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What is self-discharge?

o Self-discharge is a set of processes that
decreases the performance of electrochemical
power sources without flow of current through
an external circuit.
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Introduction
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What is self-discharge?

o Self-discharge is a set of processes that
decreases the performance of electrochemical
power sources without flow of current through
an external circuit.

o Batteries that are prone to self-discharge
exhibit a short shelf life and are thus disfavored
in most applications.

@ Self-discharge is more critical for primary
batteries than secondary batteries:

o Primary batteries = short life
e Secondary batteries = low energy efficiency

BATTERY
SELF-DISCHARGE
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Why self-discharge is so important?

@ It may have dramatic consequences for systems that cannot be powered.
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Why self-discharge is so important?

@ It may have dramatic consequences for systems that cannot be powered.
@ It requires excessive charging that may be detrimental to the batteries.
@ It demonstrates that batteries remain active even though they are unused:

4
Vét >0, dTIrSO’ i=0 = u(t+dt)<u(t)
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Introduction
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Why self-discharge is so important?

@ It may have dramatic consequences for systems that cannot be powered.
@ It requires excessive charging that may be detrimental to the batteries.

@ It demonstrates that batteries remain active even though they are unused:

y
Vot > 0, d—;go, i=0 = u(t+dt)<u(t)

This feature is neglected in most battery models for simplicity!
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@ Self-discharge of lead-acid cells
@ Specific self-discharge processes
@ Experimental work
@ Reference electrode
@ Working electrode
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Self-discharge of lead-acid cells
@00

Electrochemical reactions at each electrode

Hydrolysis of water, corrosion of the grid, and recombination of water

Positive electrode

Cathodic: PbOg + HaSO4 + 2HT + 26~ = PbSO4 + 2Hy0  (discharge)
Anodic: { HyO = 105 +2H' +2e~  (oxygen evolution)

Pb + Hy0 = PbO +2H" +2e~ (grid corrosion)
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Self-discharge of lead-acid cells
@00

Electrochemical reactions at each electrode

Hydrolysis of water, corrosion of the grid, and recombination of water

Positive electrode
Cathodic: PbOg + HySO4 +2HT +2e™ = PbSO4 +2H50  (discharge)

Anodic: {

HyO = 105 +2H' +2e~  (oxygen evolution)
Pb + Hy0 = PbO +2H" +2e~ (grid corrosion)

Negative electrode

Anodic: Pb + HySO4 = PbSO4 + 2H' +2e~  (discharge)
. 2H' +2e~ = Hy (hydrogen evolution)

Celueclic { % Oy +2H" +2e” = Hy0 (oxygen reduction)
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Redox shuttle process

Insufficiently purified water or leaching impurities from cell components

Impurities, e.g. Fe?T/Fe3t, lead to discharging of the
cell by means of a so-called redox shuttle process:

Positive electrode
PbOs + H2SO4 + 2H' + 2Fe®t = PbSO4 + 2H,0 + 2 Fe?t

Negative electrode
Pb + H,SO4 + 2Fe®" = PbSO4 + 2H" 4 2 Fe’"

This process continues as long as the electrode
potentials allow the oxidation and reduction of ions.
The redox shuttle ions themselves are not consumed. liten
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Redox shuttle process

Insufficiently purified water or leaching impurities from cell components

1000 e

Impurities, e.g. Fe?* /Fe3T, lead to discharging of the
cell by means of a so-called redox shuttle process:

100+

Positive electrode
PbOs + HySO04 + 2H' + 2Fe?t = PbSO4 + 2Hy0 + 2 Fe3t

A'r:ﬁimonyz\ =
0.1 N

T -

. ‘\: Antimony

. - 0.07 mA]

Negative electrode oot : S Eﬁiﬁﬂﬁ?@*:mm :
Pb + HySO4 + 2Fe®t = PbSO4 + 2H' + 2 Fe?*t 0.001 —

:
46 14 42 4 08 -06 -0.4: 02 0
N
Polarization / V . Lead !

This process continues as long as the electrode oA
potentials allow the oxidation and reduction of ions.
The redox shuttle ions themselves are not consumed.

semilogarithmic plot vs. electrode potential (polarization). The ori
the horizontal scale is the equilibrium potential of the hydrogen electrode.

