h}_0 = rac{n \, F \, k_0}{\gamma_{\ddagger}} \, a_{\mathrm{H_2SO_4, ref}}^{1-lpha} \, a_{\mathrm{H_2SO_4}}^{lpha}$$

and the equilibrium potential at the reference temperature from the Nernst equation:

$$\Delta\phi_{\rm Pb}^{0}(T^{\circ}) = \frac{\mu_{\rm PbSO_4}^{0} - \mu_{\rm Ag_2SO_4}^{0}}{2F} - \frac{R}{2F} \ln\left(\frac{a_{\rm H_2SO_4}}{a_{\rm H_2SO_4,\rm ref}}\right)$$

Modeling self-discharge of a lead-acid cell

Conclusion

Working electrode

Impact of temperature on current density and equilibrium voltage

The Arrhenius equation gives the dependence of the rate constant on ${\cal T}$

$$k_0 = k_0^\circ \exp\left(-rac{\Deltaar{G}_{\ddagger}}{R\ T}
ight)$$

liten

Modeling self-discharge of a lead-acid cell

Conclusion

Working electrode

Impact of temperature on current density and equilibrium voltage

The Arrhenius equation gives the dependence of the rate constant on ${\cal T}$

$$k_0 = k_0^\circ \, \exp\left(-rac{\Deltaar{G}_{\ddagger}}{R \; T}
ight)$$

The Taylor polynomial of degree 2 for the equilibrium potential according to \mathcal{T}°

$$\Delta\phi^{0}(T) = \Delta\phi^{0}(T^{\circ}) + (T - T^{\circ})\left(\frac{\partial\Delta\phi^{0}}{\partial T}\right)_{p}(T^{\circ}) + \frac{1}{2}(T - T^{\circ})^{2}\left(\frac{\partial^{2}\Delta\phi^{0}}{\partial T^{2}}\right)_{p}(T^{\circ})$$

allows to estimate the equilibrium potential for any temperature value $T \neq T^{\circ}$ from the entropy and heat capacity at constant pressure (isobaric process)

$$\Delta\phi^{0}(T) = \frac{\Delta\bar{G}^{0}(T^{\circ})}{nF} - (T - T^{\circ})\frac{\Delta\bar{S}^{0}(T^{\circ})}{nF} - (T - T^{\circ})^{2}\frac{\Delta\bar{C}_{p}^{0}(T^{\circ})}{2nFT}$$

14/28

Modeling self-discharge of a lead-acid cell

Working porous electrode Electroneutrality and conservation of charge

The porous electrodes of lead-acid batteries are made of two phases:

- a solid phase (Pb at the negative electrode and PbO₂ at the positive electrode),
- a liquid phase (electrolyte).

Modeling self-discharge of a lead-acid cell

Conclusion

Working porous electrode Electroneutrality and conservation of charge

The porous electrodes of lead-acid batteries are made of two phases:

- a solid phase (Pb at the negative electrode and PbO_2 at the positive electrode),
- a liquid phase (electrolyte).

This approach is simplistic as the electrodes are also made of binders (electrical insulators) and conductive additives, but allows to consider that the whole volume of the electrode is conductive with two different types of conduction according to the phases:

- \bullet electronic in the solid phase (exclusively metallic), symbolized by the current $i_{
 m s}$,
- ionic in the liquid phase (electrolyte), symbolized by the current i_{l} .

Modeling self-discharge of a lead-acid cell

Working porous electrode Electroneutrality and conservation of charge

The porous electrodes of lead-acid batteries are made of two phases:

- a solid phase (Pb at the negative electrode and PbO_2 at the positive electrode),
- a liquid phase (electrolyte).

This approach is simplistic as the electrodes are also made of binders (electrical insulators) and conductive additives, but allows to consider that the whole volume of the electrode is conductive with two different types of conduction according to the phases:

- \bullet electronic in the solid phase (exclusively metallic), symbolized by the current $i_{
 m s}$,
- ionic in the liquid phase (electrolyte), symbolized by the current i_{l} .