D. Berndt, J. Power Sources 95 (2001) 2-12
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Some other self-discharge processes

Reactions between positive active material and separator

Lead dioxide has a very high oxidation potential and can discharge in contact with separators:
PbOs + HySO4 + separator = PbSO4 + 2 H,O + damaged separator + CO4

The degradation of the separator must be avoided by proper choice of materials and designs.
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Some other self-discharge processes

Reactions between positive active material and separator

Lead dioxide has a very high oxidation potential and can discharge in contact with separators:

PbOs + HySO4 + separator = PbSO4 + 2 H,O + damaged separator + CO4

The degradation of the separator must be avoided by proper choice of materials and designs.

Ohmic Leakage Currents / Short Circuits

@ New lead-acid batteries do not exhibit such self-discharge phenomena.

@ Short circuits (e.g., formation of dendrites through the separator) can develop after long
use and soon lead to cell failure, as they enable a discharging process inside the cell.

@ A conductive layer of dirt on the cell container may bridge the battery terminals, but
discharging caused by such fault currents can be reversed by the charging process.
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Self-discharge in practice

Example of a flooded lead-acid battery for traction applications
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Self-discharge in practice

Tear-down of an individual electrochemical cell

@ Number and dimensions of positive and negative electrodes
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Tear-down of an individual electrochemical cell

@ Number and dimensions of positive and negative electrodes
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Self-discharge in practice

Tear-down of an individual electrochemical cell

@ Number and dimensions of positive and negative electrodes
@ Number and dimensions of separators

@ Weight of each electrode (still soaked with electrolyte)
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Self-discharge in practice

Tear-down of an individual electrochemical cell

Number and dimensions of positive and negative electrodes
Number and dimensions of separators

Weight of each electrode (still soaked with electrolyte)
Weight of each electrode (after drying to remove electrolyte)

Weight of each grid (after removing active materials)
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Self-discharge in practice

Tear-down of an individual electrochemical cell

Number and dimensions of positive and negative electrodes
Number and dimensions of separators

Weight of each electrode (still soaked with electrolyte)
Weight of each electrode (after drying to remove electrolyte)
Weight of each grid (after removing active materials)

Estimation of the total volume of electrolyte in the cell
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Self-discharge of lead-acid cells
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Reference electrode

Study of each electrochemical reaction with the silver-silver sulfate reference electrode

Gold-plated contact

Safety connectol

To measure the potential of an individual working
electrode, you must combine it with a reference electrode
to form a galvanic cell.

Plastic protection
(turned part)

Acid-resistant epoxy |
plbilebimsieesidnias A |

Reference
Electrode

Teflon tubing
Ag/ AgS0O,
| il

Micro-fiber glass plug
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Reference electrode

Study of each electrochemical reaction with the silver-silver sulfate reference electrode

To measure the potential of an individual working
electrode, you must combine it with a reference electrode
to form a galvanic cell.

Positive electrode as working electrode

PbOs + HySO, +2H' +2e™ = PbSO4 + 2H50
2Ag = HQSO4 — AgZSO4 -+ 2H+ —+ 26_ Electrode

Reference

Ag/ AgS0O,

| —

Gold-plated contact

Safety connector

Plastic protection
(turned part)

Acid-resistant epoxy |

|
Teflon tubing

Micro-fiber glass plug
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Reference electrode

Study of each electrochemical reaction with the silver-silver sulfate reference electrode

Gold-plated contact
Safety connector

Plastic protection
(turned part)
Acid-resistant epoxy |

To measure the potential of an individual working

electrode, you must combine it with a reference electrode
to form a galvanic cell.

Positive electrode as working electrode

Teflon tul ng
PbOy + HySO4 +2HT +2¢~ = PbSO,4 + 2H,0 aracan 1
2Ag + HyS04 = AgeSO4 + 2HT +2e” o

Negative electrode as working electrode

Ag- Ap.SO,

Pb + HySO4 = PbSO4 +2HT 4+ 2e~ el
AgoSO4 +2HT +2¢7 = 2Ag + HySO,

Micro-fiber glass plug

12/28
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Reference electrode

Impact of the reference electrode on the Butler-Volmer model of the negative electrode

The current density of charge transfer is described by the Butler-Volmer equation:

. 2F 2F
=1y {exp [(1 —a) BT (Ag — Agbo)] — exp [—a BT (Ap — A(;SO)} }
with the exchange current density

anO 11—«

«
lo = FH5S04,ref FH2S04
’Yi 2 4,

and the equilibrium potential at the reference temperature from the Nernst equation:

0 0
Hpbso, ~ MAg,sO RT® aH,S0
A 0 T°) = 4 g2o0q In 2004 y
“pu(T7) 2F 2F AH,SO04, ref Een
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Working electrode

Impact of temperature on current density and equilibrium voltage

The Arrhenius equation gives the dependence of the rate constant on T

liten
ceatech

14 /28
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Working electrode

Impact of temperature on current density and equilibrium voltage

The Arrhenius equation gives the dependence of the rate constant on T

The Taylor polynomial of degree 2 for the equilibrium potential according to T°

0 2 0
A (1) =8 (1) + (T = 7) (%5) ()4 37 72 (%55 ) (7)

allows to estimate the equilibrium potential for any temperature value T # T° from the
entropy and heat capacity at constant pressure (isobaric process)

AGO(T°) ASO(T°) ACO(T°)
0 _ - N7 _ o o . 012 P liten
Ap(T) = nF (T=17) nF (T=T17) 2nF T E
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Working porous electrode

Electroneutrality and conservation of charge

The porous electrodes of lead-acid batteries are made of two phases:
@ a solid phase (Pb at the negative electrode and PbO, at the positive electrode),
@ a liquid phase (electrolyte).
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Working porous electrode

Electroneutrality and conservation of charge

The porous electrodes of lead-acid batteries are made of two phases:
@ a solid phase (Pb at the negative electrode and PbO; at the positive electrode),
@ a liquid phase (electrolyte).

This approach is simplistic as the electrodes are also made of binders (electrical
insulators) and conductive additives, but allows to consider that the whole volume of the
electrode is conductive with two different types of conduction according to the phases:

@ electronic in the solid phase (exclusively metallic), symbolized by the current i,

@ ionic in the liquid phase (electrolyte), symbolized by the current i.

liten
ceatech

15/28
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Working porous electrode

Electroneutrality and conservation of charge

The porous electrodes of lead-acid batteries are made of two phases:
@ a solid phase (Pb at the negative electrode and PbO; at the positive electrode),
@ a liquid phase (electrolyte).

This approach is simplistic as the electrodes are also made of binders (electrical
insulators) and conductive additives, but allows to consider that the whole volume of the
electrode is conductive with two different types of conduction according to the phases:

@ electronic in the solid phase (exclusively metallic), symbolized by the current i,

@ ionic in the liquid phase (electrolyte), symbolized by the current i.

Electroneutrality (the double layer being negligible in volume)

Charges leaving the porous matrix of the electrode must pass into the solution and reciprocally:
v : is a4 V . I] = 0




Self-discharge of lead-acid cells
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Working porous electrode

Kinetics and electrostatics are two sides of the same coin

The current per unit volume of the electrode V - ij, transferred from the matrix to the
solution, is involved either in faradaic reactions

n
V=AY j
j=1
where A is the specific interfacial area (m™!), 3"7_; i; the sum of the current densities

]
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Working porous electrode

Kinetics and electrostatics are two sides of the same coin

The current per unit volume of the electrode V - ij, transferred from the matrix to the
solution, is involved either in faradaic reactions or in double-layer charging:

I1—AZIJ+* (Agqar)

where A is the specific interfacial area (m™1), > =1 ij the sum of the current densities

of all faradaic processes j involved (A m~2) and qq; the surface charge density on the
electrode side of the double layer (Cm~2).
16 /28
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Working porous electrode

Kinetics and electrostatics are two sides of the same coin

The current per unit volume of the electrode V - ij, transferred from the matrix to the
solution, is involved either in faradaic reactions or in double-layer charging:

‘ d
~':A§ i+ — (A
Vi j_llj—kdt( qa1)

where A is the specific interfacial area (m™1), > =1 ij the sum of the current densities

of all faradaic processes j involved (A m~2) and qq) the surface charge density on the
electrode side of the double layer (Cm~2).