Electroneutrality (the double layer being negligible in volume)

Charges leaving the porous matrix of the electrode must pass into the solution and reciprocally:

$$\nabla \cdot \textit{i}_{\rm s} + \nabla \cdot \textit{i}_{\rm l} = 0$$

iten

Modeling self-discharge of a lead-acid cell

Working porous electrode

Kinetics and electrostatics are two sides of the same coin

The current per unit volume of the electrode $\nabla \cdot i_{l}$, transferred from the matrix to the solution, is involved either in faradaic reactions

$$\nabla \cdot i_{\rm l} = A \sum_{j=1}^n i_j$$

where A is the specific interfacial area (m⁻¹), $\sum_{j=1}^{n} i_j$ the sum of the current densities of all faradaic processes j involved (A m⁻²)

Modeling self-discharge of a lead-acid cell

Working porous electrode

Kinetics and electrostatics are two sides of the same coin

The current per unit volume of the electrode $\nabla \cdot i_l$, transferred from the matrix to the solution, is involved either in faradaic reactions or in double-layer charging:

$$abla \cdot \mathbf{i}_{\mathrm{l}} = A \sum_{j=1}^{n} \mathbf{i}_{j} + \frac{\mathrm{d}}{\mathrm{d}t} (A q_{\mathrm{d}1})$$

where A is the specific interfacial area (m^{-1}) , $\sum_{j=1}^{n} i_j$ the sum of the current densities of all faradaic processes j involved $(A m^{-2})$ and q_{dl} the surface charge density on the electrode side of the double layer $(C m^{-2})$.

16/28

liter

Modeling self-discharge of a lead-acid cell

Conclusion

Working porous electrode

Kinetics and electrostatics are two sides of the same coin

The current per unit volume of the electrode $\nabla \cdot i_{l}$, transferred from the matrix to the solution, is involved either in faradaic reactions or in double-layer charging:

$$abla \cdot \mathbf{i}_{\mathrm{l}} = A \sum_{j=1}^{n} \mathbf{i}_{j} + \frac{\mathrm{d}}{\mathrm{d}t} (A q_{\mathrm{dl}})$$

where A is the specific interfacial area (m^{-1}) , $\sum_{j=1}^{n} i_j$ the sum of the current densities of all faradaic processes j involved $(A m^{-2})$ and q_{dl} the surface charge density on the electrode side of the double layer $(C m^{-2})$.

$$q_{\mathrm{dl}} = C_{dl} \cdot \frac{\mathrm{d}\Delta\phi}{\mathrm{d}t} + \Delta\phi \cdot \frac{\mathrm{d}C_{dl}}{\mathrm{d}t}$$

where C_{dl} is the double layer capacity per unit area of the electrode (F m⁻²).

Outline

Introduction

2 Self-discharge of lead-acid cells

Modeling self-discharge of a lead-acid cell

- Model equations
- Model validation
- Model improvements

4 Conclusion

Introduction 000	Self-discharge of lead-acid cells 0000000000	Modeling self-discharge of a lead-acid cell ○●○○○○○	Conclusion 0000
Model equa	ations		
Self-discharge m	eans no charge transferred		

In open circuit, no current flows, neither electronically ($\nabla \cdot i_s = 0$), nor ionically:

$$abla \cdot i_{\mathrm{l}} = A \sum_{j=1}^{n} i_{j} + \frac{\mathrm{d}}{\mathrm{d}t} (A q_{\mathrm{dl}}) = 0$$

000	00000000000	13	••••••		0000
Model equatio Self-discharge means	NS no charge transferred				

In open circuit, no current flows, neither electronically ($abla \cdot i_{
m s}=0$), nor ionically:

$$\nabla \cdot i_{\mathrm{l}} = A \sum_{j=1}^{n} i_{j} + \frac{\mathrm{d}}{\mathrm{d}t} (A q_{\mathrm{d}\mathrm{l}}) = 0$$

Assuming two faradaic processes:

- discharge of the electrode active material with the primary current i_p
- hydrolysis of water contained in electrolyte with the gassing current i_g

and a constant double layer capacity per unit area of the electrode $\left(rac{\mathrm{d}C_{\mathrm{dl}}}{\mathrm{d}t}=0
ight)$

$$\frac{\mathrm{d}\Delta\phi}{\mathrm{d}t} = -\frac{i_p + i_g}{C_{\mathrm{dl}}}$$