dA¢ dCy
= Cy - A . Sodl
ar = Car -~ ¢ 3
where Cg is the double layer capacity per unit area of the electrode (Fm~2).
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© Modeling self-discharge of a lead-acid cell
@ Model equations
@ Model validation
@ Model improvements
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Modeling self-discharge of a lead-acid cell
000

Model equations

Self-discharge means no charge transferred

In open circuit, no current flows, neither electronically (V - iy = 0), nor ionically:

. d
v'll:A;Ij—i_dt(Aqdl):O
J:
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Modeling self-discharge of a lead-acid cell
000

Model equations

Self-discharge means no charge transferred

In open circuit, no current flows, neither electronically (V - is = 0), nor ionically:
I]—AZIJ-F* Aqdl) 0

Assuming two faradaic processes:
o discharge of the electrode active material with the primary current i,

@ hydrolysis of water contained in electrolyte with the gassing current ig

. : dCq _
and a constant double layer capacity per unit area of the electrode (d—fl = )

dA¢ = — ip + ig liten
dt Cdl A
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Modeling self-discharge of a lead-acid cell
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Model equations

Self-discharge means sulfuric acid consumption and dilution

Reducing self-discharge to sulfuric acid consumption works for the negative:

Negative electrode

Anodic: Pb + HySO4 = PbSO4 + 2HT +2e~  (discharge)
Cathodic: 2H" +2e~ = Hy (hydrogen evolution)
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Model equations

Self-discharge means sulfuric acid consumption and dilution

Reducing self-discharge to sulfuric acid consumption works for the negative:

Negative electrode

Anodic: Pb +HySO4 = PbSO4 + 2HT +2e~  (discharge)
Cathodic: 2H" +2e~ = Hy (hydrogen evolution)

but is not sufficient for the positive, producing and consuming water:

Positive electrode

Cathodic: PbOg + HySO, +2HT +2e~ = PbSO4 +2H,0  (discharge)
Anodic: HyO = $ Oy +2HT +2e~ (oxygen evolution)
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Modeling self-discharge of a lead-acid cell
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Model equations

Self-discharge means sulfuric acid consumption and dilution

Reducing self-discharge to sulfuric acid consumption works for the negative:

Negative electrode

Anodic: Pb + HySO4 = PbSO4 + 2HT +2e~  (discharge)
Cathodic: 2H" +2e~ = Hy (hydrogen evolution)

but is not sufficient for the positive, producing and consuming water:

Positive electrode

Cathodic: PbOg + HySO4 +2HT +2e~ = PbSO4 +2H50  (discharge)
Anodic: HyO = 0y +2H* +2e~  (oxygen evolution)

. . dn; Sij.k Nk Sk .
Vie {HQO,HQSO4}, S {p,g}, ke {pOS,I’leg}, E = — Z 7 Ij k
i S

19/28



Modeling self-discharge of a lead-acid cell
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Model equations

A system of 7 ordinary differential equations (2 for each electrode and 3 for the electrolytes)

Electrode k

dAgy
dt Cdl k Z s
dQ )
d_tk = —5p.k N Sk i i
Qx
SOC, = —————
k max ( Q)
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Model equations

A system of 7 ordinary differential equations (2 for each electrode and 3 for the electrolytes)

Electrode k

dAgy
dt Cdl k Z s
dQ )
d_tk = —5p.k N Sk i i
Qx
SOC, = —————
k max ( Q)

The cell SOC corresponds to the minimum
value of each electrode SOC;:

liten

S0C = min(max(min (SOCk),O),l) ceatoen
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Model equations

A system of 7 ordinary differential equations (2 for each electrode and 3 for the electrolytes)

Electrode k Bulk electrolyte

dA¢k dng,o0 SH,0.j,k Nk Sk .
dt CdlkZJ’ dt __Zk: nj« F s
dQ . dn s Ny Si .
_dtk = —Sp.k Nk Sk ip 132504 - _Z H2SO4dkkF kip
J
Qx
G —
0% = (@) m— 1000"—HaSO4
/ Mu,0 nu,0

The cell SOC corresponds to the minimum
value of each electrode SOC;:

S0C = min(max(min (SOCk),O),l)
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Modeling self-discharge of a lead-acid cell
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Model equations