Modeling self-discharge of a lead-acid cell ○○●○○○○○

Model equations

Self-discharge means sulfuric acid consumption and dilution

Reducing self-discharge to sulfuric acid consumption works for the negative:

Negative electrode

Anodic: $Pb + H_2SO_4 \rightleftharpoons PbSO_4 + 2H^+ + 2e^-$ (discharge) Cathodic: $2H^+ + 2e^- \rightleftharpoons H_2$ (hydrogen evolution)

Modeling self-discharge of a lead-acid cell ○○●○○○○○

Model equations

Self-discharge means sulfuric acid consumption and dilution

Reducing self-discharge to sulfuric acid consumption works for the negative:

Negative electrode

Anodic: $Pb + H_2SO_4 \rightleftharpoons PbSO_4 + 2H^+ + 2e^-$ (discharge) Cathodic: $2H^+ + 2e^- \rightleftharpoons H_2$ (hydrogen evolution)

but is not sufficient for the positive, producing and consuming water:

Positive electrode

 $\begin{array}{l} \mbox{Cathodic: } {\rm PbO}_2 + \frac{H_2 SO_4}{12} + 2 \, {\rm H}^+ + 2 \, {\rm e}^- \rightleftharpoons {\rm PbSO}_4 + 2 \, H_2 O \quad \mbox{(discharge)} \\ \mbox{Anodic: } {\rm H}_2 O \rightleftharpoons \frac{1}{2} \, {\rm O}_2 + 2 \, {\rm H}^+ + 2 \, {\rm e}^- \quad \mbox{(oxygen evolution)} \end{array}$

19/28

liten

Modeling self-discharge of a lead-acid cell ○○●○○○○○

Model equations

Self-discharge means sulfuric acid consumption and dilution

Reducing self-discharge to sulfuric acid consumption works for the negative:

Negative electrode

Anodic: $Pb + H_2SO_4 \rightleftharpoons PbSO_4 + 2H^+ + 2e^-$ (discharge) Cathodic: $2H^+ + 2e^- \rightleftharpoons H_2$ (hydrogen evolution)

but is not sufficient for the positive, producing and consuming water:

Positive electrode

 $\begin{array}{l} \mbox{Cathodic: } {\rm PbO}_2 + \frac{{\rm H}_2{\rm SO}_4 + 2\,{\rm H}^+ + 2\,{\rm e}^- \rightleftharpoons {\rm PbSO}_4 + 2\,{\rm H}_2{\rm O} & \mbox{(discharge)} \\ \mbox{Anodic: } {\rm H}_2{\rm O} \rightleftharpoons \frac{1}{2}\,{\rm O}_2 + 2\,{\rm H}^+ + 2\,{\rm e}^- & \mbox{(oxygen evolution)} \end{array}$

$$\forall i \in \{\mathrm{H}_{2}\mathrm{O}, \mathrm{H}_{2}\mathrm{SO}_{4}\}, j \in \{\mathrm{p}, \mathrm{g}\}, k \in \{\mathrm{pos}, \mathrm{neg}\}, \quad \frac{\mathrm{d}n_{i}}{\mathrm{d}t} = -\sum_{\substack{i \in J, k \\ i \neq j, k }} \frac{s_{i,j,k} N_{k} S_{k}}{s_{i,j,k} I_{k}} i_{j,k}$$

Modeling self-discharge of a lead-acid cell ○○○●○○○○

Conclusion

Model equations

A system of 7 ordinary differential equations (2 for each electrode and 3 for the electrolytes)

Electrode k

$$\frac{\mathrm{d}\Delta\phi_{k}}{\mathrm{d}t} = -\frac{1}{C_{\mathrm{dl},k}}\sum_{j}i_{j,k}$$

$$\frac{\mathrm{d}Q_{k}}{\mathrm{d}t} = -s_{p,k}N_{k}S_{k}i_{p,k}$$

$$SOC_{k} = \frac{Q_{k}}{\max(Q_{k})}$$

Modeling self-discharge of a lead-acid cell ○○○●○○○○ Conclusion

Model equations

A system of 7 ordinary differential equations (2 for each electrode and 3 for the electrolytes)