A system of 7 ordinary differential equations (2 for each electrode and 3 for the electrolytes)

Electrode k Bulk electrolyte

dA¢k dng,o0 SH,0.j,k Nk Sk .
dt Cdlkzj’ dt __,Zk: nj« F Bkt
dQ : dn 5 N, S, .
Ttk = —Sp.k Nic Sk ip 7132:04 == Z HZSOMkkF i
J
Qx
Ch= ———F——
0 max (Qk) m= 1000”7112304
‘ M0 nm,o0

The cell SOC corresponds to the minimum
value of each electrode SOC;:

S50C = min (max(min (S0Gy),0), 1)

20/28



Modeling self-discharge of a lead-acid cell
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Model validation with experimental data
Electrode voltage and SOC during 49 days at 25 °C, 34 days at 35°C, and 16 days at 45°C

Positive electrode voltage

L.15

C_ Abpeexp
1141  Adysim
1.13 ,\ —_— Ao,

2 12 \\

5 111 TS

%’ 114 \\

E 1.09 9 e
1.08 \

1.07
1.06

0 20 40 60 80 100 120
Time, ¢ (days)
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Modeling self-discharge of a lead-acid cell
@00

Model validation with experimental data
Electrode voltage and SOC during 49 days at 25 °C, 34 days at 35°C, and 16 days at 45°C

Positive electrode voltage Negative electrode voltage

L15 104
C_ Abpeexp

L1417 — Adpesim 1.03 7

1.13 —\ — Adhyo, 1.024
= 112 \\ = 1014
S 111 T \ EEERE
g 114 g 0.991 S
= ~ = =
S 109 S 0081 Y

1.08 0.97

1.07 0.96

1.06 - - - - - 0.95 - - - - -

0 20 10 60 80 00 120 0 20 10 60 80 00 120
Time, ¢ (days) Time, ¢ (days)
y y
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Model validation with experimental data
Electrode voltage and SOC during 49 days at 25 °C, 34 days at 35°C, and 16 days at 45°C

Positive electrode voltage Negative electrode voltage State of cha

L.15 1.04 100

S Abpeexp e - Adugexp —— SOCpos
L1417 ——  Adyusim 10317 —— SOCneg
113 ,\ — Adho, 102 907
112 \\ 1011

~— B = 80

socC, %

111 = \
1.1 0.99 4 S 70
R = 7]
1004 \\ = 0987 —= \
1.08 0.97 60

1.07 4 0.96 9

Voltage, A (V)

Voltage, A (V)

1.06

T T T T T 0.95 T T T T T T T T T T
0 20 40 60 80 100 120 0 20 40 60 80 100 120 0 20 40 60 80 100 120

Time, ¢ (days) Time, ¢ (days) Time, ¢ (days)
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Modeling self-discharge of a lead-acid cell

Model validation with experimental data
Electrode voltage and SOC during 49 days at 25 °C, 34 days at 35°C, and 16 days at 45°C

Positive electrode voltage Negative electrode voltage State of cha

L15 1.04 100
C_ Abpeexp — A exp —— SOCpos
1147 — Agpsim 1037 —— - Ay sim —— S0Cneg
1.13 —\ — Adhyo, 1.024 — A, 907
= 112 \\ = 1014
— < 80
S 111 s \ EEERE =
g 114 g 0.991 S ; 0
= ~ E =~ ’
3 1004 \\ 2 o8] =~ \
1.08 0.97 04
1.07 0.96
1.06 - - - - - 0.95 - - - - - 50 - - - - -
0 20 n 60 80 00 120 0 20 40 60 80 00 120 0 20 n 60 80 100 120
Time, ¢ (days) Time, ¢ (days) Time, ¢ (days)
y y y

@ The positive electrode polarization is much higher than the negative one.
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Model validation with experimental data
Electrode voltage and SOC during 49 days at 25 °C, 34 days at 35°C, and 16 days at 45°C

Positive electrode voltage Negative electrode voltage State of charge

L.15 1.04 100
S Abpeexp

—— SOCpos

1141 — Agpsim 1.03 —— SOCneg

1.13 —\ — Adhyo, 1.024

901

= 1,12*\ 2 1011

S 111 TS \ 3 1l = 801
g N == g

7 11 \ % 0% —_— 2

g T g

~_ 70
1.09 *\ 2 098 =
1.081 0.97 1 60

1.07 4 0.96 9

1.06

T T T T T 0.95 T T T T T T T T T T

0 20 40 60 80 100 120 0 20 40 60 80 100 120 0 20 40 60 80 100 120
Time, ¢ (days) Time, ¢ (days) Time, ¢ (days)

y y y

@ The positive electrode polarization is much higher than the negative one.