Electrode k
$$\frac{\mathrm{d}\Delta\phi_k}{\mathrm{d}t} = -\frac{1}{C_{\mathrm{d}l,k}}\sum_j i_{j,k}$$
$$\frac{\mathrm{d}Q_k}{\mathrm{d}t} = -s_{p,k} N_k S_k i_{p,k}$$
$$SOC_k = \frac{Q_k}{\max(Q_k)}$$

The cell SOC corresponds to the minimum value of each electrode SOC_k :

$$SOC = \min\left(\max\left(\min\left(SOC_k\right), 0\right), 1\right)$$

Modeling self-discharge of a lead-acid cell ○○○●○○○○ Conclusion

Model equations

A system of 7 ordinary differential equations (2 for each electrode and 3 for the electrolytes)

Electrode k
$$\frac{\mathrm{d}\Delta\phi_k}{\mathrm{d}t} = -\frac{1}{C_{\mathrm{dl},k}} \sum_j i_{j,k}$$
$$\frac{\mathrm{d}Q_k}{\mathrm{d}t} = -s_{p,k} N_k S_k i_{p,k}$$
$$SOC_k = \frac{Q_k}{\max(Q_k)}$$

The cell SOC corresponds to the minimum value of each electrode SOC_k :

$$SOC = \min\left(\max\left(\min\left(SOC_k\right), 0\right), 1\right)$$

Modeling self-discharge of a lead-acid cell ○○○●○○○○ Conclusion

Model equations

A system of 7 ordinary differential equations (2 for each electrode and 3 for the electrolytes)

Electrode k

$$\frac{\mathrm{d}\Delta\phi_{k}}{\mathrm{d}t} = -\frac{1}{C_{\mathrm{dl},k}}\sum_{j}i_{j,k}$$

$$\frac{\mathrm{d}Q_{k}}{\mathrm{d}t} = -s_{p,k}N_{k}S_{k}i_{p,k}$$

$$SOC_{k} = \frac{Q_{k}}{\max(Q_{k})}$$

The cell SOC corresponds to the minimum value of each electrode SOC_k :

$$SOC = \min\Bigl(\max\Bigl(\min\bigl(SOC_k\bigr),0\Bigr),1\Bigr)$$

Bulk electrolyte $\frac{\mathrm{d}n_{\mathrm{H}_{2}\mathrm{O}}}{\mathrm{d}t} = -\sum_{j,k} \frac{s_{\mathrm{H}_{2}\mathrm{O},j,k} N_{k} S_{k}}{n_{j,k} F} i_{j,k}$ $\frac{\mathrm{d}n_{\mathrm{H}_{2}\mathrm{SO}_{4}}}{\mathrm{d}t} = -\sum_{j,k} \frac{s_{\mathrm{H}_{2}\mathrm{SO}_{4},j,k} N_{k} S_{k}}{n_{j,k} F} i_{j,k}$ $m = \frac{1000 n_{\mathrm{H}_{2}\mathrm{SO}_{4}}}{M_{\mathrm{H}_{2}\mathrm{O}} n_{\mathrm{H}_{2}\mathrm{O}}}$

Modeling self-discharge of a lead-acid cell ○○○●●○○ Conclusion

Model validation with experimental data

Electrode voltage and SOC during 49 days at $25\,^\circ$ C, 34 days at $35\,^\circ$ C, and 16 days at $45\,^\circ$ C

Modeling self-discharge of a lead-acid cell ○○○●○○○ Conclusion

Model validation with experimental data

Electrode voltage and SOC during 49 days at 25 °C, 34 days at 35 °C, and 16 days at 45 °C

Modeling self-discharge of a lead-acid cell ○○○●○○○ Conclusion

Model validation with experimental data

Electrode voltage and SOC during 49 days at $25\,^\circ$ C, 34 days at $35\,^\circ$ C, and 16 days at $45\,^\circ$ C

liten ^{cestech}

Modeling self-discharge of a lead-acid cell ○○○●●○○ Conclusion

Model validation with experimental data

Electrode voltage and SOC during 49 days at 25 °C, 34 days at 35 °C, and 16 days at 45 °C

• The positive electrode polarization is much higher than the negative one.

liten

Modeling self-discharge of a lead-acid cell ○○○●○○○ Conclusion

Model validation with experimental data

Electrode voltage and SOC during 49 days at 25 $^\circ\text{C},$ 34 days at 35 $^\circ\text{C},$ and 16 days at 45 $^\circ\text{C}$

- The positive electrode polarization is much higher than the negative one.
- The positive electrode voltage decreases faster than the negative one.

୬ ୯.୯ 21 / 28

liten

Modeling self-discharge of a lead-acid cell ○○○●○○○ Conclusion

liten

21/28

Model validation with experimental data

Electrode voltage and SOC during 49 days at 25 $^\circ\text{C},$ 34 days at 35 $^\circ\text{C},$ and 16 days at 45 $^\circ\text{C}$

- The positive electrode polarization is much higher than the negative one.
- The positive electrode voltage decreases faster than the negative one.
- The positive electrode SOC decreases slower than the negative one.

Modeling self-discharge of a lead-acid cell ○○○○●○○ Conclusion

Model validation with experimental data

Bulk and reference electrolytes during 49 days at 25 $^\circ\text{C},$ 34 days at 35 $^\circ\text{C},$ and 16 days at 45 $^\circ\text{C}$

Modeling self-discharge of a lead-acid cell ○○○○○●○○ Conclusion

Model validation with experimental data

Bulk and reference electrolytes during 49 days at 25 $^\circ\text{C},$ 34 days at 35 $^\circ\text{C},$ and 16 days at 45 $^\circ\text{C}$

Modeling self-discharge of a lead-acid cell ○○○○●○○ Conclusion

Model validation with experimental data

Bulk and reference electrolytes during 49 days at 25 $^\circ$ C, 34 days at 35 $^\circ$ C, and 16 days at 45 $^\circ$ C

Modeling self-discharge of a lead-acid cell ○○○○○●○○ Conclusion

Model validation with experimental data

Bulk and reference electrolytes during 49 days at 25 $^\circ$ C, 34 days at 35 $^\circ$ C, and 16 days at 45 $^\circ$ C

• Relative errors of density and voltages are very low (± 0.3 %).

Liten 22 / 28

Modeling self-discharge of a lead-acid cell ○○○○○●○○ Conclusion

Model validation with experimental data

Bulk and reference electrolytes during 49 days at 25 $^\circ\text{C},$ 34 days at 35 $^\circ\text{C},$ and 16 days at 45 $^\circ\text{C}$

- Relative errors of density and voltages are very low (\pm 0.3 %).
- Diffusion of species from the bulk is very slow but non negligible.

22/28

liten

Modeling self-discharge of a lead-acid cell ○○○○○●○○ Conclusion

Model validation with experimental data

Bulk and reference electrolytes during 49 days at 25 $^\circ$ C, 34 days at 35 $^\circ$ C, and 16 days at 45 $^\circ$ C

- $\bullet\,$ Relative errors of density and voltages are very low (±0.3 %).
- Diffusion of species from the bulk is very slow but non negligible.
- The model shows how the acid is diluted by water production.

22 / 28

liten

Modeling self-discharge of a lead-acid cell ○○○○○●○

Conclusion

Model extrapolation

Simulating the impact of a one-year selfdischarge at 25 °C on electrolyte density, cell voltage and SOC

Modeling self-discharge of a lead-acid cell 000000

Conclusion

Model extrapolation

Simulating the impact of a one-year selfdischarge at 25 °C on electrolyte density, cell voltage and SOC

23/28

Modeling self-discharge of a lead-acid cell ○○○○○○●○

Model extrapolation

Simulating the impact of a one-year selfdischarge at 25 °C on electrolyte density, cell voltage and SOC

23/28

liten

Modeling self-discharge of a lead-acid cell ○○○○○○●○

Model extrapolation

Simulating the impact of a one-year selfdischarge at 25 °C on electrolyte density, cell voltage and SOC

Thermodynamics and kinetics make the electrolyte density, cell voltage, and SOC decrease exponentially, showing that the lower the SOC, the lower the selfdischarge phenomenon.

Modeling self-discharge of a lead-acid cell ○○○○○○●

Model improvements

Electrolyte density measurement issues, long-term selfdischarge at 40 °C, and sealed technologies

• Measurements from the electrolyte reserve located above the electrodes may lead to lower density values than the actual ones inside the pores.