@ The positive electrode voltage decreases faster than the negative one.
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Model validation with experimental data
Electrode voltage and SOC during 49 days at 25 °C, 34 days at 35°C, and 16 days at 45°C

Positive electrode voltage Negative electrode voltage State of charge

L.15 1.04
S Abpeexp

100

—— SOCpos
L4 — Abpesim 1.03 7

113 —\ — Adho, 1024 - Adh, 907
112 1.01

s c 80
111 = \ 14
1.1 0.99 4 S Z 70

S = 7]

1.099 \ 2 0081 = \\
1.08 0.97 60

1.07 4 0.96 9

—— SOCneg

g

Voltage, A (V)
SOC

Voltage, A (V)

1.06

T T T T T 0.95 T T T T T T T T T T

0 20 40 60 80 100 120 0 20 40 60 80 100 120 0 20 40 60 80 100 120
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@ The positive electrode polarization is much higher than the negative one.
@ The positive electrode voltage decreases faster than the negative one.
@ The positive electrode SOC decreases slower than the negative one. -
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o Relative errors of density and voltages are very low (£0.3 %).
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o Diffusion of species from the bulk is very slow but non negligible.
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o Relative errors of density and voltages are very low (£0.3 %).

o Diffusion of species from the bulk is very slow but non negligible.
@ The model shows how the acid is diluted by water production. E
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Model extrapolation
Simulating the impact of a one-year selfdischarge at 25 °C on electrolyte density, cell voltage and SOC
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Model extrapolation
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Model extrapolation
Simulating the impact of a one-year selfdischarge at 25 °C on electrolyte density, cell voltage and SOC
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Thermodynamics and kinetics make the electrolyte density, cell voltage, and SOC
decrease exponentially, showing that the lower the SOC, the lower the selfdischarge
phenomenon.
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Electrolyte density measurement issues, long-term selfdischarge at 40 °C, and sealed technologies

@ Measurements from the electrolyte reserve located above the electrodes may lead
to lower density values than the actual ones inside the pores.
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@ Measurements from the electrolyte reserve located above the electrodes may lead
to lower density values than the actual ones inside the pores.

@ Measurements with a densimeter have to be done in accordance with the allowed
temperature range (measurements above 40 °C may be inaccurate).

o A long-term self-discharge at 40°C has been started recently to:

e experimentally validate the model beyond one-month,
e potentially add the impact of corrosion and loss of water by evaporation, if necessary.
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@ Measurements from the electrolyte reserve located above the electrodes may lead
to lower density values than the actual ones inside the pores.

@ Measurements with a densimeter have to be done in accordance with the allowed
temperature range (measurements above 40 °C may be inaccurate).

o A long-term self-discharge at 40°C has been started recently to:

e experimentally validate the model beyond one-month,
e potentially add the impact of corrosion and loss of water by evaporation, if necessary.
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@ The model should be applied on sealed lead-acid cells as well.
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What we have learned

Self-discharge has an obvious impact on operational performance and safety.
Self-discharge involves many processes that are uneasy to isolate and identify.
Self-discharge of lead-acid batteries is finally not so well-known.

Efficient modeling of self-discharge requires to cover the complete value chain:

o Experimental work,
o Data collection and analysis,
o Model development, parameter identification, and validation.
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What should be done next

o If you don’t know precisely what happens inside one cell,
when there is no current going through it, do you
sincerely believe you could drop that step and jump
directly to the modeling of battery (dis)charge with

more success’
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What should be done next

@ If you don’t know precisely what happens inside one cell,
when there is no current going through it, do you
sincerely believe you could drop that step and jump
directly to the modeling of battery (dis)charge with
more success’

o "lt is better to do the right problem the wrong way than
the wrong problem the right way." R. Hamming

Richard Hamming
(1915-1998)
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