Modeling self-discharge of a lead-acid cell ○○○○○○●

Model improvements

Electrolyte density measurement issues, long-term selfdischarge at 40 °C, and sealed technologies

- Measurements from the electrolyte reserve located above the electrodes may lead to lower density values than the actual ones inside the pores.
- Measurements with a densimeter have to be done in accordance with the allowed temperature range (measurements above 40 °C may be inaccurate).

Modeling self-discharge of a lead-acid cell ○○○○○○●

Model improvements

Electrolyte density measurement issues, long-term selfdischarge at 40 °C, and sealed technologies

- Measurements from the electrolyte reserve located above the electrodes may lead to lower density values than the actual ones inside the pores.
- Measurements with a densimeter have to be done in accordance with the allowed temperature range (measurements above 40 °C may be inaccurate).
- \bullet A long-term self-discharge at 40 $^\circ\text{C}$ has been started recently to:
 - experimentally validate the model beyond one-month,
 - potentially add the impact of corrosion and loss of water by evaporation, if necessary.

liter

Modeling self-discharge of a lead-acid cell ○○○○○○●

Model improvements

Electrolyte density measurement issues, long-term selfdischarge at 40 °C, and sealed technologies

- Measurements from the electrolyte reserve located above the electrodes may lead to lower density values than the actual ones inside the pores.
- Measurements with a densimeter have to be done in accordance with the allowed temperature range (measurements above 40 °C may be inaccurate).
- \bullet A long-term self-discharge at 40 $^\circ\text{C}$ has been started recently to:
 - experimentally validate the model beyond one-month,
 - potentially add the impact of corrosion and loss of water by evaporation, if necessary.
- The model should be applied on sealed lead-acid cells as well.

Outline

Introduction

- 2 Self-discharge of lead-acid cells
- 3 Modeling self-discharge of a lead-acid cell

4 Conclusion

- What we have learned
- What should be done next
- Acknowledgments

What we have learned

• Self-discharge has an obvious impact on operational performance and safety.

What we have learned

- Self-discharge has an obvious impact on operational performance and safety.
- Self-discharge involves many processes that are uneasy to isolate and identify.

What we have learned

- Self-discharge has an obvious impact on operational performance and safety.
- Self-discharge involves many processes that are uneasy to isolate and identify.
- Self-discharge of lead-acid batteries is finally not so well-known.

What we have learned

- Self-discharge has an obvious impact on operational performance and safety.
- Self-discharge involves many processes that are uneasy to isolate and identify.
- Self-discharge of lead-acid batteries is finally not so well-known.
- Efficient modeling of self-discharge requires to cover the complete value chain:
 - Experimental work,
 - Data collection and analysis,
 - Model development, parameter identification, and validation.

liter

What should be done next

 If you don't know precisely what happens inside one cell, when there is no current going through it, do you sincerely believe you could drop that step and jump directly to the modeling of battery (dis)charge with more success?

Modeling self-discharge of a lead-acid cell 00000000

What should be done next

- If you don't know precisely what happens inside one cell, when there is no current going through it, do you sincerely believe you could drop that step and jump directly to the modeling of battery (dis)charge with more success?
- "It is better to do the right problem the wrong way than the wrong problem the right way." R. Hamming

Richard Hamming (1915–1998)

liten

l**ntroduction** 000 Self-discharge of lead-acid cells

Modeling self-discharge of a lead-acid cell

Acknowledgments

• Co-workers on this subject

Introduction 000 Self-discharge of lead-acid cells

Modeling self-discharge of a lead-acid cell

Acknowledgments

- Co-workers on this subject
- Colleagues for their fruitfull discussion and managers for support

Conclusion

0000

Introduction 000 Self-discharge of lead-acid cells

Modeling self-discharge of a lead-acid cell

Acknowledgments

- Co-workers on this subject
- Colleagues for their fruitfull discussion and managers for support
- Craig Wohlers for giving me the opportunity to present my work and for organizing this great event of the battery community.

A D K A B K A B K A

Introduction 000 Self-discharge of lead-acid cells

Modeling self-discharge of a lead-acid cell

Acknowledgments

- Co-workers on this subject
- Colleagues for their fruitfull discussion and managers for support
- Craig Wohlers for giving me the opportunity to present my work and for organizing this great event of the battery community.
- My wife and my three kids

Liten ^{(23 tech} 28 / 28

A D K A B K A B K A